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ON QUASISIMILARITY FOR TOEPLITZ OPERATORS 

BY 

K. SEDDIGHI 

ABSTRACT. In this article we give a sufficient condition for quasisimilar 
analytic Toeplitz operators to be unitarily equivalent. We also use a result 
of Deddens and Wong to give a sufficient condition for an operator inter­
twining two analytic Toeplitz operators to intertwine their inner parts too. 
Analytic Toeplitz operators with univalent symbols satisfying a suitable 
normalization that are quasisimilar are shown to have equal symbols. 

1. Introduction. Let H2 denote the Hilbert space of functions/analytic in the open 
unit disk D which satisfy sup0<r<i / | /Oe'e) |2 d6 < °°. Let//00 be the space of bounded 
analytic functions on D, and for <p in Hx let T9 denote the operator on H2 defined by 
T^f = <pf. The operator 7^ is said to be an analytic Toeplitz operator. In this article we 
consider the following questions. If an operator intertwines two analytic Toeplitz 
operators does it necessarily intertwine their inner parts too? Do quasisimilar analytic 
Toeplitz operators have equal essential spectra? Does quasisimilarity imply unitary 
equivalence? Although the study of Toeplitz operators has been extensive, little seems 
to be known about their quasisimilarity. Our purpose is to answer parts of the above 
questions. In particular, we give a sufficient condition for an operator intertwining two 
analytic Toeplitz operators to intertwine their inner parts too. We also give a sufficient 
condition for quasisimilarity to imply unitary equivalence. 

If Hi is a separable Hilbert space, let 20(^0 denote the Banach algebra of all bounded 
linear operators on Hi. If Hix and Hi2 are Hilbert spaces and X : Hix —> Hi2 is a bounded 
operator having trivial kernel and dense range, then X is said to be quasi-invertible. If 
A], A2 are operators on Hiu Hi2j then A\ is quasisimilar to A2(A\ ~ A2) if there are 
quasi-invertible operators X: Hix —> Hi2 and Y: Hi2 —» Hix satisfying XA\ - A2X and 
A\Y = YA2. If Ax and A2 are unitarily equivalent we write A\ = A2. 

Raphael [8] has shown that quasisimilar cyclic subnormal operators have equal 
essential spectra. Williams [9] has shown that quasisimilar quasinormal operators have 
equal essential spectra. However the equality of essential spectra under quasisimilarity 
for general subnormal operators is still open. We study the intertwining operators and 
suggest the pertinent questions to be considered. 

A function g in H™ is said to be inner if lim |g(ré?'e)| = 1 for almost every 8. A 
r—>1 
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function F in / / x is outer if 7> has dense range. Every 9 in H* has a factorization 
9 = gF where g is inner and F is outer [7]. 

An isometry T on 7/2 is a /?wre isometry if n*=0 T"//2 = {0}. For g E //*, 7̂ , is a 
pure isometry if and only if g is a nonconstant inner function. For an inner function g 
in FF we obtain the decomposition H2 = S^=0 0 gk(H2QgH2). If {«*}£=! 
(n possibly <») is a basis for H2dgH2, then {M*g'w}m=o*=i *s a basis for //2, and with 
respect to this basis the matrix for Tg has a block form with an (n by n) identity matrix 
on its subdiagonal. Also any X in the commutant {Tg}' of Tg has a lower triangular block 
form which is constant along its diagonals. We denote this X by the purely formal sum 
l£"=0XnT

n
g withX,, on the nth subdiagonal. Throughout the rest of this paper we assume 

cpi and 92
 a r e m H* and have the inner-outer factorization 9, = g/F, (/ = 1,2) unless 

otherwise stated. 

2. Quasisimilarity. The following simple lemma is essential to our purposes. 

LEMMA 2.1 For 9 E / /x , let 9 = gF be its inner-outer factorization. Then T^ is 
Fredholm if and only ifTg is Fredholm and TF is invertible. 

PROOF. If Tg is Fredholm and TF is invertible then it readily follows that 7^ = TgTF 

is Fredholm. On the other hand if 79 is Fredholm, then ker 7* = ker 7* is finite 
dimensional and since Tg is an isometry it follows that Tg is Fredholm. Because TF = 
7*7^, it follows that TF is Fredholm. Hence TF has closed range and therefore it is 
invertible. Q.E.D. 

We would like to point out that if 9 = gF is the inner-outer factorization of 9 then 
Ty is Fredholm if and only if g is a finite Blaschke product and F is invertible in Hx. 
The index of TK is the negative of the number of zeros of g counting multiplicity. 

Note that if 7 ,̂ ~ 792 then 7 ,̂ = TgJ. Indeed 7 ,̂ ~ T^ implies that H20g\H2 and 
H2ftg2H

2 have the same dimension and we know that any two pure isometries of the 
same multiplicity are unitarily equivalent. Therefore the inner parts are strongly related 
to each other. In the next lemma we investigate this property further. 

LEMMA 2.2. IfX:H2 -> H2 is an operator such that XT^ = T^X andXTgx = Tg2X 
then XTFl = TFlX. 

PROOF. Since XT{p] = T^2X, we have X7^ 7V, = Tg2TFlX. Using the relation XTgx = 
Tg2X we get Tg2XTF] — Tg2TFlX, Because Tg2 is an isometry, it follows that XTFl — 
TFlX. Q.E.D. 

REMARKS. Let TiPl ~ T^. If we can show that 7 ,̂ ~ Tg2 in such a way that the same 
quasi-invertible operators intertwining TiP] and T^2 also intertwine Tg] and Tg2 then 
Lemma 2.2 shows that TF] ~ TFl. Using a result of Clary [1] we conclude that 
d(TFl) = a(7V2). Therefore 7V, is invertible if and only if TFl is invertible. In other 
words, T^ is Fredholm if and only if T^_ is Fredholm. 

The following lemma is a slight extension of Lemma 2 of [6] and will be used in the 
sequel. 
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LEMMA 2.3. Let N,Nf be nilpotent operators on K,Kf respectively and let X0 = 
\IK + N, X^ = kIK> + N' where X is a nonzero complex number. If B, AQ, A\, 
A2, . . . G ^(K,Kf) satisfy 

(a) \\Ak\\ < M , k = 0,\,29 ...,and 
(b)AkXQ = X'0Ak-x + £, k= 1,2, 3, . . . , 

f/i£ft A0 = A, = A2 = . . . . 

PROOF. Write K = 2?=1 0 AT, (À" - 2 " , 0 AT/) such that X0(*i) has a lower 
triangular operator-valued matrix with diagonal entries \/ ;-(\//) and repeat the proof of 
Lemma 2 of [6]. Q.E.D. 

The next lemma says that the intertwining operator should be lower triangular. 

LEMMA 2.4. Assume XT^ = T^X and for i= 1,2 write H2 = 2 " = 0 g"(H2®giH2) 
then X:Hl-^H2is lower triangular. 

PROOF. It suffices to show that X*:H2
2-+ H] is upper triangular. Equivalently we 

will show that X* maps the subspaces M2n = 2*=0 0 g2(H2Qg2H
2) into the subspaces 

MU1 = ZU0®gk
](H

2Qg]H
2). 

NowX7;, = r92X implies XT"^ = T'^ lX and henceX*r*'7+ ' = r*' ,+ ,X*. ThusX* 
maps the kernel of 7*2"

+1 into the kernel of T*"+l. But 

ker r*"+1 - ker r*'7+l = H2dg"+iH2 = M,„ (/ = 1, 2) 

Hence X is lower triangular. Q.E.D. 
Note that a necessary and sufficient condition for the relation XTg] — TglX to hold 

is that X : H, —» //2 be constant along its diagonals. Indeed writing 7̂  (/ = 1, 2) in its 
block form and carrying out the necessary computations it follows that Xk+Lk = 
Xi0 i,k = 0, 1, 2, . . . . 

LEMMA 2.5. Assume XT^ = T^X where X:Hl —» H2 is a bounded operator. If 
7>, = 2 " = 0 TnT

n
gl and 7>2 = 2 " = 0 T'„T"g2 where T0 = XI + N, r£ = X/' + AT' wif/i iV 

arcd N' nilpotent, then XTgi = Tg2X. 

PROOF. By Lemma 2.4 X is lower triangular. We will show that X is constant along 
its diagonals by inductively proving that X*,0 = X*+ u = Xk+Z2 = . . . for k = 0, 1, 
2, . . . . We also remark that ||X*+U|| ^ ||X|| for all it, / = 0, 1, 2, . . . . 

If 1 < j < i then the (ij) entry of (XTgl)TFl = TFl(Tg2X) is 

(2.6) Xjj+\To + Xjj+2T\ + .. . + XjjTj-j-] = TJ~J-\XJJ 

+ Tj-j-2Xj+\j + . . . + T0Xi-\j. 

If i = j + 1 then Xy-+ij+ir0 = 7oXy-,y- and by Lemma 2.3 we obtain X0,0 — Xx j = 
X2,2 — • • To apply induction let us now assume that Xp,0 = Xp+l,\ — Xp+2,2 = . . . 
for all p < k. Setting / = j + k + 2 in (2.6) we get 

Xk+i+j+ij+iTo — ToXk+\+jj + |_i 1X ,̂0 + . . . + ^+1X0,0 

— Xjt,oij ~~ • • • ~~ Xo^o^+iJ-
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An application of Lemma 2.3 gives usX H K 0 -X H 2 , i " ••• and hence by induction 
Xk,0 = Xit+u = . . . for all Jfc = 0, 1, 2, . . . . Therefore XTKi = T,2X. Q.E.D. 

The following theorem is the main result of this section. The idea of the proof is due 
to Deddens and Wong [6]. 

THEOREM 2.7. Let <p,, cp2 be in Hx with inner-outer factorization cp, = g,F,- (/ = 1, 
2). Suppose there is a X in (£ such that g, factors as gngu . • • gin and such that F, — 
X is divisible by each gih that is F,• — X = g^hijor i = 1,2 and j — 1,2, . . . , n. If 
X:/ / , —> H2 is a bounded operator such that X79l = T^X then XTg[ — TR2X. 

PROOF. Write TF. = 2 " = 0 fnJT
n
gi (/ = 1, 2). We will show that T0J = X/, + N( where 

Nj is nilpotent (/ = 1, 2). Then Lemma 2.5 implies that XT^ = 7^X. 
For convenience set 7F = 7,, Tgjj = 7(/ and //, = 2£,-. Then 7g/ = 7,-, 7,2. . . 7,„. Since 

7*,- is the restriction of 7* to 

dljV 1 g.dli — \dljV 1 i\dti) W 1 i\\dli)\Jl natj) W • • • W 1 i\ . . . 1 in- 1 \dti\Jl indtj), 

it follows that 7*,- is upper triangular and hence that T0J is lower triangular. Let (70,/);_,• 
be the compression of 70,, to 7,, . . . ^ ( ^ e ^ , ) . Iff, g G ^ , 8 7 , , ^ then since 7, 
= X + 7//7/,r we obtain 

UTnTn . . . 7 ,_ , / ) = (7„7,2 . . . T-^TJ = X7n7,2 . . . T^f 

+ 7/i7,-2 . . . Tjj-\TjjTh..f. 

But (TijThijTn . . . 7y-,/, 7,,7/2 . . . 7(/_,g) = 0, hence (70,/)/7 = X/7, This shows that 
7 0 / - X// is nilpotent. Q.E.D. 

COROLLARY 2.8. Suppose cpl5 cp2 are in Hx with inner-outer factorization cp, = g,F,-
(1 - 1, 2). //gf-(z) - (a - z)"(l - azYn (i = 1, 2; n > 0, |<z| < 1), F,(a) = F2(a) 
arcd X:H2—> H2 is a bounded operator such that XF^, = 792X f/ie« X7^ = 7 2̂X. 

PROOF. Factor g,- = g,,g,-2 . . . g,„ where g;/(z) = (a - z)(l - âz)~\ i = 1, 2 and 
7 = 1,2, . . ., n. Then F, — X is divisible by each g(/, where X = F,(a). Applying 
Theorem 2.7 we obtain X7^ = Tg2X. Q.E.D. 

COROLLARY 2.9. Suppose <p,- = z'T, (/ = 1, 2), F,(0) = F2(0) andXT^ = T^X. Then 
XTZ» = 7Z»X. 

Even though the following result looks like the uniqueness statement in the Riemann 
mapping theorem, we would like to point out that from the relation 79l ~ 792 it only 
follows that the two sets 91(D) and cp2(D) have the same closures and this does not 
convey any information about the equality of the two sets themselves. Also G = 91 (D) 
being simply connected might not have the property that (G)° = G. Examples are easy 
to construct. 

PROPOSITION 2.10. Let cpj E Hx be univalent, 79l ~ 792 and assume the nor­
malization cpi(0) = cp2(0), cp J(0) = <p2(0) > 0 holds. Then cpi = <p2-

https://doi.org/10.4153/CMB-1985-012-4 Published online by Cambridge University Press

file:///dljV
file:///dti/Jl
https://doi.org/10.4153/CMB-1985-012-4


1985] QUASISIMILARITY 111 

PROOF. Since dim (ker T*2_x) = dim (ker r*_x) = 1 or 0 for every X E (? we 
conclude that the number of zeros of cp2 — X in D is at most 1. Hence <p2 is univalent. 
Also XT^ = T^X implies XT^-^ = rç2_Ç2(0)X. Let cp, - cp/(0) = zFj be the 
inner-outer factorizations. Since F|(0) = <p[(0) = <p2(0) = F2(0), by Corollary 2.9 we 
obtain XTZ = TZX. Hence X — Th, h outer in H™. Since X ^ , = 7 2̂X we conclude that 
<P\h — cp2/î, so cp] = cp2-

3. Unitary Equivalence. In this section we consider the following problem. If two 
analytic Toeplitz operators are quasisimilar, must they be unitarily equivalent? The 
answer to this question is still unknown. However, in certain special cases an im­
provement is possible. For example, Conway [3] has shown that if S is the unilateral 
shift of multiplicity one, S ~ T^ then 5 = r,p((p£ //°°). We use results of Conway ([2], 
[4, p. 220] and Clary [1]) to obtain an extension of a result of Cowen [5]. Note that 
if u is an inner function, we say that the order ofu is n if u is a finite Blaschke product 
of order n\ otherwise we say the order of u is infinity. For any operator A E 88 (3f), 
let P"(A) denote the weak * closed subalgebra of 26 (3f) generated by A. That is,Px(A) 
is the weak * closure in 2ft(3€) of the polynomials in A. 

THEOREM 3.1. Suppose cp and \\f are in Hx and there are inner functions u and v such 
that P"°(T^) = PX(TU) and P°°(Tty) — PX(TV). Then the following are equivalent: 

(a) Ty = 7^, 
(*) T, ~ 7V 
(c) there are functions g in H™ and W\,w2 inner such that <p = g ° w]7 \\f = g ° w2 

and order W\ = order vv2. 

PROOF, (C) implies (a) follows from Theorem 1 of [5], and (a) implies (b) is clearly 
true, so we only need to prove that (b) implies (c). 

By hypothesis, there are inner functions u and v so tha tP 0 0 ^) = P°°(TU) andP°°(7^) 
= P*(TV). We will show that u and v have the same order. Let n = order u and m = 
order v. It is easy to see that P°°(T,) = PX(TU) = {TgoU : g E if00} and P"(T^ = P"(TV) 
= {TgoV : g E Hx}. Let X and Y be quasi-invertible operators such that XT^ = T^X and 
YTty = T^Y. By a result of Conway [2] (see also [4, p. 220]) there is an isometric 
isomorphism FiP^iT^) —> P™{T^) having the following properties 

(l)F(T,) = T*, 
(2) XA = F(A)X and Y F (A) = AY for every A in P"(T9), and 
(3) F is a weak * homeomorphism. 
Now F induces an algebra isomorphism <&:H°° ° u-* H°° ° v given by $ (g ° u) = 

h° v where ThoV = F(TgoU). Let w = <ï>(w) = q ° v and vv0 = <ï>"'(v) = q0° u. Since 
O is weak * continuous we have v = 3>(w0) = Qiqo° u) = q0°w = q0° q° v. Because 
v is inner, we have q0(q(z)) = z, z in D. Also w = q°v = q° 4>(w0) = 
q ° O(<7o ° u) = q ° q0° w. Moreover since Tu ~ Tw, we have by a result of Clary [1], 
d(Tu) = <J(TW) Hence w(D) = w(D) = D. Therefore q(q0(z)) = z, z in D. But 
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(7(0) = <?(v(D)) = w(D) = D and q0(B) = D. Hence q is a Môbius transformation 
of D onto D and w is an inner function of order m. But Tu ~ Tv implies dim 
(ker 7*) = dim (ker 7*). Thus order w = order w, so A = m. 

Since 79 E Pao(7cp), there is g E 7/x such that (p = g°«. Since $ is weak * continuous 
we have 4>(cp) = g ° 0(w) = g ° w, but we have F(Ty) = Tv]l so O(cp) = i|/. Therefore, 
we have cp = g ° u and v(; = g ° w where g E //* and order w = order w = n so the 
conclusion follows with W\ = u and vv2 = w. 

Q.E.D. 
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