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S U M M A R Y 

It is shown that many features of convection in rotating spheres and spherical 

shells can be understood on the basis Of plane layer models. The phenomenon of 

differential rotation generated by convection is emphasized. The potential applications 

and limitations of analytical and numerical models for problems of astrophysical 

interest are briefly discussed. 

I I N T R O D U C T I O N 

In thinking about the effects of rotation in stars a variety of thoughts comes 

to mind. Some are more negative: Rotation is a breaker of symmetry. It spoils our 

notion of a star as an ideal spherically symmetric body which is in static equilibrium 

except for the convection zones. Even the latter can be regarded as spherically symme­

tric with respect to their gross properties in the absence of rotation. Although the 

deviations from spherical symmetry are small in most rotating stars, the effects of 

rotation are only partially known and continue to irritate the theoretician involved 

in computations of stellar evolution. 

On the other hand stellar rotation is an exciting subject because of the variety 

of interesting phenomena associated with it. The generation of magnetic fields is in 

general connected with rotation. The shape of surfaces of equal potential in a 

rotating star may become unstable in phases of contraction. Rotation can cause 

meridional circulations and mixing processes and, in addition, there is a variety of 

phenomena connected with differential rotation. 

For the theoretical fluid dynamicist rotation brings to mind still other thoughts. 

Whenever the Coriolis force becomes dominant the dynamics of fluids are profoundly 

altered. The intuition developed from experience with hydrodynamics in non-rotating 

systems is no longer valid. Intuitive concepts like mixing length theory appear to be 

even less applicable in the case of low Rossby number convection, i.e. when the vor-

ticity of motion relative to the rotating system is small compared to the rotation 

rate. On the other hand, theories developed for small amplitude convection appear to hav 

a much'larger range of validity than in a non-rotating system. The two-dimensionality 

enforced by a dominating Coriolis force tends to suppress instabilities and restricts 

the degree of freedom for turbulent motion. 

In the following theoretical and experimental results for the small Rossby number 
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case will be presented. Among the nonlinear phenomena caused by convection in rotating 

systems we shall emphasize the generation of differential rotation. In discussing the 

application to rotating stars we shall restrict our attention to the Sun and Jupiter. 

The detailed surface observations available in both cases offer the best hope for 

eventual quantitative tests of theoretical concepts. 

2 BASIC EFFECTS OF ROTATION ON CONVECTION 

The dynamics of nearly stationary motions in a rotating system are 

governed by the Proudman-Taylor theorem which states that a small amplitude stationary 

velocity field of an inviscid incompressible fluid must be independent of the 

coordinate in the direction of the axis of rotation. It is of interest for astrophy-

sical applications that the theorem holds for barotropic fluids as well if the velocity 

vector y is replaced by the momentum vector p ,v: By taking the curl of the equation 

of motion 

2 3 x pv = - V p - pV $ 

and using the equation of continuity 

V • pv, = 0 

the relationship 

2$ • VpT£ = 0 (I) 

is obtained. In the following we shall restrict our attention, however, to the 

case of incompressible fluids, or, more exactly, Boussinesq fluids for which the 

temperature dependence of the density is taken into account in the gravity term 

only. 

We start the discussion of convection in rotating systems by considering two 

simple cases as shown in Figure 1. In case (a) the vectors of gravity and rotation 

are at a right angle and convection solutions satisfying the Proudman-Taylor theorem 

are possible. The Coriolis force is entirely balanced by the pressure gradient in 

that case and the critical value of the Rayleigh number for the onset of convection 

becomes the same as in a nonrotating system. Since the Coriolis force always increases 

the critical Rayleigh number unless it is balanced by the pressure, the solution 

corresponding to convection rolls aligned with the axis of rotation is physically 

preferred. It can be easily realized in the laboratory by heating a cylindrical 

rotating annulus from the outside and cooling it from the inside and using the 

centrifugal force as gravity (Busse and Carrigan, 1974). 

While the stabilizing effect of the Coriolis force vanishes in case (a) it 

reaches its maximum in case (b) when the vectors of gravity and rotation are parallel. 

This is realized when a fluid layer heated from below is rotating about a vertical 

axis. Release of potential energy by convection requires a vertical component of 
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motion which cannot occur without violating the Proudman-Taylor theorem. In order to 

overcome the constraint of the Proudman-Taylor theorem viscous friction must become 

sufficiently strong, thus playing a destabilizing role in this case. The non-dimen­

sional number describing the ratio between viscous friction and Coriolis force is 

the Ekman number 

E = V / « d2 (2) 

where d is the thickness of the layer and V is the kinematic viscosity. Since E is 

very small in most applications, the horizontal scale of convection must become much 

smaller than the vertical in order to increase friction. More detailed analysis (we 

refer to Chandrasekhar's (1961) book) shows that the horizontal scale decreases like 

E and the Rayleigh number for onset of convection increases like E for small 

E. Besides the Ekman number and the Rayleigh number, which is a measure of the buoyan­

cy, the Prandtl number is the third dimensionless parameter of the problem. It des­

cribes the ratio between thermal and viscous time scales of convection. For Prandtl 

numbers less than a value of about 1, oscillatory convection offers an alternate way 

to overcome the constraint of the Proudman-Taylor theorem wihtout changing, however, 

the power laws in the dependences on E. 

3 EFFECTS OF INCLINED BOUNDARIES 

The two extreme cases (a) and (b) of Figure 1 obviously correspond to equatorial 

and polar regions, respectively, of rotating spherical fluid shells heated from within 

and subjected to spherically symmetric gravity. There are, however, some important 

deviations because of the finite dimensions of the spherical shells. To discuss these 

effects let us consider the influence of inclined boundaries in (a) and (b). If top 

and bottom boundaries are added in case (a) convective motions satisfying the Proud­

man-Taylor theorem are still possible as long as the boundaries are parallel and vis­

cous friction is negligible. Boundaries inclined with respect to each other, however, 

require a dependence of the velocity field on the coordinate in the direction of the 

axis of rotation, which we shall cal z-coordinate. A typical example is shown in 

Figure 2 (a). The deviation from the Proudman-Taylor condition is accomplished by a 

combination of time dependence and viscous friction in this case: Convection still 

has the form of columns aligned with the z-axis, but the columns are travelling like 

Rossby waves in the prograde or retrograde azimuthal direction depending on whether 

the distance between top and bottom boundaries decreases or increases with distance 

from the axis. In addition the azimuthal wave number a becomes large in order to 

increase frictional effects. In the limit of small values of E we find 

R - (£) 4 / 3 , a - (11)1/3 > w „ a-l (3) 
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rotation rate, and n is the tangent of half of the angle between the inclined 

boundaries. A detailed theory and an experimental study of the stabilizing effect 

of inclined boundaries can be found in the papers by Busse (1970b) and Busse and 

Carrigan (1974). In section 4 we show how the theory can be applied more or less 

directly to the case of convection in a sphere. 

Since convection at the mid-latitudes of a rotating spherical shell corresponds 

to intermediate angles between gravity and the rotation vector, it may be anticipated 

that it shows properties intermediate to those of the extreme cases (a) and (b) of 

Figure 1. Indeed, it is easily shown (Chandrasekhar, 1961) that both the Rayleigh 

number and the wave number at the onset of convection are governed by the expressions 

derived for case (a) if the rotation rate fl is replaced by its vertical component 

fi cos <t> . Convection occurs in the form of rolls aligned with the horizontal component 

of fl , as indicated in Figure 2(b). Accordingly, the component of the Coriolis force 

proportional to £2 sin <t> is balanced by the pressure and drops out of the dynamical 

considerations. 

When applying the theory of plane parallel convection layers to spherical shells 

the strong dynamical coherence of the fluid along any line parallel to the axis of 

rotation must be kept in mind. For this reason convection in a spherical shell 

exhibits the effects of non-parallel boundaries even though the distance between the 

boundaries is constant. Since the tangential surfaces to the spherical boundaries 

of the shell are not parallel at the points intersected by the same line parallel to 

the z-axis, the dynamics of convection exhibit the same effects as in the case of the 

convective layer shown in Figure 2(c). The variation of "height" with distance from 

the axis of rotation induces a wave propagation property of the convective motions 

similar to that of the convection columns in Figure 2(a). Because of the particular 

phase relationship between buoyancy force and motion the phase propagation velocity is 

opposite that of Rossby waves, at least for Prandtl numbers of the order 1/3 and 

larger (Busse and Cuong, 1976). 

4 CONVECTION IN ROTATING SPHERES AND SPHERICAL SHELLS 

The problem of convection in a self-gravitating rotating fluid sphere has been 

traditionally considered for the case of homogeneous internal heating. Both gravity 

vector and temperature gradient vary linearly with distance r from the center in this 

case. Roberts (1968) gave a detailed mathematical analysis of the problem. The physically 

realized mode was determined by Busse (1970b). 

An approximate solution of the problem can be obtained without any numerical 

analysis by applying the concept of convection in a rotating annulus, as shown in 

Figure 2(a). Because of the coherence in the z-direction enforced by rotation and the 

small length scale of the convection columns in the perpendicular direction, 

convection in any cylindrical section of the sphere behaves as in the corresponding 
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Figure 5: Laboratory simulation of convection in a 
rapidly rotating sphere. The motions are 
made visible by small flaky particles which 
align with the shear. 
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annulus problem. In Figure 3 the stabilizing effect C of the Coriolis force owing 

to the inclination of the boundary has been plotted as a function of the distance 

s from the axis together with the buoyancy force A, which is given by the product of the s-

components of gravity and temperature gradient, since the z-component of the buoyancy 

force has little effect on the convection motion. The minimum of C/A at a distance s 

of about half the radius indicates the cylindrical surface where the onset of 

convection will occur as the critical value of the temperature gradient is reached. 

Figure 4 gives a qualitative sketch of the solution of the problem. 

The fact that only the component of gravity perpendicular to the axis of 

rotation enters the dynamics in a first approximation is the basis for the laboratory 

simulation of the convection process (Busse and Carrigan, 1976). By using centrifugal 

force in place of gravity and by cooling the sphere from the inside and heating it 

from the outside the convection flow described above can be realized in a laboratory 

experiment. The onset of convection occurs in the form of regularly spaced columns, 

as shown in Figure 4. When the buoyancy force increases beyond the critical value, 

the region of convection is extended until the entire sphere is filled by convection 

columns. While amplitude fluctuations and the difference in the speed of propagation 

cause deviations from the regular picture at low amplitudes the perfect alignment of 

the columns persists, as shown in Figure 5. 

The analysis of the spherical case applies directly to the equatorial region of 

spherical shells outside the cylindrical surface touching the inner boundary at the 

equator. In all cases the Rayleigh number for the onset of convection is lower in that 

region than in the other parts of the fluid shell. Inside the cylindrical surface the 

onset of convection can be described approximately by applying locally the theory of an 

inclined convection layer if the effects discussed in connection with Figures2(b) and 

2(c) are taken into account. Of particular interest is the prograde propagation of 

convection modes everywhere except at the poles. An asymptotic analysis for different 

radius ratios and for varying Prandtl number P is given by Busse and Cuong (1976). 

Figure 6 shows the local Rayleigh number for onset of convection as a function of the 

distance from the axis in a typical case. The corresponding wave number and frequency 

of convection are also shown. The asymptotic results agree reasonably well with the 

earlier numerical results obtained by Gilman (1975) at finite values of E in the case 

P" 1 and for a radius ratio r/r = 0.8, which is appropriate for the solar convection 

zone. 

Figure 7 illustrates the most important feature of convection in a rapidly 

rotating spherical shell: The change in the character of convection across the 

cylindrical interface s = r^. While the vorticity of the motions is nearly z- independent 

for s > r^ the z- component of vorticity changes sign between lower and upper parts 

of the convection cell for s < r.. This change in the symmetry of convection has 

important effects on the nature of the differential rotation generated by convection 

and on the heat transport. 
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5 NONLINEAR ASPECTS 

The phenomenon of solar differential rotation has stimulated much of the 

recent effort to understand convection in rotating spherical shells. It was first 

shown by Busse (1970a) that convection in a spherical shell can generate a differen­

tial rotation of the same form as that observed on the Sun. While Busse used an 

analytical perturbation method in the thin shell limit, Durney (1970) independently 

developed a mean field approach for the solution of the problem from which he 

obtained—after using the wave propagation property demonstrated by the analytical 

theory—essentially the same results. The exciting aspect of the observed solar 

phenomenon as well as of the theoretical results is that a prograde differential 

rotation occurs at the equator. This contradicts the earlier notion of angular mixing 

by convection which would have led to a deceleration of the equatorial region. 

That the hypothesis of angular momentum mixing by convection is incorrect 

can easily be demonstrated in the case of convection in a cylindrical annulus 

discussed earlier. Since the Coriolis force can be entirely balanced by the pressure 

in this case, the influence of rotation disappears from the full nonlinear equation 

for two-dimentional convection rolls. Differential rotation cannot be a part of the 

solution since the basic equations are identical to those in a nonrotating region in 

this case and since a preferred azimuthal direction cannot be distinguished. Generation 

of differential rotation obviously depends on secondary features such as the curvature 

of the boundaries, and cannot be predicted by simple physical arguments. 

How complicated the phenomenon of differential rotation in a convecting 

spherical shell can become at higher Rayleigh and Taylor numbers is evident from 

the numerical computations of Gilman (1972, 1976a,b). Because both the Reynolds stresses 

of the fluctuating convection velocity field and the meridional circulations caused 

by the inhomogeneity of convection contribute to the generation of differential rotation, 

small changes in the parameters of the problem may change the form of differential 

rotation dramatically. Figure 8 from Gilman (1976a) shows how the equatorial maximum of 

angular velocity changes into a relative minimum as the Rayleigh number is increased. 

The influence of boundary conditions also appears to be important. The almost exclusively 

used stress-free boundaries actually represent a singular case in the thin shell limit 

(Busse, 1973) since an equilibration between Reynolds stresses and viscous stresses can 

take place only in the latitudinal direction. 

In order to investigate the generation of differential rotation in a conceptually 

simple case, the problem of convection in a rotating cylindrical annulus has recently 

been studied both experimentally and theoretically. Since the measurements are still in 

progress we restrict our attention to the qualitative picture, as shown in Figure 9. No 

differential rotation is generated in the case of straight top and bottom boundaries 
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of the annulus. The experimental observations show an increase of the gradient of 

angular momentum for convex boundaries and a decrease for concave boundaries, in 

agreement with theoretical predictions. 

Meridional circulation and latitudinal variation of the convective heat 

transport are other important nonlinear properties of convection in spherical shells. 

Both phenomena are closely linked since the variation of the mean temperature caused 

by an inhomogeneous heat transport is the most important cause of meridional circulatio 

The lack of observational evidence for either phenomenon on the solar surface has been 

a source of controversy in the interpretation of theoretical models. We shall return 

to this point in the next section. 

6 APPLICATIONS TO THE SUN AND JUPITER 

It is fortunate for the theory of convection in rotating stars that there 

exist two quite different celestial bodies for which detailed surface observations are 

available. In the case of the Sun the influence of rotation is relatively small: The 

Rossby number is large compared to unity at least for the velocity field in the 

upper part of the convection zone. Jupiter represents the opposite case of a rapidly 

rotating system characterized by a small Rossby number. Although about half of the 

energy emitted from the surface of Jupiter is received from the Sun, the convective 

heat transport required for the other half is the dominating source of motions in the 

Jovian interior. In this respect Jupiter does indeed represent a low Rossby number 

example of a rotating convecting star. 

The application of theoretical models which are valid at best for systems of 

laboratory scales to systems of stellar dimensions faces obvious difficulties. It is 

common practice to take into account the effects of turbulence owing to motions of 

smaller scale than those considered in the form of an eddy viscosity v which 

replaces molecular viscosity in the equations of motion. The main justification for 

this procedure is that it appears to work well in many cases. 

If V is chosen sufficiently large that the Rayleigh number and Taylor number 
'*t-2 e 

4E are not too large the differential rotation observed on the Sun resembles that 

predicted by the theoretical models fairly well. There is also evidence for the large-

scale convection cells, often called giant cells, girdling the equator like a cartridge 

belt (Howard and Yoshimura, 1976). Figure 10 shows a laboratory simulation. The radius 

ratio in the laboratory experiment is closer to unity than in the solar case and the 

number of cells is correspondingly larger. Otherwise the cells show a surprising 

resemblance to those observed on the Sun by Walter and Gilliam (1976). Because the 

latter authors show magnetic regions a direct physical interpretation of the phenomeno-

logical resemblance is difficult, especially since the simultaneous occurrence of magne­

tic features which are symmetric or antisymmetric with respect to the solar equator is 

not well understood. 
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Figure 10: Laboratory simulation of convection 
in a rotating spherical fluid shell 
with inner radius r. = 4.45 cm 
and r_ = 4.77 cm. 
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The measurement of the Coriolis deflection of the horizontal motion in 

supergranules by Kubicela (1973) appears to be the only direct determination of the 

effect of rotation on solar convection. Kubicela interprets the observed deflection 

of the velocity as the Coriolis acceleration multiplied by the lifetime of a super-

granule. Using a lifetime of 20 h he finds reasonable agreement with the measurements. 

Since the supergranular velocity field is defined as the mean over a field of highly 

fluctuating granular motions, the eddy viscosity concept can be used as an alternative 

possibility of interpretation. Using the linear solution for a convection cell in a 

rotating layer with stress-free boundaries (Chandrasekhar, 1961) we find the expression 

2U 
tgY = 

2.2 
v IT d e 

for the angle y of deflection, where d is the depth of the supergranular layer. 

For simplicity we have assumed that the horizontal wavelength of the cells is large 

in comparison with d. Using £ 10 cm and Q - 2.6 • 10 sec we derive from the 
12 2 —1 

observed angle y J 10° an eddy viscosity of the order 2-10 cm sec , which is in 

reasonable agreement with values derived from other more heuristic considerations. 

For the larger scale of giant cells a slightly higher value of v appears to be 
-2 . e 

appropriate yielding an Ekman number of approximately 10 , which is of the same order 

as the value used by Gilman (1976b) in his numerical simulation of the solar convec­

tion zone. 

It should be mentioned that earlier theories of the solar differential rota­

tion by Kippenhahn (1963) and others used the concept of an anisotropic eddy viscosi­

ty proposed by Biermann (1958). This concept often mimics the anisotropic dynamical 

influence of large-scale eddies. If the deviations from rigid rotation are described 

in terms of an anisotropic viscosity it would seem reasonable in view of the more 

detailed theory described above to use a latitude-longitude anisotropy rather than 

a horizontal-vertical anisotropy as proposed by Biermann. 

Rayleigh numbers for stellar convection zones are based on the superadiaba-

tic part of the temperature gradient, which amounts in general to only a small frac­

tion of the total temperature gradient. A small change in surface temperature causes 

a disproportionately large change in the Rayleigh number and an even larger in the 

convective heat transport. The convection zone reacts like a high gain amplifier to 

any change of the temperature at the surface and it is not surprising that no subcri-

tical large-scale variations of the solar surface temperature are observed. Since the 

temperature determines the energy emission, the convective heat flux must adjust itself 

to a uniform value. Ingersoll (1976) has emphasized this point in the case of Jupiter, 

where the convection heat transport adjusts itself in such a way that large-scale va­

riations of the surface temperature vanish. 

For this reason the heat flux variations and associated meridional circulations 
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of low Rayleigh number models do not have much meaning for high Rayleigh number 

stellar convection zones. Even in laboratory experiments it is apparent that the 

inhibiting influence of rotation on the convective heat transport reverses itself 

with increasing Rayleigh number. Rossby's (1969) measurements even show a slight 

increase in heat transport owing to rotation at high Rayleigh numbers. The 

generation of differential rotation, on the other hand, depends on the alignment 

effect rather than the inhibition effect of rotation. It seems intuitively reasonable 

that the former effect, which does not have direct energetic consequences, persists 

at high Rayleigh numbers, while the latter effect is diminished by nonlinear processes. 

Because of its low Rossby number, convection in the planet Jupiter may be 

more accessible than solar convection to theoretical analysis. A simple model has 

recently been proposed (Busse, 1976). It is generally believed that a transition 

from molecular to metallic hydrogen occurs at a radius of about 5/7 of Jupiter's 

outer radius and that the interface inhibits penetration by convection. Accordingly 

we are faced with the problem of convection in a rotating shell as sketched in Figure 7, 

which was actually drawn to apply to Jupiter. The fact that a relatively sharp transition 

from the low latitude band structure to the polar region of random eddy motibn is 

observed on Jupiter at about 45° latitude appears to be the strongest argument for a 

dynamical influence of rotation along the lines outlined in this paper. To obtain a 

more detailed comparison as shown by Figure 11 the concept of an eddy viscosity must 

be invoked again. The value of V required for a fivefold layer of convection columns 

is in good agreement, however, with the eddy viscosity deduced from convection models 

for the heat transport. More elaborate models are clearly possible and Jupiter may 

well become the testing ground for future theories of convection in rotating stars. 
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