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Abstract
We study the distribution of the roots of a random p-adic polynomial in an algebraic closure of Q𝑝 . We prove that
the mean number of roots generating a fixed finite extension K of Q𝑝 depends mostly on the discriminant of K, an
extension containing fewer roots when it becomes more ramified. We prove further that for any positive integer r, a
random p-adic polynomial of sufficiently large degree has about r roots on average in extensions of degree at most r.
Beyond the mean, we also study higher moments and correlations between the number of roots in two given subsets
of Q𝑝 (or, more generally, of a finite extension of Q𝑝). In this perspective, we notably establish results highlighting
that the roots tend to repel each other and quantify this phenomenon.
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1. Introduction

The distribution of roots of a random real polynomial is a classical subject of research that has been
thoroughly studied since the pioneering work of Bloch and Polya [4], Littlewood and Offord [13, 14, 15]
and Kac’s famous paper [10], in which an exact formula giving the average number of roots of a random
polynomial with Gaussian coefficients appears for the first time.

Investigating the behaviour of roots of p-adic random polynomials is a natural question that has
recently received some attention. The story started in 2006 when Evans published a paper [8] in
which he managed to adapt Kac’s strategy and eventually compute the average number of zeros in Z𝑝
of a random polynomial of degree n with coefficients uniformly1 distributed in Z𝑝 . The same year,
Buhler, Goldstein, Moews and Rosenberg [5] found formulas for the probability that a random p-adic
polynomial has all its roots in Q𝑝 . After about 10 years without further significant contributions, the
subject was revived a couple of years ago by Lerario and collaborators, who began a systematic study
of these phenomena. With Kulkarni [11], they notably extend Crofton’s formula to the p-adic setting
and derive new estimations of the number of roots of a p-adic polynomial, establishing in particular
that a uniformly distributed random polynomial of fixed degree over Z𝑝 has exactly one root in Q𝑝 on
average, independent of p and the degree. On a slightly different note, Ait El Mannsour and Lerario
[1] obtain formulas counting the average number of lines in random projective p-adic varieties. More
recently, the case of nonuniform distributions has also been addressed by Shmueli [20], who came up
with sharp estimations of the average number of roots.

Most of the aforementioned works are concerned with the mean of the random variable 𝑍𝑛 counting
the number of roots of a p-adic polynomial of degree n. Beyond the mean (for which one can rely on Kac’s
techniques), obtaining more information about the 𝑍𝑛s is a fundamental question that has been recently
addressed and elegantly solved by Bhargava, Cremona, Fisher and Gajović [3]. In their paper, they set
up a general strategy to compute all probabilities Prob[𝑍𝑛=𝑟] with n and r running over the integers. In
addition, they observed that the formulas they obtained are all rational functions in p that are symmetric
under the transformation 𝑝 ↔ 𝑝−1. This beautiful and fascinating property remains mysterious.

Apart from the distinction between archimedean and nonarchimedean, Q𝑝 differs from R in that
its arithmetic is much richer; while the absolute Galois group of R is somehow boring, that of Q𝑝 is
large and intricate and encodes much subtle arithmetical information. In other words, the set of finite
extensions ofQ𝑝 has a prominent structure that is part of the strength and complexity of the p-adic world.
Therefore, looking at the roots of a random p-adic polynomial not only inQ𝑝 but in an algebraic closure
Q̄𝑝 of Q𝑝 sounds like a very natural and appealing question, and we address it in the present paper.

To this end, we fix a finite extension F of Q𝑝 together with an algebraic closure �̄� of F. We endow �̄�
with the p-adic norm ‖ · ‖ normalised by ‖𝑝‖ = 𝑝−[𝐹 :Q𝑝 ] and use the letter q to denote the cardinality
of the residue field of F. Given a positive integer n, a finite extension K of F and a compact open
subset U of K, we introduce the random variable 𝑍𝑈,𝑛 counting the number of roots in U of a random
polynomial of degree n with coefficients in the ring of integers O𝐹 of F. Our first theorem gives an
integral expression of the expected values of the 𝑍𝑈,𝑛s.
Theorem A. There exists a family of functions 𝜌𝐾,𝑛 : 𝐾 → R+ (K running over the set of finite extensions
of F included in �̄� and n running the set of positive integers) satisfying the following property: for any
positive integer n, any finite extension K of F in �̄� and any open subset U of E, we have

E[𝑍𝑈,𝑛] =
∑
𝐾 ′ ⊂𝐾

∫
𝑈∩𝐾 ′

𝜌𝐾 ′,𝑛 (𝑥) 𝑑𝑥,

where the sum runs over all extensions 𝐾 ′ of F included in K.

1By uniform distribution, we mean the distribution coming from the Haar measure on the compact group (Z𝑝 , +) . It turns out
that it is the correct p-adic analogue of the normal distribution.
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The functions 𝜌𝐾,𝑛s are called the density functions as their values at a given point x reflect the
number of roots one may expect to find in a small neighbourhood of x. Our second theorem provides
precise information about the density functions.

Theorem B. Let n be a positive integer, let 𝐾 ⊂ �̄� be a finite extension of F, and let 𝑥 ∈ 𝐾 . Write r for
the degree of the extension 𝐾/𝐹.

1. (Vanishing) If 𝐹 [𝑥] ≠ 𝐾 or 𝑛 < 𝑟 , then 𝜌𝐾,𝑛 (𝑥) = 0.
2. (Continuity) The function 𝜌𝐾,𝑛 is continuous on K.
3. (Invariance under isomorphisms) Given a second finite extension L of F and an isomorphism of

F-algebras 𝜎 : 𝐾 → 𝐿, we have 𝜌𝐾,𝑛 (𝑥) = 𝜌𝐿,𝑛
(
𝜎(𝑥)

)
.

4. (Transformation under homography) For
(
𝑎 𝑏
𝑐 𝑑

)
∈ GL2(O𝐹 ), we have

𝜌𝐾,𝑛

(
𝑎𝑥 + 𝑏

𝑐𝑥 + 𝑑

)
= ‖𝑐𝑥 + 𝑑‖2𝑟 · 𝜌𝐾,𝑛 (𝑥).

5. (Monotony) We have 𝜌𝐾,𝑛 (𝑥) ≤ 𝜌𝐾,𝑛+1 (𝑥), and the inequality is strict if and only if 𝐹 [𝑥] = 𝐾 and
𝑟 ≤ 𝑛 < 2𝑟 − 1.

6. (Formulas for extremal degrees) If 𝐹 [𝑥] = 𝐾 and 𝑥 ∈ O𝐾 , then

𝜌𝐾,𝑟 (𝑥) = ‖𝐷𝐾 ‖ · 1
#
(
O𝐾 /O𝐹 [𝑥]

) · 𝑞𝑟+1 − 𝑞𝑟

𝑞𝑟+1 − 1

for 𝑛 ≥ 2𝑟 − 1, 𝜌𝐾,𝑛 (𝑥) = ‖𝐷𝐾 ‖ ·
∫
O𝐹 [𝑥 ]

‖𝑡‖𝑟 𝑑𝑡

,

where 𝐷𝐾 is the discriminant of the extension 𝐾/𝐹.

A first remarkable consequence of Theorem B is that the functions 𝜌𝐾,𝑛 are independent of n provided
that 𝑛 ≥ 2𝑟 − 1. A similar behaviour was noticed in [3] for higher moments of the random variables
𝑍𝐹,𝑛. In addition, it is in theory feasible to derive from Theorem B closed formulas for 𝜌𝐾,𝑛 and its
integral over K, at least when 𝑛 = 𝑟 or 𝑛 ≥ 2𝑟 − 1. For example, Theorem C below covers the case of
quadratic extensions. Before stating it, it is convenient to introduce the notation

𝜌𝑛 (𝐾) =
∫
𝐾

𝜌𝐾,𝑛 (𝑥) 𝑑𝑥. (1.1)

By Theorem A, 𝜌𝑛 (𝐾) counts the number of roots of a random polynomial of degree n that fall inside
K but outside all strict subfields of K containing F.

Theorem C. Let K be a quadratic extension of F.

1. If 𝐾/𝐹 is unramified, we have

𝜌2 (𝐾) = 𝑞2 − 𝑞 + 1
𝑞2 + 𝑞 + 1

,

for 𝑛 ≥ 3, 𝜌𝑛 (𝐾) = 𝑞4 + 1
𝑞4 + 𝑞3 + 𝑞2 + 𝑞 + 1

.

2. If 𝐾/𝐹 is totally ramified, we have

𝜌2 (𝐾) = ‖𝐷𝐾 ‖ · 𝑞2

𝑞2 + 𝑞 + 1
,

for 𝑛 ≥ 3, 𝜌𝑛 (𝐾) = ‖𝐷𝐾 ‖ · 𝑞2 (𝑞2 + 1)
𝑞4 + 𝑞3 + 𝑞2 + 𝑞 + 1

.
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When K is the quadratic unramified extension of F, we notice that 𝜌𝑛 (𝐾) is a rational function in q
that is self-reciprocal: that is, invariant under the transformation 𝑞 ↔ 𝑞−1. As recalled previously, this
remarkable property also holds for all higher moments of the random variable 𝑍𝐹,𝑛. On the other hand,
when 𝐾/𝐹 is totally ramified, the function 𝜌𝑛 (𝐾) is not self-reciprocal. One can nevertheless recover
the expected symmetry by summing over all totally ramified quadratic extensions of F. Indeed, using
Serre’s mass formula [18], we end up with∑

𝐾

𝜌2(𝐾) = 2𝑞
𝑞2 + 𝑞 + 1

,

for 𝑛 ≥ 3,
∑
𝐾

𝜌𝑛 (𝐾) = 2𝑞(𝑞2 + 1)
𝑞4 + 𝑞3 + 𝑞2 + 𝑞 + 1

(where both sums run over all totally ramified quadratic extensions of F in �̄�), which are indeed self-
reciprocal rational functions in q.

Another panel of interesting corollaries of Theorem B concerns the orders of magnitude of the
functions 𝜌𝐾,𝑛s. Roughly speaking, Theorem B tells us that the size of 𝜌𝐾,𝑛 is controlled by the p-adic
norm of 𝐷𝐾 . It is in fact even more transparent when we integrate over the entire space.
Theorem D. Let 𝐾 ⊂ �̄� be a finite extension of F. Write r for the degree of 𝐾/𝐹 and f for its residual
degree. We have the estimations

𝜌𝑟 (𝐾)
‖𝐷𝐾 ‖ =

(
1 − 1

𝑞

)
·
∑
𝑚 | 𝑓

𝜇

(
𝑓

𝑚

)
𝑞𝑚− 𝑓 + 𝑂

(
1
𝑞 𝑓

)
for 𝑛 ≥ 2𝑟 − 1,

𝜌𝑛 (𝐾)
‖𝐷𝐾 ‖ =

∑
𝑚 | 𝑓

𝜇

(
𝑓

𝑚

)
𝑞𝑚− 𝑓 + 𝑂

(
1
𝑞 𝑓

) ,

where 𝜇 denotes the Moebius function and the constants hidden in the 𝑂 (−) are absolute.
The dominant term in the two sums above is the summand corresponding to 𝑚 = 𝑓 and is equal

to 1. Hence, 𝜌𝑛 (𝐾) is roughly equal to ‖𝐷𝐾 ‖ for 𝑛 = 𝑟 or 𝑛 ≥ 2𝑟 − 1. More precisely, one finds
𝜌𝑛 (𝐾) = ‖𝐷𝐾 ‖ · (1 +𝑂 (𝑞−1)) in both cases. It turns out that this conclusion continues to holds for all
𝑛 ≥ 𝑟 thanks to the monotony property of Theorem B.

One can also sum the estimations of Theorem D over all extensions of a fixed degree. Doing so, we
obtain the following theorem.
Theorem E. For any positive integers r and n with 𝑛 ≥ 2𝑟 − 1, we have the estimation∑

𝐾 ∈Ex𝑟

𝜌𝑛 (𝐾) =
∑
𝑚 |𝑟

𝜑
( 𝑟

𝑚

)
𝑞𝑚−𝑟 + 𝑂

(
𝑟 · log log 𝑟

𝑞𝑟

)
,

where Ex𝑟 denotes the set of all extensions of F of degree r inside �̄� and 𝜑 is the Euler’s totient function.
Again, the dominant term in the sum of Theorem E corresponds to 𝑚 = 𝑟 , and its value is 1.

Therefore, we conclude that a random polynomial of degree n has, on average, one root in the ground
field F, one more root in the union of extensions of degree 2, one more root in the union of extensions
of degree 3, and so on, until the degree n, where all roots have been found. Many variations on this
theme are possible; for example, one can prove that all roots of a random polynomial lie in the maximal
unramified extension of F expect 2

𝑞 + 𝑂
( 1
𝑞2

)
of them. On the other hand, we deduce from Theorem C

that the quadratic totally ramified extensions of F contain 2
𝑞 +𝑂

( 1
𝑞2

)
roots outside F. We then conclude

that there are no more than 𝑂
( 1
𝑞2

)
new roots in ramified extensions of degree at least 3.

On a different note, it is also quite instructive to study the fluctuations of the density functions 𝜌𝐾,𝑛.
Theorem B indicates that they are governed by the size of the O𝐹 -algebra generated by x. Consequently,
we deduce that elements that generate a large extension K but are close for the p-adic distance to a strict
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subfield of K have less chance of appearing as a root of a random polynomial. In other words, if a root
x of a random polynomial is congruent to an element of a given extension K modulo a large power of
p, it is very likely that x lies in K. In some sense, subfields attract all roots in a neighbourhood.

Beyond the mean, it is important to understand higher moments of the 𝑍𝑈,𝑛s to draw a more precise
picture of the behaviour of these random variables. We address this question by enlarging our setting
a bit: instead of restricting ourselves to finite extensions of F, we consider more generally products of
such extensions: that is, finite étale algebras over F. The nice observation is that Theorem A admits a
straightforward generalisation to this extended framework. Applying it with 𝐸 = 𝐾𝑟 (for some given
finite extension K of F) provides information about the rth moment of 𝑍𝐾,𝑑 and, more generally, sheds
some light on the distribution of r-tuples of roots in 𝐾𝑟 . For 𝐾 = 𝐹 and 𝑟 = 2, this yoga has interesting
consequences as it permits one to compute the covariances between the 𝑍𝑈,𝑛s for 𝑈 ⊂ 𝐹.

Theorem F. Let U and V be two balls in O𝐹 that do not meet. Pick 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 . We have

Cov
(
𝑍𝑈,𝑛, 𝑍𝑉 ,𝑛

)
E[𝑍𝑈,𝑛] · E[𝑍𝑉 ,𝑛]

= −1 + (𝑞 + 1)2

𝑞2 + 𝑞 + 1
·‖𝑢−𝑣‖ − 𝑞

𝑞2 + 𝑞 + 1
·‖𝑢−𝑣‖4

for all 𝑛 ≥ 3.

Although the above formula might look unattractive at first glance, it is quite instructive. To begin
with, it indicates that Cov

(
𝑍𝑈,𝑛, 𝑍𝑉 ,𝑛

)
vanishes if and only if ‖𝑢−𝑣‖ = 1. In other words, the random

variables 𝑍𝑈,𝑛 and 𝑍𝑉 ,𝑛 are uncorrelated if and only if U and V are sufficiently far away. Otherwise,
𝑍𝑈,𝑛 and 𝑍𝑉 ,𝑛 are correlated and the covariance is always negative (still assuming that 𝑈 ∩ 𝑉 = ∅).
Moreover, the correlation becomes more significant when U and V are closer. This tends to show that
roots repel each other. This conclusion can be understood as a consequence of the general principle that
subalgebras attract roots; noticing that F embeds diagonally into 𝐹2, the above principle tells us that
if we are given two nearby roots in F of a random polynomial, there is a huge chance that those roots
coincide, which means it is unlikely to get nearby distinct roots.

Another amazing benefit of working with étale extensions is the existence of mass formulas for
the density functions in the spirit of Bhargava’s extension to étale algebras of the classical Serre mass
formula [2]. Given a finite étale F-algebra E, define 𝜌𝑛 (𝐸) by the integral of equation (1.1), and let
Aut𝐹−alg(𝐸) denote the group of F-automorphisms of E.

Theorem G. For any positive integers r and n with 𝑛 ≥ 𝑟 , we have∑
𝐸 ∈Ét𝑟

𝜌𝑛 (𝐸)
#Aut𝐹−alg(𝐸)

= 1, (1.2)

where the summation set Ét𝑟 consists of all isomorphism classes of étale extensions E of F of degree r
(and the notation # refers to the cardinality).

When 𝑟 = 1, equation (1.2) reduces to 𝜌𝑛 (𝐹) = 1 and so asserts that a random polynomial of degree
at least 1 has exactly one root in F on average; we then recover Lerario and Kulkarni’s result in this
case. When r grows, Theorem G roughly says that the above remarkable property continues to hold if
we count (weighted) roots in extensions of a fixed degree, provided we are careful to include all étale
algebras and not only fields! Notice however that Theorem D shows that the contribution of actual
extensions to the sum in equation (1.2) is about 1/𝑟 . The most significant part of the mass then comes
from nontrivial products of smaller degree extensions.

Organisation of the paper

The plan of the paper closely follows the progression of the introduction. In Section 2, we prove Theorems
A and B. In Section 3, we study examples and obtain closed formulas for the density functions in several
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simple cases. In addition to treating the case of quadratic extension (in line with Theorem C) completely,
we obtain partial results for extensions of prime degrees and unramified extensions. Section 4 is devoted
to finding estimations of orders of magnitude of the density functions and their integrals; we notably
prove Theorems D and E there. Finally, in Section 5, we present the setup of étale algebras and extend
Theorems A and B to this setting. We then discuss applications to higher moments and mass formulas
for density functions, establishing Theorems F and G.

Notations

Throughout the paper, we fix a prime number p, a finite extension F of Q𝑝 and an algebraic closure �̄�
of F. We use the letter q to denote the cardinality of the residue field of F. We write ‖ · ‖ for the p-adic
norm on �̄�, normalised by ‖𝑝‖ = 𝑝−[𝐹 :Q𝑝 ] .

We let Ω𝑛 be the space of polynomials of degree at most n with coefficients in O𝐹 ; we call 𝜇𝑛 the
probability measure on Ω𝑛 corresponding to 𝜆⊗𝑛+1

𝐹 under the canonical identification Ω𝑛 
 O𝑛+1
𝐹 . In a

slight abuse of notations, we continue to write ‖ · ‖ for the norm on Ω𝑛 corresponding to the sup norm
on O𝑛+1

𝐹 (it is the so-called Gauss norm).
Throughout the paper, all finite extensions of F are implicitly supposed to be contained in �̄�. If K is

such an extension, we denote by O𝐾 its ring of integers and by O×
𝐾 the group of invertible elements of

O𝐾 . We let 𝜆𝐾 be the Haar measure on K normalised by 𝜆𝐾 (O𝐾 ) = 1. Our normalisation choices lead
to the transformation formula 𝜆𝐾 (𝑎𝐻) = ‖𝑎‖𝑟 · 𝜆𝐾 (𝐻), where r is the degree of the extension 𝐾/𝐹.

Finally, we use the notation #𝐴 to denote the cardinality of a set A.

2. Density functions

The aim of this section is to define the density functions 𝜌𝐾,𝑛 and to prove Theorems A and B. The main
ingredient we will need is a p-adic version of the famous Kac-Rice formula, which gives an integral
expression for a number of roots of a polynomial. We will establish it in Section 2.1. In Section 2.2, we
carry out a key computation that will allow us to construct the density functions and prove Theorem B in
Section 2.3. We finally move to the computation of the expected number of roots and prove Theorem A
in Section 2.4.

2.1. The p-adic Kac-Rice formula

A p-adic version of the Kac-Rice formula appears in the pioneering work of Evans [8]. Nevertheless, for
the purpose of this paper, it will be more convenient to use a formulation different from that of Evans
(the latter is closer to what we usually call the ‘area formula’). For this reason, we will take some time
to establish our version of the p-adic Kac-Rice formula and give a complete proof of it. We refer the
reader to [17, Chapter 5] for the definition of strictly differentiable functions of the p-adic variable.

Theorem 2.1. Let K be a finite extension of F of degree r. Let U be a compact open subset of K, and let
𝑓 : 𝑈 → 𝐾 be a strictly differentiable function. We assume that ( 𝑓 (𝑥), 𝑓 ′(𝑥)) ≠ (0, 0) for all 𝑥 ∈ 𝑈.
Then

# 𝑓 −1(0) = lim
𝑠→∞

𝑞𝑠𝑟 ·
∫
𝑈
‖ 𝑓 ′(𝑥)‖𝑟 · 1{ ‖ 𝑓 (𝑥) ‖≤𝑞−𝑠 } 𝑑𝑥. (2.1)

Proof. Let e be the ramification index of 𝐾/𝐹. For 𝑠 ∈ 1
𝑒Z, we denote by 𝐵𝑠 the closed ball of K of

radius 𝑞−𝑠 and centre 0. If 𝜋 denotes a uniformiser of K, the set 𝐵𝑠 can be alternatively defined by
𝐵𝑠 = 𝜋𝑒𝑠O𝐾 . We deduce from the latter equality that 𝜆𝐾 (𝐵𝑠) = ‖𝜋𝑒‖𝑠𝑟 = 𝑞−𝑠𝑟 .

We consider an element 𝑎 ∈ 𝑈 such that 𝑓 (𝑎) = 0. From our assumption, we know that 𝑓 ′(𝑎) ≠ 0.
Therefore, applying [6, Lemma 3.4], we get the existence of a positive integer 𝑆𝑎 having the following
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property: for any 𝑠 ∈ 1
𝑒Z, 𝑠 ≥ 𝑆𝑎, the function f induces a bijection from 𝑎 + 𝐵𝑠 to 𝑓 ′(𝑎)𝐵𝑠 . Up to

enlarging 𝑆𝑎, we can further assume that ‖ 𝑓 ′(𝑥)‖ = ‖ 𝑓 ′(𝑎)‖ for all 𝑥 ∈ 𝑎 + 𝐵𝑆𝑎 . We deduce for these
two facts that ∫

𝑎+𝐵𝑆𝑎
‖ 𝑓 ′(𝑥)‖𝑟 · 1{ ‖ 𝑓 (𝑥) ‖≤𝑞−𝑠 } 𝑑𝑥 = ‖ 𝑓 ′(𝑎)‖𝑟 · 𝜆𝐾

(
𝑓 ′(𝑎)−1𝐵𝑠

)
= 𝑞−𝑠𝑟 (2.2)

for all 𝑠 ≥ 𝑆′
𝑎 = 𝑆𝑎 − log𝑞 ‖ 𝑓 ′(𝑎)‖.

From the previous discussion, we also derive that a is the unique zero of f in 𝐵𝑆𝑎 . In other words,
the set of zeros of f is discrete. By compacity, it follows that f has only finitely many zeros in U. Let us
call them 𝑎1, . . . , 𝑎𝑚. Set 𝑆 = max(𝑆𝑎1 , . . . , 𝑆𝑎𝑚 ) and 𝑆′ = max(𝑆′

𝑎1 , . . . , 𝑆
′
𝑎𝑚 ) and for 𝑖 ∈ {1, . . . , 𝑚},

write 𝑈𝑖 = 𝑎𝑖 + 𝐵𝑆𝑎𝑖
. Up to again enlarging 𝑆𝑎𝑖 s, we can assume that the 𝑈𝑖s are pairwise disjoint.

Summing the equalities in equation (2.2), we find

𝑚∑
𝑖=1

∫
𝑈𝑖

‖ 𝑓 ′(𝑥)‖𝑟 · 1{ ‖ 𝑓 (𝑥) ‖≤𝑞−𝑠 } 𝑑𝑥 = 𝑚 · 𝑞−𝑠𝑟 (2.3)

provided that 𝑠 ≥ 𝑆′. Let V be the complement in U of 𝑈1 � · · · �𝑈𝑚. It is compact, and the function f
does not vanish on it. Hence, if s is large enough, we have ‖ 𝑓 (𝑥)‖ > 𝑞−𝑠 for all 𝑥 ∈ 𝑉 . For those s, we
thus get ∫

𝑉
‖ 𝑓 ′(𝑥)‖𝑟 · 1{ ‖ 𝑓 (𝑥) ‖≤𝑞−𝑠 } 𝑑𝑥 = 0. (2.4)

Combining equations (2.3) and (2.4), we find that the equality

𝑞𝑠𝑟 ·
∫
𝑈
‖ 𝑓 ′(𝑥)‖𝑟 · 1{ ‖ 𝑓 (𝑥) ‖≤𝑞−𝑠 } 𝑑𝑥 = 𝑚

holds true when s is sufficiently large. Passing to the limit, we get the theorem. �

We underline that the compacity assumption in Theorem 2.1 cannot be relaxed. For example, taking
simply 𝑈 = Z𝑝\{0} and 𝑓 : 𝑥 ↦→ 𝑥, one sees that f has no zero in U, while the right-hand side of
equation (2.1) converges to 1. Roughly speaking, the integral continues to see the missing zero at the
origin, which is expected because removing one point from the domain of integration does not alter the
value of the integral.

Similarly, the assumption that the zeros of f are nondegenerate (that is, that the derivative does not
vanish at these points) is definitely necessary. For example, if we take the function 𝑓 : Z𝑝 → Q𝑝 ,
𝑥 ↦→ 𝑥2, a simple calculation shows that the right-hand side of equation (2.1) converges to 𝑝

𝑝+1 < 1.
More generally, one can prove that if f is a polynomial whose roots in U are 𝑎1, . . . , 𝑎𝑚 and have
multiplicity 𝜇1, . . . , 𝜇𝑚, respectively, then the right-hand side of equation (2.1) converges to

𝑚∑
𝑖=1

𝑞𝜇𝑖 − 𝑞𝜇𝑖−1

𝑞𝜇𝑖 − 1
.

In other words, a root of multiplicity 𝜇 does not contribute for 1 but for 𝑞𝜇−𝑞𝜇−1

𝑞𝜇−1 < 1.
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2.2. A key computation

Let K be a finite extension of F of degree r, and let U be an open subset of K. We aim at computing the
expected value of the random variable 𝑍𝑈,𝑛 : Ω𝑛 → Z ∪ {+∞} defined by

𝑍𝑈,𝑛 (𝑃) = #
{
𝑥 ∈ 𝑈 s.t. 𝑓 (𝑥) = 0

}
= lim

𝑠→∞
𝑞𝑠𝑟 ·

∫
𝑈
‖𝑃′(𝑥)‖𝑟 · 1{ ‖𝑃 (𝑥) ‖≤𝑞−𝑠 } 𝑑𝑥

the second equality coming from Theorem 2.1. For this, roughly speaking, we would like to write the
following calculation:

E[𝑍𝑈,𝑛] =
∫
Ω𝑛

𝑍𝑈,𝑛 (𝑃)𝑑𝑃 =
∫
Ω𝑛

lim
𝑠→∞

𝑞𝑠𝑟 ·
∫
𝑈
‖𝑃′(𝑥)‖𝑟 · 1{ ‖𝑃 (𝑥) ‖≤𝑞−𝑠 } 𝑑𝑥 𝑑𝑃

=
∫
𝑈

lim
𝑠→∞

𝑞𝑠𝑟 ·
∫
Ω𝑛

‖𝑃′(𝑥)‖𝑟 · 1{ ‖𝑃 (𝑥) ‖≤𝑞−𝑠 } 𝑑𝑃 𝑑𝑥

and introduce the density function defined by

𝑥 ↦→ lim
𝑠→∞

𝑞𝑠𝑟 ·
∫
Ω𝑛

‖𝑃′(𝑥)‖𝑟 · 1{ ‖𝑃 (𝑥) ‖≤𝑞−𝑠 } 𝑑𝑃. (2.5)

However, we have to be a bit more careful because the above limit does not behave well everywhere:
it takes infinite values on certain subspaces, but it turns out that those parts lead to a finite positive
contribution when we integrate. The next proposition shows that these issues are somehow localised on
strict subfields.

Proposition 2.2. If 𝑛 ≥ 𝑟 and if x lies in O𝐾 and generates K over F, the limit in equation (2.5) exists
and is equal to

‖𝐷𝐾 ‖
#
(
O𝐾 /O𝐹 [𝑥]

) ·
∫
Ω𝑛−𝑟
‖𝑄(𝑥)‖𝑟 𝑑𝑄,

where 𝐷𝐾 denotes the discriminant of the extension 𝐾/𝐹.

Proof. For simplicity, write

𝐼𝑠 = 𝑞𝑠𝑟 ·
∫
Ω𝑛

‖𝑃′(𝑥)‖𝑟 · 1{ ‖𝑃 (𝑥) ‖≤𝑞−𝑠 } 𝑑𝑃.

Let Z be the minimal monic polynomial of x over F. By our assumptions, Z has degree r and coefficients
in O𝐹 . This implies that the map Ω𝑛−𝑟 × Ω𝑟−1 → Ω𝑛 taking (𝑄, 𝑅) to 𝑄𝑍 + 𝑅 preserves the measure.
Performing the corresponding change of variables, we end up with the equality

𝐼𝑠 = 𝑞𝑠𝑟 ·
∫
Ω𝑟−1

∫
Ω𝑛−𝑟
‖𝑄(𝑥)𝑍 ′(𝑥) + 𝑅′(𝑥)‖𝑟 · 1{ ‖𝑅 (𝑥) ‖≤𝑞−𝑠 } 𝑑𝑄 𝑑𝑅

= 𝑞𝑠𝑟 ·
∫
Ω𝑟−1

(∫
Ω𝑛−𝑟
‖𝑄(𝑥)𝑍 ′(𝑥) + 𝑅′(𝑥)‖𝑟 𝑑𝑄

)
1{ ‖𝑅 (𝑥) ‖≤𝑞−𝑠 } 𝑑𝑅.

We consider the evaluation morphism 𝛼𝑥 : 𝐹 ⊗O𝐹 Ω𝑟−1 → 𝐾 taking a polynomial R to 𝑅(𝑥). It is
F-linear and bijective since the domain of 𝛼𝑥 is restricted to polynomials of degree strictly less than
r. Its inverse 𝛼−1

𝑥 is F-linear, so it is continuous. Thus, there exists a positive constant 𝛾 such that
‖𝑅(𝑥)‖ ≥ 𝛾 · ‖𝑅‖ for all 𝑅 ∈ Ω𝑟−1.
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Let us assume for a moment that we are given a polynomial 𝑅 ∈ Ω𝑟−1 such that ‖𝑅(𝑥)‖ ≤ 𝑞−𝑠 . Based
on the preceding, we find that ‖𝑅‖ ≤ 𝛾−1𝑞−𝑠 , from which we further deduce that ‖𝑅′(𝑥)‖ ≤ 𝛾−1𝑞−𝑠 .
Since 𝑍 ′(𝑥) does not vanish, we conclude that 𝑍 ′(𝑥) must divide 𝑅′(𝑥) provided that s is large enough.
One can then perform the change of variables 𝑄 ↦→ 𝑄 − 𝑅′ (𝑥)

𝑍 ′ (𝑥) in the inner integral and get∫
Ω𝑛−𝑟
‖𝑄(𝑥)𝑍 ′(𝑥) + 𝑅′(𝑥)‖𝑟 𝑑𝑄 =

∫
Ω𝑛−𝑟
‖𝑄(𝑥)𝑍 ′(𝑥)‖𝑟 𝑑𝑄

= ‖𝑍 ′(𝑥)‖𝑟 ·
∫
Ω𝑛−𝑟
‖𝑄(𝑥)‖𝑟 𝑑𝑄.

We are then left with

𝐼𝑠 = 𝑞𝑠𝑟 · ‖𝑍 ′(𝑥)‖𝑟 ·
∫
Ω𝑛−𝑟
‖𝑄(𝑥)‖𝑟 𝑑𝑄 ·

∫
Ω𝑟−1

1{ ‖𝑅 (𝑥) ‖≤𝑞−𝑠 } 𝑑𝑅. (2.6)

In order to estimate the last factor, we come back to the evaluation morphism 𝛼𝑥 . Since it is a F-linear
isomorphism, it must act on the measures by multiplication by some scalar (namely, its determinant).
In other words, there exists a positive constant 𝛿 such that 𝜆𝐾 (𝛼𝑥 (𝐻)) = 𝛿 · 𝜇𝑛 (𝐻) for all measurable
subsets H of Ω𝑟−1. Taking 𝐻 = Ω𝑟−1, we find

𝛿 = 𝜆𝐾
(
𝛼𝑥 (Ω𝑟−1)

)
= 𝜆𝐾

(
O𝐹 [𝑥]

)
=

1
#
(
O𝐾 /O𝐹 [𝑥]

) .
As in the proof of Theorem 2.1, we let 𝐵𝑠 be the closed ball of K of radius 𝑞−𝑠 centred at 0. By definition,
𝛼−1
𝑥 (𝐵𝑠) consists of polynomials R such that ‖𝑅(𝑥)‖ ≤ 𝑞−𝑠 . Moreover, if s is sufficiently large, 𝛼−1

𝑥 (𝐵𝑠)
sits inside Ω𝑟−1, and so∫

Ω𝑟−1

1{ ‖𝑅 (𝑥) ‖≤𝑞−𝑠 } 𝑑𝑅 = 𝜇𝑛
(
𝛼−1
𝑥 (𝐵𝑠)

)
= #

(
O𝐾 /O𝐹 [𝑥]

)
· 𝜆𝐾 (𝐵𝑠) = #

(
O𝐾 /O𝐹 [𝑥]

)
· 𝑞−𝑠𝑟 .

Plugging this input in equation (2.6), we end up with

𝐼𝑠 = ‖𝑍 ′(𝑥)‖𝑟 · #
(
O𝐾 /O𝐹 [𝑥]

)
·
∫
Ω𝑛−𝑟
‖𝑄(𝑥)‖𝑟 𝑑𝑄 (2.7)

when s is sufficiently large. The sequence (𝐼𝑠)𝑠≥0 is then eventually constant and converges to the limit
given by the above formula. In order to conclude the proof of the proposition, it remains to relate the
norm of 𝑍 ′(𝑥) with that of the discriminant of K. We endow K with the symmetric F-bilinear form
𝑏 : 𝐾 × 𝐾 → 𝐹, (𝑢, 𝑣) ↦→ Tr𝐾/𝐹 (𝑢𝑣). Also let B𝑥 = (1, 𝑥, . . . , 𝑥𝑟−1) be the canonical basis of O𝐹 [𝑥]
over O𝐹 , and set B′

𝑥 =
(
𝑥𝑟−1

𝑍 ′ (𝑥) ,
𝑥𝑟−2

𝑍 ′ (𝑥) , . . . ,
1

𝑍 ′ (𝑥)
)
. Both B𝑥 and B′

𝑥 are F-basis of K, and it follows from
[19, §III.6, Lemma 2] that the matrix of b in the basis B𝑥 and B′

𝑥 is lower-triangular with all diagonal
entries equal to 1. Its determinant is then 1 as well. Performing a change of basis, we find that

det MatB𝑥 (𝑏) = ± 𝑁𝐾/𝐹
(
𝑍 ′(𝑥)

)
,

where, by definition, MatB𝑥 (𝑏) is the matrix of b in B𝑥 and 𝑁𝐾/𝐹 is the norm map of K over F. We now
consider a basis B of O𝐾 over O𝐹 . By definition, the discriminant of K is the determinant of MatB(𝑏).
Therefore, if P denotes the transition matrix from B to B𝑥 , we derive from the change-of-basis formula
that det MatB𝑥 (𝑏) = (det 𝑃)2 · 𝐷𝐾 and so

𝑁𝐾/𝐹
(
𝑍 ′(𝑥)

)
= ± (det 𝑃)2 · 𝐷𝐾 .
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On the other hand, noticing that P is also the matrix of 𝛼𝑥 in the canonical basis, we deduce that

‖det 𝑃‖ = 𝜆𝐾
(
O𝐹 [𝑥]

)
=

1
#
(
O𝐾 /O𝐹 [𝑥]

) .
Combining the two previous equalities, we end up with

‖𝑍 ′(𝑥)‖𝑟 = ‖𝑁𝐾/𝐹
(
𝑍 ′(𝑥)

)
‖ = 1

#
(
O𝐾 /O𝐹 [𝑥]

)2 · ‖𝐷𝐾 ‖.

Plugging this relation into equation (2.7), we obtain the proposition. �

2.3. Construction and properties of the density functions

In this subsection, we construct the density functions 𝜌𝐾,𝑛 and establish Theorem B.

Definition 2.3. Let n be a positive integer and K be a finite extension of F of degree r.
For 𝑥 ∈ O𝐾 , we set

𝜌𝐾,𝑛 (𝑥) =
‖𝐷𝐾 ‖

#
(
O𝐾 /O𝐹 [𝑥]

) ·
∫
Ω𝑛−𝑟
‖𝑄(𝑥)‖𝑟 𝑑𝑄 if 𝑛 ≥ 𝑟 and 𝐹 [𝑥] = 𝐾,

= 0 otherwise.

For 𝑥 ∈ 𝐾 , 𝑥 ∉ O𝐾 , we set 𝜌𝐾,𝑛 (𝑥) = ‖𝑥‖−2𝑟 · 𝜌𝐾,𝑛 (𝑥−1).

The first part of Definition 2.3 is exactly what we expect after Proposition 2.2. The second part is
motivated by the observation that the transformation 𝑃(𝑋) ↦→ 𝑋𝑛𝑃(𝑋−1) preserves the measures on
Ω𝑛 and changes a root x into 𝑥−1. In any case, we notice that since K is a discrete valuation field, we
have 𝑥 ∈ O𝐾 or 𝑥−1 ∈ O𝐾 for all 𝑥 ∈ 𝐾 . Definition 2.3 then makes sense and leads to a well-defined
function 𝜌𝐾,𝑛 : 𝐾 → R+, which is called the density function on K of degree n.

The rest of this subsection is devoted to the proof of Theorem B. The vanishing property and the
invariance under isomorphisms (Statements 1 and 3, respectively) are clear from the definitions. In what
follows, we address the other items of Theorem B one by one (in a slightly different order).

2.3.1. Continuity
The function

𝑥 ↦→
∫
Ω𝑛−𝑟
‖𝑄(𝑥)‖𝑟 𝑑𝑄

is continuous on O𝐾 as the integrand is obviously bounded, positive and continuous on Ω𝑛−𝑟 ×O𝐾 .
Let 𝑥 ∈ O𝐾 such that 𝐹 [𝑥] = 𝐾 . In this case, the index of O𝐹 [𝑥] in O𝐾 is the inverse of the p-adic

norm of the determinant of the matrix 𝑀 (𝑥) whose ith column is filled with the coordinates of 𝑥𝑖 in a
fixed basis of O𝐾 . If y is a second element of O𝐾 that is congruent to x modulo 𝑝𝑠 for some integer s,
then the matrices 𝑀 (𝑥) and 𝑀 (𝑦) are also congruent modulo 𝑝𝑠 and so are their determinants. In other
words, if ‖𝑥 − 𝑦‖ ≤ 𝜀 for some positive real number 𝜀, then ‖det 𝑀 (𝑥) − det 𝑀 (𝑦)‖ ≤ 𝜀 as well. When
𝜀 < ‖ det 𝑀 (𝑥)‖, it follows that ‖det 𝑀 (𝑥)‖ = ‖det 𝑀 (𝑦)‖: that is, #

(
O𝐾 /O𝐹 [𝑥]

)
= #

(
O𝐾 /O𝐹 [𝑦]

)
.

This proves that the function 𝑦 ↦→ #
(
O𝐾 /O𝐹 [𝑦]

)
is constant in some neighbourhood of x; in particular,

it is continuous at x and so is 𝜌𝐾,𝑛.
We now consider the case where 𝐹 [𝑥] ≠ 𝐾 . Set 𝐿 = 𝐹 [𝑥], and let d denote the degree of the extension

𝐿/𝐹. We consider a second element 𝑦 ∈ O𝐾 such that 𝐹 [𝑦] = 𝐾 and 𝑥 ≡ 𝑦(mod 𝑝𝑠) for some given
integer s. We then have the inclusion O𝐹 [𝑦] ⊂ O𝐿 + 𝑝𝑠O𝐾 , from which we derive the estimation

#
(
O𝐾 /O𝐹 [𝑦]

)
≥ #

(
O𝐾 /(O𝐿 + 𝑝𝑠O𝐾 )

)
= ‖𝑝‖𝑠 (𝑑−𝑟 ) ≥ ‖𝑥 − 𝑦‖𝑑−𝑟 .
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Since 𝑑 < 𝑟 , we deduce that the quantity #
(
O𝐾 /O𝐹 [𝑦]

)
goes to ∞ when y approaches x, from which

we conclude that 𝜌𝐾,𝑛 is continuous at x.
Finally, the continuity on K immediately follows from that on O𝐾 .

2.3.2. Transformation under homography
It is enough to prove the transformation formula for the matrices(

𝑎 0
0 𝑎

)
(𝑎 ∈ O×

𝐹 ) ;
(
1 𝑎
0 1

)
(𝑎 ∈ O𝐹 ) ;

(
0 1
1 0

)
since they generate GL2(O𝐹 ). It is obvious for scalars matrices.

For the second family of matrices, we have to check 𝜌𝐾,𝑛 (𝑥 + 𝑎) = 𝜌𝐾,𝑛 (𝑥) for 𝑥 ∈ 𝐾 and 𝑎 ∈ O𝐹 .
Let us assume first that 𝑥 ∈ O𝐾 . Then O𝐹 [𝑥] = O𝐹 [𝑥 + 𝑎]. Moreover, the map Ω𝑛−𝑟 → Ω𝑛−𝑟 ,
𝑄(𝑋) ↦→ 𝑄(𝑋 + 𝑎) preserves the measure, implying that∫

Ω𝑛−𝑟
‖𝑄(𝑥)‖𝑟 𝑑𝑄 =

∫
Ω𝑛−𝑟
‖𝑄(𝑥 + 𝑎)‖𝑟 𝑑𝑄.

We conclude that the equality 𝜌𝐾,𝑛 (𝑥 + 𝑎) = 𝜌𝐾,𝑛 (𝑥) is correct in this case. We assume now that
𝑥 ∉ O𝐾 : that is, ‖𝑥‖ > 1. Since a lies in O𝐹 , we have ‖𝑎‖ ≤ 1 and so ‖𝑥 + 𝑎‖ = ‖𝑥‖. Setting 𝑦 = 𝑥−1,
we are then reduced to proving that 𝜌𝐾,𝑛 (𝑦) = 𝜌𝐾,𝑛 (𝑧) with 𝑧 = 𝑦

1+𝑎𝑦 . Observing that ‖𝑦‖ < 1, we can
write a series expansion for the inverse of 1 + 𝑎𝑦 and eventually get

𝑧 =
∑
𝑖≥0

(−1)𝑖𝑎𝑖𝑦𝑖+1 ∈ O𝐹 [𝑦] .

Similarly, we prove that 𝑦 ∈ O𝐹 [𝑧] and hence O𝐹 [𝑦] = O𝐹 [𝑧]. We consider the transformation
𝜏 : Ω𝑛−𝑟 → Ω𝑛−𝑟 defined by 𝜏

(
𝑄(𝑋)

)
= 𝑋𝑛−𝑟𝑄(𝑋−1). It is explicitly given by the formula

𝜏
(
𝑎𝑛−𝑟𝑋

𝑛−𝑟 + · · · + 𝑎1𝑋 + 𝑎0
)
= 𝑎0𝑋

𝑛−𝑟 + 𝑎1𝑋
𝑛−𝑟−1 + 𝑎𝑛−𝑟

and hence preserves the measure. Therefore,∫
Ω𝑛−𝑟
‖𝑄(𝑦)‖𝑟 𝑑𝑄 = ‖𝑦‖𝑛−𝑟 ·

∫
Ω𝑛−𝑟
‖𝑄(𝑥)‖𝑟 𝑑𝑄

= ‖𝑦‖𝑛−𝑟 ·
∫
Ω𝑛−𝑟
‖𝑄(𝑥 + 𝑎)‖𝑟 𝑑𝑄

= ‖𝑦‖𝑛−𝑟 · ‖𝑥 + 𝑎‖𝑛−𝑟 ·
∫
Ω𝑛−𝑟
‖𝑄(𝑧)‖𝑟 𝑑𝑄.

In addition, we remark that 𝑦(𝑥 + 𝑎) = 1 + 𝑎𝑦 has norm 1. We then end up with∫
Ω𝑛−𝑟
‖𝑄(𝑦)‖𝑟 𝑑𝑄 =

∫
Ω𝑛−𝑟
‖𝑄(𝑧)‖𝑟 𝑑𝑄,

which eventually leaves us with the desired equality 𝜌𝐾,𝑛 (𝑦) = 𝜌𝐾,𝑛 (𝑧).
It remains to treat the case of the antidiagonal matrix, which amounts to proving that 𝜌𝐾,𝑛 (𝑥−1) =

‖𝑥‖2𝑟 𝜌𝐾,𝑛 (𝑥). It is obvious from the definition when 𝑥 ∉ O𝐾 or 𝑥−1 ∉ O𝐾 . We may then assume that x
is invertible in O𝐾 : that is, ‖𝑥‖ = 1. In this situation, using again that 𝜏 preserves the measure, we find∫

Ω𝑛−𝑟
‖𝑄(𝑥)‖𝑟 𝑑𝑄 =

∫
Ω𝑛−𝑟
‖𝑄(𝑥−1)‖𝑟 𝑑𝑄.
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Let Z be the minimal polynomial of x. The constant coefficient of Z is ±𝑁𝐾/𝐹 (𝑥) (where we recall that
𝑁𝐾/𝐹 is the norm map from K to F). Hence it has norm 1, which means it is invertible in O𝐹 . It follows
from this observation that 𝑥−1 can be expressed as a polynomial in x with coefficients in O𝐹 : that is,
𝑥−1 ∈ O𝐹 [𝑥]. Similarly, one has 𝑥 ∈ O𝐹 [𝑥−1]. Combining both results, we get O𝐹 [𝑥] = O𝐹 [𝑥−1],
from which we deduce the desired equality.

2.3.3. Formulas for extremal degrees
When 𝑛 = 𝑟 , the density function 𝜌𝑟 ,𝐾 is defined by

𝜌𝑟 ,𝐾 (𝑥) = ‖𝐷𝐾 ‖
#
(
O𝐾 /O𝐹 [𝑥]

) ·
∫
O𝐹

‖𝑡‖𝑟 𝑑𝑡.

Let 𝜋 be a fixed uniformiser of F, and set 𝑈𝑠 = 𝜋𝑠O×
𝐹 . We observe that 𝑈𝑠 consists of exactly elements

of norm 𝑞−𝑠 and that O𝐹\{0} is the disjoint union of the 𝑈𝑠 . It follows from these observations that∫
O𝐹

‖𝑡‖𝑟 𝑑𝑡 =
∞∑
𝑠=0

∫
𝑈𝑠

‖𝑡‖𝑟 𝑑𝑡 =
∞∑
𝑠=0

𝜆𝐹 (𝑈𝑠) · 𝑞−𝑠𝑟 .

In addition, the measure of 𝑈𝑠 can be computed as follows:

𝜆𝐹 (𝑈𝑠) = 𝜆𝐹 (𝜋𝑠O×
𝐹 ) = ‖𝜋𝑠 ‖ · 𝜆𝐹 (O×

𝐹 ) = 𝑞−𝑠 ·
(
1 − 1

𝑞

)
.

We then conclude that ∫
O𝐹

‖𝑡‖𝑟 𝑑𝑡 =

(
1 − 1

𝑞

)
·

∞∑
𝑠=0

𝑞−𝑠𝑟−𝑠 =
𝑞𝑟+1 − 𝑞𝑟

𝑞𝑟+1 − 1
(2.8)

and the claimed formula follows.
We now move to the case 𝑛 ≥ 2𝑟 − 1. We set 𝑚 = 𝑛− 𝑟 . Looking at the definition of 𝜌𝐾,𝑛, we realise

that it is enough to prove that∫
Ω𝑚

‖𝑄(𝑥)‖𝑟 𝑑𝑄 = #
(
O𝐾 /O𝐹 [𝑥]

)
·
∫
O𝐹 [𝑥 ]

‖𝑡‖𝑟 𝑑𝑡.

As in the proof of Proposition 2.2, let Z denote the minimal polynomial of x, and consider the measure-
preserving morphism Ω𝑚−𝑟 × Ω𝑟−1 → Ω𝑚 mapping (𝑆, 𝑇) to 𝑆𝑍 + 𝑇 . (We agree that Ω−1 = {0} when
𝑚 = 𝑟 − 1.) Performing the corresponding change of variables, we obtain∫

Ω𝑚
‖𝑄(𝑥)‖𝑟 𝑑𝑄 =

∫
Ω𝑟−1

‖𝑇 (𝑥)‖𝑟 𝑑𝑇.

In other words, we may assume that 𝑚 = 𝑟 − 1: that is, 𝑛 = 2𝑟 − 1. Following again the proof of
Proposition 2.2, we consider the evaluation map 𝛼𝑥 : Ω𝑟−1 → O𝐾 , 𝑇 (𝑋) ↦→ 𝑇 (𝑥). We have seen that
it acts on the measures by multiplication by #

(
O𝐾 /O𝐹 [𝑥]

)−1. Therefore, performing the change of
variables 𝑡 = 𝛼𝑥 (𝑇), we obtain∫

Ω𝑟−1

‖𝑇 (𝑥)‖𝑟 𝑑𝑇 = #
(
O𝐾 /O𝐹 [𝑥]

)
·
∫
O𝐹 [𝑥 ]

‖𝑡‖𝑟 𝑑𝑡,

which concludes the proof.
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2.3.4. Monotony
Based on the preceding, it is clear that 𝜌𝐾,𝑛 (𝑥) = 𝜌𝐾,𝑛+1 (𝑥) when 𝐹 [𝑥] ≠ 𝐾 or 𝑛 < 𝑟 or 𝑛 ≥ 2𝑟 − 1. It
is then enough to prove that 𝜌𝐾,𝑛 (𝑥) < 𝜌𝐾,𝑛+1 (𝑥) in the remaining cases. Coming back to the definition
of the density functions, this amounts to showing that∫

Ω𝑚
‖𝑄(𝑥)‖𝑟 𝑑𝑄 <

∫
Ω𝑚+1

‖𝑄(𝑥)‖𝑟 𝑑𝑄

provided that 0 ≤ 𝑚 < 𝑟 − 1 and 𝐹 [𝑥] = 𝐾 . Let 𝑎 ∈ O𝐹 . By compacity, the function Ω𝑚 → R,
𝑄 ↦→ ‖𝑎𝑥𝑚+1 +𝑄(𝑥)‖ attains its minimum. In other words, there exists a polynomial 𝑄𝑎 ∈ Ω𝑚 such that
‖𝑎𝑥𝑚+1 +𝑄𝑎 (𝑥)‖ ≤ ‖𝑎𝑥𝑚+1 +𝑄(𝑥)‖ for all 𝑄 ∈ Ω𝑚. Write 𝛿𝑎 = ‖𝑎𝑥𝑚+1 +𝑄𝑎 (𝑥)‖. Notice that 𝛿𝑎 > 0;
otherwise, x would be annihilated by a polynomial over F of degree 𝑚 + 1 < 𝑟 , contradicting 𝐹 [𝑥] = 𝐾 .
Also note that 𝛿𝑎 depends only on the norm of a; in particular the function 𝑎 ↦→ 𝛿𝑎 is measurable.

Lemma 2.4. With the above notations, we have

‖𝑎𝑥𝑚+1 +𝑄(𝑥)‖ = max
(
𝛿𝑎, ‖(𝑄 −𝑄𝑎) (𝑥)‖

)
for all 𝑎 ∈ O𝐹 and 𝑄 ∈ Ω𝑚.

Proof. Putting 𝑆 = 𝑄 −𝑄𝑎, the ultrametric triangle inequality gives

‖𝑎𝑥𝑚+1 +𝑄(𝑥)‖ ≤ max
(
𝛿𝑎, ‖𝑆(𝑥)‖

)
(2.9)

with equality provided that ‖𝑆(𝑥)‖ ≠ 𝛿𝑎. We then get the lemma under this additional assumption. On
the other hand, when ‖𝑆(𝑥)‖ = 𝛿𝑎, we derive from the definition of 𝑄𝑎 that ‖𝑎𝑥𝑚+1 +𝑄(𝑥)‖ ≥ 𝛿𝑎. We
deduce that equation (2.9) is an equality in this case as well, which establishes the lemma. �

Separating the leading coefficient in the integral over Ω𝑚+1, we obtain∫
Ω𝑚+1

‖𝑄(𝑥)‖𝑟 𝑑𝑄 =
∫
O𝐹

∫
Ω𝑚

‖𝑎𝑥𝑚+1 +𝑄(𝑥)‖𝑟 𝑑𝑄 𝑑𝑎

=
∫
O𝐹

∫
Ω𝑚

max
(
𝛿𝑟𝑎, ‖(𝑄 −𝑄𝑎) (𝑥)‖𝑟

)
𝑑𝑄 𝑑𝑎

=
∫
O𝐹

∫
Ω𝑚

max
(
𝛿𝑟𝑎, ‖𝑄(𝑥)‖𝑟

)
𝑑𝑄 𝑑𝑎,

which eventually shows that ∫
Ω𝑚+1

‖𝑄(𝑥)‖𝑟 𝑑𝑄 ≥
∫
Ω𝑚

‖𝑄(𝑥)‖𝑟 𝑑𝑄

with strict inequality, provided that the set of pairs (𝑎, 𝑄) ∈ O𝐹 × Ω𝑚 for which ‖𝑄(𝑥)‖ < 𝛿𝑎 has
positive measure. But the latter property always holds true because 𝛿𝑎 = 𝛿1 > 0 for all 𝑎 ∈ O×

𝐹 , and O×
𝐹

has positive measure in O𝐹 . This concludes the proof of Theorem B.

2.4. From density functions to average number of roots

We now focus on Theorem A. After Proposition 2.2, we are encouraged to treat separately roots lying
in strict subextensions of K. We materialise this idea by introducing the notion of new roots.

Definition 2.5. Let K be a finite extension of F. An element 𝑥 ∈ �̄� is new in K if it is in K but not in
any strict subextension of K.
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Given an open subset U of a finite extension K of F together with a positive integer n, we define the
random variable 𝑍new

𝑈, 𝑓 : Ω𝑛 → Z taking a polynomial of P to the number of roots of P that lie in U and
are new in K. After what we have achieved so far, one strongly expects the mean value of 𝑍new

𝑈,𝑛 to be
related to the integral of the expression of the limit that appears in Proposition 2.2.

Theorem 2.6. Let n be a positive integer. Let K be a finite extension of F, and let U be an open subset
of K. Then

E
[
𝑍new
𝑈,𝑛

]
=

∫
𝑈

𝜌𝐾,𝑛 (𝑥) 𝑑𝑥. (2.10)

Proof. As usual, let r be the degree of the extension 𝐾/𝐹. Let 𝐾new be the subset of K consisting of
elements x for which 𝐹 [𝑥] = 𝐾 . Since K contains only finitely many subextensions and each subextension
is a closed subspace of K, we deduce that 𝐾new is open in K. We set Onew

𝐾 = O𝐾 ∩ 𝐾new.
To start with, we assume that U is compact and included in Onew

𝐾 . We then have 𝑍new
𝑈,𝑛 = 𝑍𝑈,𝑛. Since

a random polynomial has almost surely only simple roots, we deduce from the p-adic Kac-Rice formula
(compare Theorem 2.1) that

E[𝑍𝑈,𝑛] =
∫
Ω𝑛

lim
𝑠→∞

∫
𝑈

𝐼𝑠 (𝑥, 𝑃) 𝑑𝑥 𝑑𝑃

with 𝐼𝑠 (𝑥, 𝑃) = 𝑞𝑠𝑟 · ‖𝑃′(𝑥)‖𝑟 · 1{ ‖𝑃 (𝑥) ‖≤𝑞−𝑠 } .

It is clear that 𝐼𝑠 (𝑥, 𝑃) is nonnegative everywhere. As in the proof of Theorem 2.1, let 𝐵𝑠 be the closed
ball of K of radius 𝑞−𝑠 and centre 0. From [8, Proposition 2.3], we deduce that∫

𝑃−1 (𝐵𝑠)
‖𝑃′(𝑥)‖𝑟 𝑑𝑥 =

∫
𝐵𝑠

#𝑃−1 (𝑦) 𝑑𝑦 ≤ 𝑛𝜆𝐾 (𝐵𝑠) = 𝑛𝑞−𝑟𝑠

for any polynomial 𝑃 ∈ Ω𝑛. Hence∫
𝑈

𝐼𝑠 (𝑥, 𝑃) 𝑑𝑥 = 𝑞𝑠𝑟
∫
𝑈∩𝑃−1 (𝐵𝑠)

‖𝑃′(𝑥)‖𝑟 𝑑𝑥 ≤ 𝑛.

We can then apply Lebesgue’s dominated convergence theorem and get

E[𝑍𝑈,𝑛] = lim
𝑠→∞

∫
Ω𝑛

∫
𝑈

𝐼𝑠 (𝑥, 𝑃) 𝑑𝑥 𝑑𝑃 = lim
𝑠→∞

∫
𝑈

∫
Ω𝑛

𝐼𝑠 (𝑥, 𝑃) 𝑑𝑃 𝑑𝑥,

where the second equality comes from Fubini’s theorem. We now want to use a similar argument to
swap the limit on s and the integral over U. In order to proceed, we fix an element 𝑥 ∈ 𝑈 and denote by
𝛼𝑥 : 𝐹 ⊗O𝐹 Ω𝑛 → 𝐾 the evaluation morphism at x already considered in the proof of Proposition 2.2.
Noticing that ‖𝑃′(𝑥)‖𝑟 ≤ 1 for all 𝑃 ∈ Ω𝑛, we find∫

Ω𝑛
𝐼𝑠 (𝑥, 𝑃) 𝑑𝑃 ≤ 𝑞𝑠𝑟 · 𝜇𝑛

(
Ω𝑛 ∩ 𝛼−1

𝑥 (𝐵𝑠)
)

≤ 𝑞𝑠𝑟 · 𝜇𝑛
(
𝛼−1
𝑥 (𝐵𝑠)

)
= #

(
O𝐾 /O𝐹 [𝑥]

)
.

We saw in Section 2.3.1 that the function 𝑥 ↦→ #
(
O𝐾 /O𝐹 [𝑥]

)
is continuous; hence it is integrable on

the compact set U. The dominated convergence theorem then again applies and gives

E[𝑍𝑈,𝑛] =
∫
𝑈

lim
𝑠→∞

∫
Ω𝑛

𝐼𝑠 (𝑥, 𝑃) 𝑑𝑃 𝑑𝑥 =
∫
𝑈

𝜌𝐾,𝑛 (𝑥) 𝑑𝑥.

Theorem 2.6 is then proved when U is compact and included in Onew
𝐾 .
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One can extend the result to any open subset of O𝐾 using a standard limit argument. Precisely, if U
is open in O𝐾 , one can construct an increasing sequence (𝑈𝑚)𝑚≥0 of compact open subsets of Onew

𝐾
such that

⋃
𝑚≥0 𝑈𝑚 = 𝑈 ∩Onew

𝐾 . Applying what we have done before with 𝑈𝑚, we find

E[𝑍𝑈𝑚 ,𝑛] =
∫
𝑈𝑚

𝜌𝐾,𝑛 (𝑥) 𝑑𝑥. (2.11)

Moreover, the sequence 𝑍𝑈𝑚 ,𝑛 is nondecreasing and simply converges to 𝑍new
𝑈,𝑛. By the monotone

convergence theorem, we find that E[𝑍𝑈𝑚 ,𝑛] converges to E[𝑍new
𝑈,𝑛]. Passing to the limit in equation

(2.11), we obtain the theorem for U.
For a general U, we write 𝑈 = 𝑈0 �𝑈∞ with 𝑈0 = 𝑈 ∩ O𝐾 and 𝑈∞ = 𝑈\𝑈0. Since both sides of

equation (2.10) are additive with respect to U, it is enough to prove the theorem for 𝑈∞. For this, as in
Section 2.3.2, we consider the measure-preserving map 𝜏 : Ω𝑛 → Ω𝑛 defined by

𝜏
(
𝑎𝑛𝑋

𝑛 + · · · + 𝑎1𝑋 + 𝑎0
)
= 𝑎0𝑋

𝑛 + · · · + 𝑎𝑛−1𝑋 + 𝑎𝑛.

An element 𝑥 ∈ 𝐾 is a root of a polynomial P if and only if 𝑥−1 is a root of 𝜏(𝑃). It is also obvious that
𝑥 ∈ 𝐾new if and only if 𝑥−1 ∈ 𝐾new. Thus we get E

[
𝑍new
𝑈∞ ,𝑛

]
= E

[
𝑍new
𝑉∞ ,𝑛

]
, where 𝑉∞ is the image of 𝑈∞

under the map 𝑥 ↦→ 𝑥−1. In addition, 𝑉∞ ⊂ O𝐾 ; we can then apply the theorem with 𝑉∞ and conclude
that

E
[
𝑍new
𝑈∞ ,𝑛

]
=

∫
𝑉∞

𝜌𝐾,𝑛 (𝑥) 𝑑𝑥 =
∫
𝑈∞

𝜌𝐾,𝑛 (𝑥−1) · ‖𝑥‖−2𝑟 𝑑𝑥 =
∫
𝑈∞

𝜌𝐾,𝑛 (𝑥) 𝑑𝑥,

which finally proves the theorem in all cases. �

We conclude this section by explaining how Theorem A can be derived from Theorem 2.6. It is
actually easy once we notice that, given a finite extension E of F, any root 𝑥 ∈ 𝐾 of a polynomial 𝑃 ∈ Ω𝑛

is new in a unique subextension 𝐾 ′ of E, namely 𝐾 ′ = 𝐹 [𝑥]. Hence, if U is an open subset of E, one has

𝑍𝑈,𝑛 =
∑
𝐾 ′ ⊂𝐾

𝑍new
𝑈∩𝐾 ′,𝑛,

and Theorem A follows by additivity of the mean.

3. Examples and closed formulas

As we saw in Section 2, the distribution of roots in �̄� of a random polynomial of degree n over O𝐹

is governed by the density functions 𝜌𝐾,𝑛. However, it is not clear how useful this result could be for
deriving explicit formulas, given that the density functions are defined by intricate integral expressions
that do not look easily tractable at first glance.

The aim of this section is to become more familiar with those integrals and fully compute them in
certain simple cases. The case of quadratic extensions will be covered in full generality in Section 3.1,
culminating with a proof of Theorem C. Partial results in the case of prime degree extensions and
unramified extensions will be given in Section 3.2 and Section 3.3, respectively.

Before getting to the heart of the matter and dealing with extensions, it is important to elucidate the
case of the ground field F itself. This base case is addressed by the following proposition.
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Proposition 3.1. For all positive integers n and all 𝑥 ∈ 𝐹, we have

𝜌𝐹,𝑛 (𝑥) =
𝑞

𝑞 + 1
if 𝑥 ∈ O𝐹

=
𝑞

𝑞 + 1
· ‖𝑥‖−2 otherwise.

Proof. It follows from Theorem B that 𝜌𝐹,𝑛 does not depend on n provided that 𝑛 ≥ 1. The values
of 𝜌𝐹,𝑛 on O𝐹 are given by the explicit formula for 𝜌𝐹,1(𝑥), which appears again in Theorem B. The
values on 𝐹\O𝐹 are deduced from that on O𝐹 , coming back to Definition 2.3. �

Integrating over F, we recover (one more time) the fact that a random polynomial over O𝐹 has exactly
one root on average in F. In a similar fashion, if U is an open subset ofO𝐹 , we findE[𝑍𝑈,𝑛] = 𝑞

𝑞+1 ·𝜆(𝑈).
In particular, when 𝐹 = Q𝑝 and 𝑈 = Z𝑝 , we recover Evans’ theorem [8], which states that a random
polynomial over the p-adics has 𝑝

𝑝+1 roots in Z𝑝 on average.

3.1. Quadratic extensions

Throughout this subsection, we fix a quadratic extension K of F together with an integer 𝑛 ≥ 1. We aim
at finding a closed expression for 𝜌𝐾,𝑛 (𝑥) for 𝑥 ∈ O𝐾 . Our starting point is Theorem B, which provides
us with the following expression:

◦ if 𝑛 = 2, then 𝜌𝐾,2 (𝑥) = ‖𝐷𝐾 ‖ · 1
#
(
O𝐾 /O𝐹 [𝑥]

) · 𝑞2

𝑞2 + 𝑞 + 1
,

◦ if 𝑛 ≥ 3, then 𝜌𝐾,𝑛 (𝑥) = ‖𝐷𝐾 ‖ ·
∫
O𝐹 [𝑥 ]

‖𝑡‖2 𝑑𝑡.

We now distinguish between two cases depending on whether 𝐾/𝐹 is ramified.

Proposition 3.2. Let K be the unramified quadratic extension of F. Then for all 𝑥 ∈ O𝐾 , we have

𝜌𝐾,2 (𝑥) =
𝑞2

𝑞2 + 𝑞 + 1
· dist(𝑥, 𝐹),

for 𝑛 ≥ 3, 𝜌𝐾,𝑛 (𝑥) =
𝑞2

𝑞2 + 𝑞 + 1
· dist(𝑥, 𝐹) + 𝑞3

(𝑞2 + 1) (𝑞2 + 𝑞 + 1)
· dist(𝑥, 𝐹)4,

where dist(𝑥, 𝐹) denotes the distance from x to F.

Proof. Since 𝐾/𝐹 is unramified, its discriminant has norm 1 and thus does not contribute. We fix an
element 𝜁 ∈ O𝐾 with norm 1 such that O𝐾 = O𝐹 [𝜁]. The family B = (1, 𝜁) is a basis of O𝐾 over
O𝐹 . Let 𝑥 ∈ O𝐾 , 𝑥 ∉ O𝐹 , and write 𝑥 = 𝑎 + 𝑏𝜁 with 𝑎, 𝑏 ∈ O𝐹 , 𝑏 ≠ 0. We have O𝐹 [𝑥] = O𝐹 [𝑏𝜁],
which shows that a basis of O𝐹 [𝑥] over O𝐹 is simply B𝑥 = (1, 𝑏𝜁). Comparing B and B𝑥 , we find
#
(
O𝐾 /O𝐹 [𝑥]

)
= #

(
O𝐹/𝑏O𝐹

)
= ‖𝑏‖−1. Observing in addition that a is the closest element of x in F,

we can reinterpret the norm of b as the distance of x to F. Putting all ingredients together, we obtain the
announced formula for 𝜌𝐾,2(𝑥). This formula has been established when 𝑥 ∉ O𝐹 ; however, it obviously
also holds true when 𝑥 ∈ O𝐹 since 𝜌𝐾,2 (𝑥) vanishes in this case by definition.

We now move to the computation of 𝜌𝐾,𝑛 for 𝑛 ≥ 3. We continue to consider an element 𝑥 ∈ O𝐾 ,
𝑥 ∉ O𝐹 and write 𝑥 = 𝑎 + 𝑏𝜁 with 𝑎, 𝑏 ∈ O𝐹 , 𝑏 ≠ 0. Performing a change of variables or, more simply,
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coming back to Definition 2.3, we have

𝜌𝐾,𝑛 (𝑥) =
1

#
(
O𝐾 /O𝐹 [𝑥]

) ·
∫
O2
𝐹

‖𝑢 + 𝑣𝑥‖2 𝑑𝑢 𝑑𝑣 = ‖𝑏‖ ·
∫
O2
𝐹

‖𝑢 + 𝑣𝑥‖2 𝑑𝑢 𝑑𝑣.

Replacing t by 𝑡 − 𝑢𝑎, this reduces to

𝜌𝐾,𝑛 (𝑥) = ‖𝑏‖ ·
∫
O2
𝐹

‖𝑢 + 𝑣𝑏𝜁 ‖2 𝑑𝑢 𝑑𝑣 = ‖𝑏‖ ·
∫
O2
𝐹

max
(
‖𝑡𝑢‖2, ‖𝑣𝑏‖2) 𝑑𝑢 𝑑𝑣.

As in Section 2.3.3, we decompose O𝐹 as the disjoint union O𝐹 = {0} �
⋃

𝑠≥0 𝑈𝑠 , where 𝑈𝑠 consists
of elements of norm 𝑞−𝑠 . Decomposing the integral accordingly and writing ‖𝑏‖ = 𝑞−𝛿 , we find

𝜌𝐾,𝑛 (𝑥) =
(
1 − 1

𝑞

)2
𝑞−𝛿 ·

∞∑
𝑠=0

∞∑
𝑡=0

𝑞−𝑠−𝑡−2 min(𝑠,𝑡+𝛿) .

Computing the latter double sum is painful but straightforward. We split the domain of summation into
three regions, namely

𝐷1 =
{
(𝑠, 𝑡) ∈ Z2

≥0 such that 𝑠 < 𝛿
}
,

𝐷2 =
{
(𝑠, 𝑡) ∈ Z2

≥0 such that 𝛿 ≤ 𝑠 ≤ 𝑡 + 𝛿
}
,

𝐷3 =
{
(𝑠, 𝑡) ∈ Z2

≥0 such that 𝑠 > 𝑡 + 𝛿
}
.

We then compute the double sum separately on each domain:

◦ over 𝐷1:
𝛿−1∑
𝑠=0

∞∑
𝑡=0

𝑞−3𝑠−𝑡 =
𝑞4

(𝑞 − 1) (𝑞3 − 1)
· (1 − 𝑞−3𝛿),

◦ over 𝐷2:
∞∑
𝑠=𝛿

∞∑
𝑡=𝑠−𝛿

𝑞−3𝑠−𝑡 = 𝑞−3𝛿
∞∑
𝑠=0

∞∑
𝑡=𝑠

𝑞−3𝑠−𝑡 =
𝑞5

(𝑞 − 1) (𝑞4 − 1)
· 𝑞−3𝛿 ,

◦ over 𝐷3:
∞∑
𝑡=0

∞∑
𝑠=𝑡+𝛿+1

𝑞−𝑠−3𝑡−2𝛿 = 𝑞−3𝛿−1
∞∑
𝑡=0

∞∑
𝑠=𝑡

𝑞−𝑠−3𝑡 =
𝑞4

(𝑞 − 1) (𝑞4 − 1)
· 𝑞−3𝛿 .

Summing the contributions and noticing 𝑞−𝛿 = ‖𝑏‖ = dist(𝑥, 𝐹), we finally find the expression given
in the statement of the proposition. As previously, we notice that this formula continues to hold when
𝑥 ∈ O𝐹 , given that 𝜌𝐾,𝑛 (𝑥) vanishes by definition in this case. �

Proposition 3.3. Let K be a totally ramified quadratic extension of F. Then for all 𝑥 ∈ O𝐾 , we have

𝜌𝐾,2 (𝑥)
‖𝐷𝐾 ‖ =

𝑞3/2

𝑞2 + 𝑞 + 1
· dist(𝑥, 𝐹),

for 𝑛 ≥ 3,
𝜌𝐾,𝑛 (𝑥)
‖𝐷𝐾 ‖ =

𝑞3/2

𝑞2 + 𝑞 + 1
· dist(𝑥, 𝐹) + 1

𝑞 (𝑞 + 1) (𝑞2 + 𝑞 + 1)
· dist(𝑥, 𝐹)4,

where dist(𝑥, 𝐹) denotes the distance from x to F.

Proof. The proof is similar to that of Proposition 3.2, so we only sketch the argument. We fix a
uniformiser 𝜋 of K. The family (1, 𝜋) forms a basis of O𝐾 over O𝐹 . Let 𝑥 ∈ O𝐾 , 𝑥 ∉ O𝐹 , and write
𝑥 = 𝑎+ 𝑏𝜋 with 𝑎, 𝑏 ∈ O𝐹 , 𝑏 ≠ 0. From the fact that (1, 𝑏𝜋) is a O𝐹 -basis of O𝐹 [𝑥], we deduce that the
cardinality of O𝐾 /O𝐹 [𝑥] is ‖𝑏‖−1. Noticing that dist(𝑥, 𝐹) = ‖𝑏𝜋‖ = √

𝑞 · ‖𝑏‖, we get the announced
formula for 𝜌𝐾,2 (𝑥).
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When 𝑛 ≥ 3, we start with the formula

𝜌𝐾,𝑛 (𝑥) =
‖𝐷𝐾 ‖

#
(
O𝐾 /O𝐹 [𝑥]

) ·
∫
O2
𝐹

‖𝑢 + 𝑣𝑥‖2 𝑑𝑢 𝑑𝑣.

Decomposing the integral into slices where ‖𝑢‖ and ‖𝑣‖ are constant, we obtain

𝜌𝐾,𝑛 (𝑥)
‖𝐷𝐾 ‖ =

(
1 − 1

𝑞

)2
𝑞−𝛿 ·

∞∑
𝑠=0

∞∑
𝑡=0

𝑞−𝑠−𝑡−min(2𝑠,2𝑡+2𝛿+1) ,

where 𝛿 is defined by ‖𝑏‖ = 𝑞−𝛿 . Finally, splitting the previous double sum into three parts exactly
as we did in the unramified case, we end up after some calculations with the formula displayed in the
statement of the proposition. �

Theorem C can be deduced from Propositions 3.2 and 3.3 by integrating over K. For this, the first
ingredient is the observation that the transformation law of Theorem B permits one to relate the integral
of 𝜌𝐾,𝑛 outsideO𝐾 to its integral over another domain inO𝐾 . Precisely, applying it with the homography
ℎ : 𝑥 ↦→ 𝑥−1, we get 𝜌𝐾,𝑛

(
ℎ(𝑥)

)
= ‖𝑥‖4 · 𝜌𝐾,𝑛 (𝑥). Noticing in addition that h maps bijectively 𝐾\O𝐾

to the maximal ideal 𝔪𝐾 of O𝐾 , we obtain∫
𝐾\O𝐾

𝜌𝐾,𝑛 (𝑥) 𝑑𝑥 =
∫
𝔪𝐾

𝜌𝐾,𝑛
(
ℎ(𝑥)

)
·‖ℎ′(𝑥)‖2 𝑑𝑥 =

∫
𝔪𝐾

𝜌𝐾,𝑛 (𝑥) 𝑑𝑥.

Summing the contributions over O𝐾 and 𝐾\O𝐾 , we end up with∫
𝐾

𝜌𝐾,𝑛 (𝑥) 𝑑𝑥 =
∫
O𝐾

𝜌𝐾,𝑛 (𝑥) 𝑑𝑥 +
∫
𝔪𝐾

𝜌𝐾,𝑛 (𝑥) 𝑑𝑥.

Theorem C now easily follows from the next lemma.

Lemma 3.4. Let d be a positive integer, and set 𝛼𝑑 =
𝑞 − 1

𝑞𝑑+1 − 1
=

1
𝑞𝑑 + 𝑞𝑑−1 · · · + 1

.

1. If 𝐾/𝐹 is unramified, we have∫
O𝐾

dist(𝑥, 𝐹)𝑑 𝑑𝑥 = 𝑞𝑑𝛼𝑑 and
∫
𝔪𝐾

dist(𝑥, 𝐹)𝑑 𝑑𝑥 = 𝑞−2𝛼𝑑 .

2. If 𝐾/𝐹 is totally ramified, we have∫
O𝐾

dist(𝑥, 𝐹)𝑑 𝑑𝑥 = 𝑞𝑑/2𝛼𝑑 and
∫
𝔪𝐾

dist(𝑥, 𝐹)𝑑 𝑑𝑥 = 𝑞𝑑/2− 1𝛼𝑑 .

Proof. We first assume that 𝐾/𝐹 is unramified. Writing O𝐾 = O𝐹 [𝜁] as in the proof of Proposition
3.2, we find ∫

O𝐾
dist(𝑥, 𝐹)𝑑 𝑑𝑥 =

∫
O𝐹

‖𝑏‖𝑑 𝑑𝑏 = 𝑞𝑑𝛼𝑑 ,

the last equality being nothing but equation (2.8) established in Section 2.3.3. Similarly noticing that
𝑥 = 𝑎 + 𝑏𝜁 lies in 𝔪𝐾 if and only if both a and b falls in the maximal ideal 𝔪𝐹 of O𝐹 , we obtain∫

𝔪𝐾
dist(𝑥, 𝐹)𝑑 𝑑𝑥 = 𝜆(𝔪𝐹 ) ·

∫
𝔪𝐹

‖𝑏‖𝑑 𝑑𝑏 = 𝑞−1
∫
𝔪𝐹

‖𝑏‖𝑑 𝑑𝑏.
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Fixing a uniformiser 𝜋𝐹 of F and performing the change of variables 𝑏 = 𝜋𝐹 𝑡, we finally get∫
𝔪𝐾

dist(𝑥, 𝐹)𝑑 𝑑𝑥 = 𝑞−𝑑−2
∫
O𝐹

‖𝑡‖𝑑 𝑑𝑡 = 𝑞−2𝛼𝑑 .

The argument in the totally ramified case is similar. We pick a uniformiser 𝜋 of K and, writing
O𝐾 = O𝐹 [𝜋], find∫

O𝐾
dist(𝑥, 𝐹)𝑑 𝑑𝑥 =

∫
O𝐹

‖𝑏𝜋‖𝑑 𝑑𝑏 = ‖𝜋‖𝑑 · 𝑞𝑑𝛼𝑑 = 𝑞𝑑/2𝛼𝑑 .

For the integral over 𝔪𝐾 , we observe that 𝑎 + 𝑏𝜋 ∈ O𝐾 if and only if 𝑎 ∈ 𝔪𝐹 . Therefore∫
𝔪𝐾

dist(𝑥, 𝐹)𝑑 𝑑𝑥 = 𝜆(𝔪𝐹 ) ·
∫
O𝐹

‖𝑏𝜋‖𝑑 𝑑𝑏 = 𝑞𝑑/2− 1𝛼𝑑 ,

which concludes the proof. �

3.2. Prime degree extensions

The strategy we have presented above in the case of quadratic extensions extends to all extensions of
prime degree, the crucial point being that 𝐾/𝐹 does not admit any nontrivial subextension. Nonetheless,
the computations become much longer and more painful in this generality, although they remain feasible
in theory. However, the case of polynomials of minimal degree remains reasonable.

Proposition 3.5. Let r be a prime number, and let K be an extension of F of degree r.

1. If 𝐾/𝐹 is unramified, then for all 𝑥 ∈ O𝐾 , we have

𝜌𝑟 ,𝐾 (𝑥) = 𝑞𝑟+1 − 𝑞𝑟

𝑞𝑟+1 − 1
· dist(𝑥, 𝐹)𝑟 (𝑟−1)/2.

2. If 𝐾/𝐹 is totally ramified, then for all 𝑥 ∈ O𝐾 , we have

𝜌𝑟 ,𝐾 (𝑥) = ‖𝐷𝐾 ‖ · 𝑞 (𝑟+3)/2 − 𝑞 (𝑟+1)/2

𝑞𝑟+1 − 1
· dist(𝑥, 𝐹)𝑟 (𝑟−1)/2.

Proof. We assume first that 𝐾/𝐹 is unramified. Let 𝑥 ∈ O𝐾 , 𝑥 ∉ O𝐹 . By compacity, there exists
𝑎 ∈ O𝐹 such that ‖𝑥 − 𝑎‖ = dist(𝑥, 𝐹). We pick such an element a and write 𝑥 − 𝑎 = 𝜋𝛿𝜁 , where 𝜋 is
a fixed uniformiser of F and 𝜁 ∈ O𝐾 has norm 1. Let 𝑘𝐹 and 𝑘𝐾 denote the residue fields of F and
K, respectively, and let 𝜁 be the image of 𝜁 in 𝑘𝐾 . We claim that 𝜁 ∉ 𝑘𝐹 ; otherwise, there would exist
𝑏 ∈ O𝐹 with 𝑏 ≡ 𝜁 (mod 𝜋) and so ‖𝑥 − (𝑎 + 𝜋𝛿𝑏)‖ ≤ 𝑞−𝛿−1 < 𝑞−𝛿 = ‖𝑥 − 𝑎‖, contradicting the
minimality property of a. Given that the extension 𝑘𝐾 /𝑘𝐹 has prime degree, we deduce that 𝑘𝐾 = 𝑘𝐹 [𝜁]
and, consequently, that O𝐾 = O𝐹 [𝜁]. The family (1, 𝜁 , . . . , 𝜁𝑟−1) is then a basis of O𝐾 over O𝐹 , while
(1, 𝜋𝛿𝜁, . . . , (𝜋𝛿𝜁)𝑟−1) is a basis of O𝐹 [𝑥] over O𝐹 . This shows that

#
(
O𝐾 /O𝐹 [𝑥]

)
= 𝑞 𝛿+2𝛿+···+(𝑟−1) 𝛿 = 𝑞 𝛿𝑟 (𝑟−1)/2 = dist(𝑥, 𝐹)−𝑟 (𝑟−1)/2,

from which we deduce the claimed formula for 𝜌𝑟 ,𝐾 (𝑥).
We now move to the totally ramified case. Let 𝜋𝐹 (respectively, 𝜋𝐾 ) denote a fixed uniformiser of

F (respectively, K). Then O𝐾 = O𝐹 [𝜋𝐾 ] and the family B = (1, 𝜋𝐾 , . . . , 𝜋𝑟−1
𝐾 ) is a O𝐹 -basis of O𝐾 .
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Let 𝑥 ∈ O𝐾 . As before, if 𝑥 ∈ O𝐹 , both sides of the equality we want to prove vanish, and there is
nothing more to do. We then assume 𝑥 ∉ O𝐹 and consider 𝑎 ∈ O𝐹 such that ‖𝑥 − 𝑎‖ = dist(𝑥, 𝐹).
Write 𝑥 − 𝑎 = 𝜋𝛿

𝐾𝑢 with 𝛿 ∈ Z≥0 and 𝑢 ∈ O×
𝐾 . The minimality condition in the definition of a implies

that 𝛿 � 0(mod 𝑟). In addition, the family B𝑥 = (1, 𝜋𝛿
𝐾𝑢, . . . , (𝜋𝛿

𝐾𝑢)𝑟−1) is a O𝐹 -basis of O𝐹 [𝑥]. For
𝑖 ∈ {0, . . . , 𝑟−1}, we decompose (𝜋𝛿

𝐾𝑢)𝑖 in the basis B: that is, we write

(𝜋𝛿
𝐾𝑢)𝑖 =

𝑟−1∑
𝑗=0

𝑎𝑖 𝑗𝜋
𝑗
𝐾 (3.1)

with 𝑎𝑖 𝑗 ∈ O𝐹 . Set 𝑐 = 𝑞1/𝑟 . Taking norms in equation (3.1), we get 𝑐−𝛿𝑖 = max1≤ 𝑗<𝑟
(
‖𝑎𝑖 𝑗 ‖·𝑐− 𝑗

)
. In

other words, ‖𝑎𝑖 𝑗 ‖ ≤ 𝑐 𝑗−𝛿𝑖 for all j, and the equality holds for at least one index j. On the other hand,
the inequality is certainly strict as soon as r does not divide 𝑗 − 𝛿𝑖 because ‖𝑎𝑖 𝑗 ‖ is a power of 𝑞 = 𝑐𝑟 .
Therefore, if 𝑗𝑖 denotes the remainder in the division of 𝛿𝑖 by r, we conclude that ‖𝑎𝑖 𝑗 ‖ ≤ 𝑐 𝑗−𝛿𝑖 for all j
with equality if and only if 𝑗 = 𝑗𝑖 . Let A be the change-of-basis matrix from B to B𝑥 . By definition, its
entries are exactly the 𝑎𝑖 𝑗s. Let P be the permutation matrix associated to 𝑖 ↦→ 𝑗𝑖 , and define

𝐵 =
����
𝜋−𝛿0
𝐹

. . .

𝜋−𝛿𝑟−1
𝐹

���� · 𝑃
−1 · 𝐴 with 𝛿𝑖 =

𝛿𝑖 − 𝑗𝑖
𝑟

.

The estimations on ‖𝑎𝑖 𝑗 ‖ we have obtained previously show that B has entries inO𝐹 and that 𝐵 mod 𝜋𝐹 is
lower-triangular with nonzero diagonal entries. Hence B is invertible over O𝐹 , which gives ‖det 𝐵‖ = 1.
Since P is clearly invertible as well, we conclude that

#
(
O𝐾 /O𝐹 [𝑥]

)
= ‖det 𝐴‖−1 = 𝑞 𝛿0+···+𝛿𝑟 = 𝑞 (𝛿−1) (𝑟−1)/2.

Remembering that dist(𝑥, 𝐹) = ‖𝑥 − 𝑎‖ = ‖𝜋𝛿
𝐾𝑢‖ = 𝑞−𝛿/𝑟 , we finally find the formula given in the

proposition. �

Extending Proposition 3.5 to larger degrees does not require more conceptual arguments but leads to
much more laborious calculations. It follows from Definition 2.3 that for 𝑛 ≥ 𝑟 and 𝑥 ∈ O𝐾 \O𝐹 , one has

𝜌𝑛,𝐾 (𝑥) = ‖𝐷𝐾 ‖
#
(
O𝐾 /O𝐹 [𝑥]

) ·
∫
O𝑚+1
𝐹

max
(
‖𝑢0‖𝑟 , 𝑞−𝛿𝑟 ‖𝑢1‖𝑟 , . . . , 𝑞−𝛿𝑟𝑚‖𝑢𝑚‖𝑟

)
𝑑𝑢0 · · · 𝑑𝑢𝑚,

where 𝑞−𝛿 = dist(𝑥, 𝐹) and 𝑚 = min(𝑟−1, 𝑛−𝑟). In addition, after the proof of Proposition 3.5, we
know an explicit formula for #

(
O𝐾 /O𝐹 [𝑥]

)
. The integral can be computed by splitting the domain

of integration, namely O𝑚+1
𝐹 , into 𝑚+1 subdomains depending on the index at which the maximum is

reached. Computing all contributions separately and summing them, we can conclude. As far as we
tried, it seems that the final formula does not take a simple form in full generality.

3.3. Unramified extensions

For general unramified extensions K, it is possible to compute at a lower cost some values of 𝜌𝐾,𝑛

(for any n).
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Proposition 3.6. Let r be a positive integer, and let K be the unramified extension of F of degree r.
Let 𝑥 ∈ O𝐾 . We assume that O𝐹 [𝑥] = O𝐾 . Then

𝜌𝑛,𝐾 (𝑥) = 𝑞𝑛
′+1 − 𝑞𝑟

𝑞𝑛′+1 − 1
with 𝑛′ = min(𝑛, 2𝑟−1)

for all 𝑛 ≥ 𝑟 .

Proof. Set 𝑚 = 𝑛′ − 𝑟 . Let 𝑘𝐹 (respectively, 𝑘𝐾 ) denote the residue field of F (respectively, K). Let
𝜉 ∈ 𝑘𝐾 be the image of x. Our assumption implies that 𝑘𝐹 [𝜉] = 𝑘𝐾 . Therefore, if an expression of the
form 𝑢0 + 𝑢1𝑥 + · · · + 𝑢𝑚𝑥𝑚 with 𝑢𝑖 ∈ O𝐹 vanishes in 𝑘𝐾 , then all 𝑢𝑖 have to vanish in 𝑘𝐹 . We deduce
from this property that

‖𝑢0 + 𝑢1𝑥 + · · · + 𝑢𝑚𝑥𝑚‖ = max
(
‖𝑢0‖, ‖𝑢1‖, . . . , ‖𝑢𝑚‖

)
for all 𝑢0, . . . , 𝑢𝑚 ∈ O𝐹 . It then follows from Definition 2.3 and our assumptions that

𝜌𝑛,𝐾 (𝑥) =
∫
O𝑚+1
𝐹

max
(
‖𝑢0‖𝑟 , ‖𝑢1‖𝑟 , . . . , ‖𝑢𝑚‖𝑟

)
𝑑𝑢0 · · · 𝑑𝑢𝑚.

Contrary to what we said at the end of Section 3.2, the latter integral can be easily computed. Let us
fix a uniformiser 𝜋 of F and, for each nonnegative integer s, set 𝑈𝑠 = (𝜋𝑠O𝐹 )𝑚+1. The 𝑈𝑠s then form a
decreasing sequence of open subsets of O𝑚+1

𝐹 . Moreover, it is easy to check that 𝑈𝑠 is exactly the domain
over which the integrand max

(
‖𝑢0‖𝑟 , . . . , ‖𝑢𝑚‖𝑟

)
is less than or equal to 𝑞−𝑠𝑟 . We deduce from this that

𝜌𝑛,𝐾 (𝑥) =
∞∑
𝑠=0

(
𝜆⊗𝑚+1
𝐹 (𝑈𝑠) − 𝜆⊗𝑚+1

𝐹 (𝑈𝑠+1)
)
· 𝑞−𝑠𝑟 .

Observing that 𝜆⊗𝑚+1
𝐹 (𝑈𝑠) = 𝜆𝐹 (𝜋𝑠O𝐹 )𝑚+1 = 𝑞−𝑠 (𝑚+1) , we end up with

𝜌𝑛,𝐾 (𝑥) =
(
1 − 𝑞−𝑚−1) · ∞∑

𝑠=0
𝑞−𝑠 (𝑚+1+𝑟 ) =

𝑞𝑚+1+𝑟 − 𝑞𝑟

𝑞𝑚+1+𝑟 − 1
,

which is what we wanted to prove. �

3.4. Numerical simulations

We have conducted several numerical experiments illustrating the theoretical results obtained in Section 2
and Section 3. First, for 𝑝 ∈ {2, 5}, we picked a sample of 500,000 random polynomials over Z𝑝 of
degree up to 5 and counted the number of (new) roots these polynomials have inQ𝑝 and all its extensions
of degree 2 and 3. The results are reported on Figure 1 for 𝑝 = 2 and in Figure 2 for 𝑝 = 5 (the colours in
the figures represent the number of new roots in each field). In both cases, we observe that the empirical
average number of roots in Q𝑝 is 1, as predicted by Proposition 3.1.

We can also check that the number of new roots heavily depends on the discriminant of the extension.
When 𝑝 = 5, for example, the discriminant ofQ52 has norm 1, whereas the discriminant of the two other
quadratic extensions, namely Q5 [

√
5] and Q5 [

√
10], has norm 1/5; looking at Figure 2, we see that the

height of the dark blue area is roughly 5 times larger that the height of the light blue area. Similarly,
when 𝑝 = 2, the discriminant of Q4 has norm 1, the discriminant of Q2 [

√
3] and Q2 [

√
7] has norm 1/4

and that of the four remaining quadratic extensions has norm 1/8. Again, we can check in Figure 1 that
one has approximately the same ratios for the heights of the corresponding areas.
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0

1

2

3

deg 1 deg 2 deg 3 deg 4 deg 5 deg 6

Q 2

Q 22

Q2 [ 3]
Q2 [ 7]

Q2 [ 2]
Q2 [ 6]
Q2 [ 10]
Q2 [ 14]

Q 23 Q 2 [
3 2]

Figure 1. Average number of new roots of a polynomial in various extensions. Sample of 500,000
polynomials over Z2 picked uniformly at random.

0

1

2

3

deg 1 deg 2 deg 3 deg 4 deg 5 deg 6

Q 5

Q 52 Q 5 [ 5]
Q 5 [ 10]

Q 53 Q 5 [
3 5]

Figure 2. Average number of new roots of a polynomial in various extensions. Sample of 500,000
polynomials over Z5 picked uniformly at random.

https://doi.org/10.1017/fms.2022.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.27


Forum of Mathematics, Sigma 23

Z2

Z2·𝜁

Z2

Z2·𝜋

Figure 3. Distribution of new roots of a polynomial in Z4 (on the left) and in Z2 [𝜋] with 𝜋2 +2𝜋−2 = 0
(on the right). Sample of 500,000 polynomials over Z2 picked uniformly at random.

Another property we can visualise in Figure 1 and Figure 2 is the monotony statement of Theorem B.
We see that the heights of the areas tend to slightly increase with the degree until they stabilise at degree
3 for quadratic extensions and degree 5 for cubic extensions.

In a slightly different direction, Figure 3 shows the empiric distribution of new roots of a sample of
500,000 random polynomials of degree 5 over Z2 in the ring of integers of two quadratic extensions,
namely Z4, presented as Z2 [𝜁] with 𝜁2 + 𝜁 + 1 = 0 (on the left) and Z2 [𝜋], where 𝜋 is a root of the
Eisenstein polynomial 𝑋2 + 2𝑋 − 2 (on the right). In the figures, each bullet corresponds to a class
modulo 25. The darkness of the bullet encodes the number of roots we got in the corresponding class:
the bullet is black if we observed more than 400 roots (total, in our sample of 500,000 polynomials),
white if we do not have any roots and gray for intermediate numbers of hits. On each Z2-line, the classes
are ordered as follows:

0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, 26, 6, 22, 14, 30,
1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31.

That is, the even classes come first, followed by the odd ones. In each subgroup, the classes are grouped
according to their congruence modulo 4, then modulo 8, and so on. This organisation is appropriate for
our purpose but reflects the 2-adic distance.

In each figure, it is striking that the bullets become much brighter when we approach theZ2-line on the
bottom. This empirical observation is in perfect compliance with the explicit formulas of Propositions
3.2 and 3.3 that clearly indicate that the size of 𝜌𝐾,𝑛 (𝑥) is governed by the distance of x to Q2. The
bullets in the figure on the right are much brighter than the bullets on the left. Again, this is because the
discriminant of Q2 [𝜋] has a smaller norm than the discriminant of Q4; we expect more roots, and thus
darker bullets, in the case of Q4.

4. Some orders of magnitude

In the previous section, we tried to write exact formulas for the density function 𝜌𝐾,𝑛s. However, in
many cases, it is sufficient – and sometimes even more useful – to know their orders of magnitude. In
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this section, we focus on the quantities

𝜌𝑛 (𝐾) =
∫
𝐾

𝜌𝐾,𝑛 (𝑥) 𝑑𝑥

that count the average number of new roots in K: that is, 𝜌𝑛 (𝐾) = E[𝑍new
𝐾,𝑛] (see Definition 2.5

and Theorem 2.6). We obtain sharp asymptotic estimations when q and r grow, proving in particular
Theorems D and E.

4.1. Counting generators over finite fields

This subsection gathers several preliminary lemmas concerning the number of generators of an extension
of finite fields. Write F𝑞 (respectively, F̄𝑞) for the residue field of F (respectively, �̄�). It is well-known
that F̄𝑞 is an algebraic closure of F𝑞 . For any given a positive integer f, let F𝑞 𝑓 denote the unique
extension of F𝑞 of degree f in F̄𝑞 . Let 𝐺 𝑓 be the number of elements 𝑥 ∈ F𝑞 𝑓 such that F𝑞 [𝑥] = F𝑞 𝑓 .
From the obvious fact that each 𝑥 ∈ F𝑞 𝑓 generates some F𝑞𝑚 for a divisor m of f, we deduce the
relation ∑

𝑚 | 𝑓
𝐺𝑚 = 𝑞 𝑓 . (4.1)

This relation can be ‘inverted’ using the Moebius inversion formula. We recall that the Moebius function
𝜇 : Z>0 → {0, 1} is defined by 𝜇(𝑝1 . . . 𝑝𝑠) = (−1)𝑠 if 𝑝1, . . . , 𝑝𝑠 are distinct prime numbers and
𝜇(𝑛) = 0 as soon as n is divisible by a square. Equation (4.1) then becomes

𝐺 𝑓 =
∑
𝑚 | 𝑓

𝜇

(
𝑓

𝑚

)
𝑞𝑚. (4.2)

From the latter formula, one easily derive that 𝐺 𝑓 = 𝑞 𝑓 + 𝑂
(
𝑞 𝑓 /2) . Here is another estimation of the

same type that we will need in the sequel.

Lemma 4.1. For all positive integer f, we have∑
𝑚 | 𝑓
𝑚< 𝑓

𝐺𝑚𝑞𝑚 ≤ 2𝑞 𝑓 .

Proof. A strict divisor of f cannot exceed 𝑓 /2. On the other hand, it is obvious from the definition that
𝐺𝑚 ≤ 𝑞𝑚 for all m. Hence, the sum of the lemma is bounded from above by∑

𝑚< 𝑓 /2
𝑞2𝑚 ≤ 𝑞 𝑓 +2 − 1

𝑞2 − 1
≤ 𝑞 𝑓

1 − 𝑞−2 ≤ 2𝑞 𝑓

given that 𝑞 ≥ 2. �

Let 𝜑 be Euler’s totient function. We recall that 𝜑(𝑛) is by definition the number of integers that are
less than n and coprime with n. If the decomposition of n in prime factors reads 𝑛 = 𝑝𝛼1

1 · · · 𝑝𝛼𝑠𝑠 , one
has the formula

𝜑(𝑛) = 𝑛 ·
(
1 − 1

𝑝1

)
· · ·

(
1 − 1

𝑝𝑠

)
.
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The next beautiful lemma, which harmoniously relates the Moebius and Euler functions, is classical;
we nevertheless include a proof for completeness.

Lemma 4.2. For any positive integer n, one has the relation∑
𝑚 |𝑛

𝜇(𝑚)
𝑚

=
𝜑(𝑛)
𝑛

.

Proof. Write 𝑛 = 𝑝𝛼1
1 · · · 𝑝𝛼𝑠𝑠 , where the 𝑝𝑖s are pairwise distinct prime numbers. The divisors m of n

are exactly the integers of the form 𝑚 = 𝑝
𝛽1
1 · · · 𝑝𝛽𝑠𝑠 with 𝛽𝑖 ≤ 𝛼𝑖 for all i. We then deduce from the

definition of the Moebius function that∑
𝑚 |𝑛

𝜇(𝑚)
𝑚

=
1∑

𝛽1=0
· · ·

1∑
𝛽𝑠=0

(−1)𝛽1+···+𝛽𝑠

𝑝
𝛽1
1 . . . 𝑝

𝛽𝑠
𝑠

=
𝑠∏
𝑖=1

(
1 − 1

𝑝𝑖

)
=

𝜑(𝑛)
𝑛

,

which proves the lemma. �

Lemma 4.3. For any positive integer r, one has the relation

𝑟 ·
∑
𝑓 |𝑟

𝐺 𝑓

𝑓
=

∑
𝑚 |𝑟

𝜑
( 𝑟

𝑚

)
𝑞𝑚.

Proof. The lemma follows from the following sequence of equalities:

𝑟 ·
∑
𝑓 |𝑟

𝐺 𝑓

𝑓
= 𝑟 ·

∑
𝑚 | 𝑓 |𝑟

𝜇

(
𝑓

𝑚

)
𝑞𝑚

𝑓
. by equation 4.2

= 𝑟 ·
∑
𝑚 |𝑟

∑
𝑛 | 𝑟𝑚

𝜇(𝑛)
𝑛

· 𝑞𝑚

𝑚
. (change of variables 𝑛 = 𝑓

𝑚 )

=
∑
𝑚 |𝑟

𝜑
( 𝑟

𝑚

)
𝑞𝑚 by Lemma 4.2.

�

4.2. Isolating the main contribution to 𝜌𝑛 (𝐾)

We come back to the p-adic situation and our problem of finding a sharp asymptotic of 𝜌𝑛 (𝐾). In what
follows, we fix a finite extension K of F. We denote its degree by r and its residual degree by f. The
residue field of K is then F𝑞 𝑓 . Let G𝐾 be the set of generators of O𝐾 : that is,

G𝐾 =
{
𝑥 ∈ O𝐾 such that O𝐹 [𝑥] = O𝐾

}
.

Similarly, for a positive integer f, we define G 𝑓 as the set of generators of F𝑞 𝑓 over F𝑞 . By definition, the
number 𝐺 𝑓 we introduced in Section 4.1 is the cardinality of G 𝑓 . For each 𝛼 ∈ F𝑞 𝑓 , we let 𝑈𝛼 denote
the open subset of O𝐾 consisting of elements whose image in the residue field is 𝛼. The 𝑈𝛼s are then
pairwise disjoint and 𝜆𝐾 (𝑈𝛼) = 𝑞− 𝑓 for all 𝛼.

Lemma 4.4. For 𝛼 ∈ F𝑞 𝑓 , we have

𝑞− 𝑓 ·
(
1 − 𝑞− 𝑓

)
≤ 𝜆𝐾 (G𝐾 ∩𝑈𝛼) ≤ 𝑞− 𝑓 if 𝛼 ∈ G 𝑓 ,

G𝐾 ∩𝑈𝛼 = ∅ if 𝛼 ∉ G 𝑓 .
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Proof. If 𝑥 ∈ O𝐾 generates O𝐾 over O𝐹 , its image in the residue field must generate F𝑞 𝑓 over F𝑞 . This
proves the lemma when 𝛼 ∉ G 𝑓 .

We now assume that 𝛼 ∈ G 𝑓 . First, it is clear that 𝜆𝐾 (G𝐾 ∩𝑈𝛼) ≤ 𝜆𝐾 (𝑈𝛼) = 𝑞− 𝑓 . Let �̄� be the
minimal polynomial of 𝛼 over F𝑞 . Also let 𝑎 ∈ O𝐾 be a lifting of 𝛼 and 𝑍 ∈ Ω 𝑓 be a polynomial lifting
�̄� . We fix in addition a uniformiser 𝜋 of K. Then 𝑍 (𝑎) is a multiple of 𝜋, and we write 𝑍 (𝑎) = 𝜋𝑏.
In addition, �̄� ′(𝑎) does not vanish given that F𝑞 𝑓 /F𝑞 is a separable extension. For 𝑥 ∈ O𝐾 , the
congruence

𝑍 (𝑎 + 𝜋𝑥) ≡ 𝑍 (𝑎) + 𝑍 ′(𝑎)𝜋𝑥 ≡ 𝜋 ·
(
𝑏 + 𝑍 ′(𝑎) 𝑥

)
(mod 𝜋2)

shows that 𝑍 (𝑎 + 𝜋𝑥) is a uniformiser of K as soon as the image of x in the residue field is different
from −𝑏

𝑍 ′ (𝑎) . When this occurs, O𝐹 [𝑥] then contains a uniformiser of K together with a generator of the
residue field, implying that O𝐹 [𝑥] = O𝐾 . The lemma follows. �

Proposition 4.5. For all 𝑛 ≥ 𝑟 , we have

1
‖𝐷𝐾 ‖ ·

∫
𝐾\G𝐾

𝜌𝐾,𝑛 (𝑥) 𝑑𝑥 ≤ 4𝑞− 𝑓 .

Proof. Set 𝑉 = 𝐾\G𝐾 and 𝑉𝛼 = 𝑉 ∩𝑈𝛼 for 𝛼 ∈ F𝑞 𝑓 . Also set 𝑉∞ = 𝐾\O𝐾 . The set V then appears as
the disjoint union of the 𝑉𝛼s for 𝛼 varying in P1 (F𝑞 𝑓 ). We will bound the integral of 𝜌𝐾,𝑛 on each 𝑉𝛼

separately. When 𝛼 ∈ G 𝑓 , it follows from Lemma 4.4 that 𝜆𝐾 (𝑉𝛼) ≤ 𝑞−2 𝑓 . In addition, coming back to
Definition 2.3, we remark that 𝜌𝐾,𝑛 is upper bounded by ‖𝐷𝐾 ‖ on O𝐾 and so on 𝑉𝛼. We then deduce,
in this case, that

1
‖𝐷𝐾 ‖ ·

∫
𝑉𝛼

𝜌𝐾,𝑛 (𝑥) 𝑑𝑥 ≤ 𝑞−2 𝑓 .

We now consider the case where 𝛼 ∈ F𝑞 𝑓 , 𝛼 ∉ G 𝑓 . Write ℓ = F𝑞 [𝛼], and let 𝑚(𝛼) be the degree of
the extension ℓ/F𝑞 . By assumption, 𝑚(𝛼) < 𝑓 . On the other hand, the reduction morphism O𝐾 →
F𝑞 𝑓 takes O𝐹 [𝑥] to ℓ. We deduce that the cardinality of the quotient O𝐾 /O𝐹 [𝑥] is bounded from
below by the cardinality of F𝑞 𝑓 /ℓ, which is 𝑞 𝑓 −𝑚(𝛼) . Injecting this bound into the definition of 𝜌𝑛,𝐾 ,
we find

1
‖𝐷𝐾 ‖ ·

∫
𝑉𝛼

𝜌𝐾,𝑛 (𝑥) 𝑑𝑥 ≤ 𝜆𝐾 (𝑉𝛼) · 𝑞𝑚(𝛼)− 𝑓 = 𝑞𝑚(𝛼)−2 𝑓 .

Finally, when 𝛼 = ∞, we perform the change of variables 𝑥 ↦→ 𝑥−1, which leaves us with∫
𝑉∞

𝜌𝐾,𝑛 (𝑥) 𝑑𝑥 =
∫
𝑉0

𝜌𝐾,𝑛 (𝑥) 𝑑𝑥 ≤ ‖𝐷𝐾 ‖ · 𝑞1−2 𝑓 .

Summing all the upper bounds, we find

1
‖𝐷𝐾 ‖ ·

∫
𝐾\G𝐾

𝜌𝐾,𝑛 (𝑥) 𝑑𝑥 ≤ 𝑞1−2 𝑓 + 𝐺 𝑓 𝑞
−2 𝑓 +

∑
𝑚 | 𝑓
𝑚< 𝑓

𝐺𝑚𝑞𝑚−2 𝑓
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given that the number of 𝛼 ∈ F𝑞 𝑓 \G𝐾 for which 𝑚(𝛼) = 𝑚 is equal to 𝐺𝑚 by definition. Remembering
that 𝐺 𝑓 ≤ 𝑞 𝑓 and using Lemma 4.1, we end up with

1
‖𝐷𝐾 ‖ ·

∫
𝐾\G𝐾

𝜌𝐾,𝑛 (𝑥) 𝑑𝑥 ≤ 𝑞1−2 𝑓 + 𝑞− 𝑓 + 2𝑞− 𝑓 ≤ 4𝑞− 𝑓 .

The proposition is proved. �

The next corollary can be seen as an effective version of Theorem D (use equation (4.2)).

Corollary 4.6. We have the estimations

−𝑞− 𝑓 ≤ 𝜌𝑟 (𝐾)
‖𝐷𝐾 ‖ − 𝑞𝑟+1 − 𝑞𝑟

𝑞𝑟+1 − 1
·
𝐺 𝑓

𝑞 𝑓
≤ 4𝑞− 𝑓

for 𝑛 ≥ 2𝑟 − 1, −𝑞− 𝑓 ≤ 𝜌𝑛 (𝐾)
‖𝐷𝐾 ‖ − 𝑞 𝑓

𝑞 𝑓 + 1
·
𝐺 𝑓

𝑞 𝑓
≤ 4𝑞− 𝑓 .

Proof. Let 𝑛 = 𝑟 or 𝑛 ≥ 2𝑟 − 1. Recall that by definition

𝜌𝑛 (𝐾) =
∫
𝐾

𝜌𝐾,𝑛 (𝑥) 𝑑𝑥 =
∫
G𝐾

𝜌𝐾,𝑛 (𝑥) 𝑑𝑥 +
∫
𝐾\G𝐾

𝜌𝐾,𝑛 (𝑥) 𝑑𝑥.

By Proposition 4.5, we know that the integral over 𝐾\G𝐾 is upper bounded by 4𝑞− 𝑓 . It is also obviously
nonnegative since the integrand is nonnegative. Therefore, it is enough to prove that

0 ≤ 𝑐𝑛
𝐺 𝑓

𝑞 𝑓
−

∫
G𝐾

𝜌𝐾,𝑛 (𝑥)
‖𝐷𝐾 ‖ 𝑑𝑥 ≤ 𝑞− 𝑓

with 𝑐𝑟 =
𝑞𝑟+1−𝑞𝑟
𝑞𝑟+1−1 and 𝑐𝑛 = 𝑞𝑟

𝑞𝑟+1 for 𝑛 ≥ 2𝑟 − 1. On the other hand, a computation similar to the one we
carried out in Section 2.3.3 gives ∫

O𝐾
‖𝑡‖𝑟 𝑑𝑡 =

𝑞 𝑓

𝑞 𝑓 + 1
.

Hence, it follows from the explicit formulas of Theorem B that 𝜌𝐾,𝑛 is constant equal to 𝑐𝑛·‖𝐷𝐾 ‖ on
G𝐾 . We are then reduced to checking that 0 ≤ 𝑞− 𝑓 𝐺 𝑓 −𝜆𝐾 (G𝐾 ) ≤ 𝑞− 𝑓 𝑐−1

𝑛 . This follows from Lemma
4.4 after remarking that 0 ≤ 𝑐𝑛 ≤ 1. �

By the monotony result of Theorem B, the previous corollary also provides estimations of 𝜌𝑛 (𝐾)
when n varies between r and 2𝑟−1. However, they are less sharp since the error term is a priori only
in 𝑂

(
𝑞−1) instead of 𝑂

(
𝑞− 𝑓

)
. We can nevertheless recover more accuracy when the extension 𝐾/𝐹 is

unramified.

Theorem 4.7. If 𝐾/𝐹 is unramified, we have the estimation

−𝑞−𝑟 ≤ 𝜌𝑛 (𝐾)
‖𝐷𝐾 ‖ − 𝑞𝑛+1 − 𝑞𝑟

𝑞𝑛+1 − 1
· 𝐺𝑟

𝑞𝑟
≤ 4𝑞−𝑟

for all n between r and 2𝑟 − 1.

Proof. It is exactly the same as the proof of Corollary 4.6, except that the value of 𝜌𝐾,𝑛 on G𝐾 is now
given by Proposition 3.6. (Also note that 𝑓 = 𝑟 in the unramified case.) �
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Replacing 𝐺𝑟 by its expression given by equation (4.2), we end up with the following asymptotic
development in the spirit of Theorem D:

𝜌𝑛 (𝐾) =
(
1 − 1

𝑞𝑛−𝑟+1

)
·
∑
𝑚 |𝑟

𝜇
( 𝑟

𝑚

)
𝑞𝑚−𝑟 + 𝑂

(
1
𝑞𝑟

)
. (4.3)

This estimation holds true for any unramified extension 𝐾/𝐹 and an integer n in the range [𝑟, 2𝑟−1];
moreover, the constant hidden in the 𝑂 (−) is absolute.

4.3. Summing over extensions of fixed degree

The aim of this subsection is to prove Theorem E. The strategy we will follow is simple: we sum the
surroundings of Corollary 4.6 over all extensions K of a fixed degree r. The main new ingredient we
will need is Serre’s mass formula, which we recall below. If K is a finite extension of F, we write
Aut𝐹−alg(𝐾) for the group of automorphisms of F-algebras of K.

Theorem 4.8 (Serre’s mass formula). For any positive integer r, we have

𝑞𝑟−1
∑
𝐾

‖𝐷𝐾 ‖
# Aut𝐹−alg(𝐾) = 1,

where the sum runs over all isomorphism classes of totally ramified extensions K of F of degree r.

Proof. See [18]. �

We need to be careful that in the formulation of Theorem 4.8, the sum runs over isomorphism classes
of extensions and not extensions in �̄� as we usually work with in this paper. To switch between those
two viewpoints, we observe that an abstract extension K of F of degree r admits r embeddings into �̄�.
However, two such embeddings have the same image (and so define the same subfield of �̄�) when they
differ by an automorphism of K. The number of subfields of �̄� that are isomorphic to K is then exactly
equal to 𝑟

# Aut𝐹−alg (𝐾 ) . Therefore, Serre’s mass formula can be rewritten as follows:∑
𝐾 ∈Ex𝑟,1

‖𝐷𝐾 ‖ = 𝑟

𝑞𝑟−1 , (4.4)

where the indexation set Ex𝑟 ,1 consists of all subfields K of �̄� that are totally ramified extensions of F
of degree r. More generally, given an auxiliary positive integer f dividing r, we define Ex𝑟 , 𝑓 as the set
of embedded extensions of F of degree r and residual degree f. Serre’s mass formula extends without
difficulty to extensions in Ex𝑟 , 𝑓 .

Proposition 4.9. For all positive integers r and all divisors f or r, we have∑
𝐾 ∈Ex𝑟, 𝑓

‖𝐷𝐾 ‖ = 𝑟

𝑞𝑟
· 𝑞 𝑓

𝑓
.

Proof. Let 𝐹 𝑓 be the unique unramified extension of F of degree f in �̄�. Its residue field is F𝑞 𝑓 and the
normalised norm on 𝐹 𝑓 is the f th power of ‖ · ‖. Moreover, any extension K in Ex𝑟 , 𝑓 canonically contains
𝐹 𝑓 and then appears uniquely as a totally ramified extension of 𝐹 𝑓 . In addition, the discriminant of 𝐾/𝐹,
still denoted by 𝐷𝐾 , is the f th power of the discriminant 𝐷𝐾/𝐹 𝑓 of 𝐾/𝐹 𝑓 . Hence ‖𝐷𝐾/𝐹 𝑓 ‖ 𝑓 = ‖𝐷𝐾 ‖.
The formula (4.4) applied with the base field 𝐹 𝑓 then gives∑

𝐾 ∈Ex𝑟, 𝑓

‖𝐷𝐾 ‖ =
∑

𝐾 ∈Ex𝑟, 𝑓

‖𝐷𝐾/𝐹 𝑓 ‖ 𝑓 =
𝑟

𝑓
· 1
(𝑞 𝑓 )𝑟/𝑓 − 1 =

𝑟

𝑞𝑟
· 𝑞 𝑓

𝑓
,

which establishes the proposition. �
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We now fix two positive integers r and n with 𝑛 ≥ 2𝑟 − 1. For a given divisor f or r, observing that

1 − 1
𝑞 𝑓

≤ 1 − 1
𝑞𝑟

≤ 𝑞𝑟

𝑞𝑟 + 1
≤ 1,

we derive from Corollary 4.6 that ���� 𝜌𝑛 (𝐾)
‖𝐷𝐾 ‖ −

𝐺 𝑓

𝑞 𝑓

���� ≤ 5
𝑞 𝑓

for any extension 𝐾 ∈ Ex𝑟 , 𝑓 . Summing over all such extensions, we find������ ∑
𝐾 ∈Ex𝑟, 𝑓

𝜌𝑛 (𝐾) −
𝐺 𝑓

𝑞 𝑓

∑
𝐾 ∈Ex𝑟, 𝑓

‖𝐷𝐾 ‖

������ ≤ 5
𝑞 𝑓

∑
𝐾 ∈Ex𝑟, 𝑓

‖𝐷𝐾 ‖,

which gives after Proposition 4.9������ ∑
𝐾 ∈Ex𝑟, 𝑓

𝜌𝑛 (𝐾) − 𝑟

𝑞𝑟
·
𝐺 𝑓

𝑓

������ ≤ 5
𝑞𝑟

· 𝑟

𝑓
.

Writing that Ex𝑟 is the disjoint union of the Ex𝑟 , 𝑓 s for f varying in the set of divisors of r and summing
all the above estimations, we end up with������ ∑

𝐾 ∈Ex𝑟

𝜌𝑛 (𝐾) − 𝑟

𝑞𝑟

∑
𝑓 |𝑟

𝐺 𝑓

𝑓

������ ≤ 5
𝑞𝑟

∑
𝑓 |𝑟

𝑟

𝑓
=

5
𝑞𝑟

∑
𝑓 |𝑟

𝑓 . (4.5)

Finally, the error term is controlled thanks to the following classical result:∑
𝑓 |𝑟

𝑓 = 𝑂
(
𝑟 · log log 𝑟

)
(see for instance [9]). Injecting it into equation (4.5) and using the summation formula of Lemma 4.3,
we finally get Theorem E.

Remark 4.10. It is amusing to observe that Theorems D and E have a very similar shape, except that
the former involves the Moebius function whereas the latter implicates the Euler function. Comparing
both results and writing 𝛿 = 𝜑 − 𝜇, we obtain for 𝑛 ≥ 2𝑟 − 1∑

𝐾 ∈Exram
𝑟

𝜌𝑛 (𝐾) =
∑
𝑚 |𝑟

𝛿
( 𝑟

𝑚

)
𝑞𝑚−𝑟 + 𝑂

(
𝑟 · log log 𝑟

𝑞𝑟

)
,

where the indexation set Exram
𝑟 consists of all ramified extensions of F of degree r in �̄�. Since 𝛿(1) = 0,

the dominant term of the sum on the right-hand side is obtained for 𝑚 = 𝑟/ℓ, where ℓ is the smallest
divisor of m. Its value is 𝛿(ℓ) 𝑞−𝑟 (1−

1
ℓ ) . Since ℓ is necessarily prime, we have moreover 𝜇(ℓ) = −1 and

𝜑(ℓ) = ℓ − 1, giving 𝛿(ℓ) = ℓ. As a consequence, we obtain the approximation∑
𝐾 ∈Exram

𝑟

𝜌𝑛 (𝐾) ≈ ℓ · 𝑞−𝑟 (1−
1
ℓ ) .

For example, when 𝑟 = 2, we find that the order of magnitude of
∑
𝐾 ∈Exram

2
𝜌𝑛 (𝐾) is 2/𝑞. If q is odd,

the set Exram
2 consists of exactly two elements (namely, the extensions 𝐹

[√
𝜋
]

and 𝐹
[√

𝑎𝜋
]
, where 𝜋
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is a uniformiser of F and a is an element of O𝐹 that is not a square in the residue field) and each
corresponding summand contributes for 1/𝑞.

5. The setup of étale algebras

In the previous section, we exclusively focused our interest on the mean of the 𝑍𝑈,𝑛s. However, it is
evident that the mean captures only a small part of the complexity of the phenomena; beyond it, we
would like to study higher moments or correlations between the 𝑍𝑈,𝑛s to get a more precise picture of
the situation.

In this section, we propose to attack these questions by applying the same methods as before in some
suitable enlarged framework, which is that of finite étale algebras (which are finite products of finite
extensions of F). On the one hand, allowing this flexibility is harmless because all the techniques we
developed in the previous sections extend without difficulty. On the other hand, it is interesting because
it sheds new light on many natural questions. For instance, it turns out that the average number of roots
in power algebras of the form 𝐾𝑚 is closely related to higher moments of the random variables 𝑍𝑈,𝑛 for
𝑈 ⊂ 𝐾 . Similarly, studying the average number of roots in products of type 𝐾1 × 𝐾2 provides valuable
information on the correlations between 𝑍𝐾1 ,𝑛 and 𝑍𝐾2 ,𝑛.

This section is organised as follows. In Section 5.1, we introduce the random variables 𝑍𝐸,𝑛 and
𝑍new
𝐸,𝑛 for a finite étale algebra E and relate them to products of the 𝑍𝐾,𝑛s. In Section 5.2, we extend

Theorems A and B to our new setup. In Section 5.3, we spend some time on the special case of the étale
algebra 𝐹2, making everything explicit in this example. We then derive from our calculations precise
information about the variance and the correlations between the 𝑍𝑈,𝑛s where U is an open subset of F,
proving in particular Theorem F. Finally, we prove Theorem G in Section 5.4.

5.1. Roots and new roots

Before getting to the heart of the matter, we gather standard facts about finite étale F-algebras. To begin
with, let us recall that a finite étale algebra over F is defined as a finite algebra over F without nilpotent
elements [7, Definition 2.1.2]. It is well known (see [7, Corollary 2.1.6]) that any finite étale algebra
over F can be decomposed as a product 𝐾1 ×𝐾2 × · · · ×𝐾𝑚, where each 𝐾𝑖 is a finite extension of F. In
what follows, we will often pick such a decomposition and work with it. The two next (classical) results
will be useful to check that all our forthcoming constructions are intrinsic: that is, they do not depend
on the choice of a decomposition as above.

Lemma 5.1. Let 𝐾, 𝐾1, . . . , 𝐾𝑚 be finite extensions of 𝐹, and set 𝐸 = 𝐾1 × · · · × 𝐾𝑚. Let 𝑓 : 𝐸 → 𝐾
be a surjective morphism of F-algebras. Then there exists an index i such that 𝑓 = 𝜑 ◦ pr𝑖 , where
𝜑 : 𝐾𝑖 → 𝐾 is an isomorphism and pr𝑖 denotes the projection on the ith factor.

Proof. Let 𝑒𝑖 = (0, . . . , 0, 1, 0, . . . , 0) ∈ 𝐸 with the 1 in ith position. If x lies in the kernel of f, so does
𝑒𝑖𝑥 for all i. This proves that ker 𝑓 decomposed as 𝐼1 × · · · × 𝐼𝑚, where 𝐼𝑖 is some ideal of 𝐾𝑖 . Since
𝐾𝑖 is a field, one must have 𝐼𝑖 = 0 or 𝐼𝑖 = 𝐾𝑖 . Moreover, since f is surjective, ker 𝑓 is a maximal ideal.
This shows that there exists a special index i such that 𝐼𝑖 = 0 and 𝐼 𝑗 = 𝐾 𝑗 for all 𝑗 ≠ 𝑖. Hence f factors
through pr𝑖 and the lemma follows. �

Corollary 5.2. Let 𝐾1, . . . , 𝐾𝑚 be pairwise nonisomorphic finite extensions of F. Let (𝑎1, . . . , 𝑎𝑚) and
(𝑏1, . . . , 𝑏𝑚) be two tuples of nonnegative integers. Let

𝑓 : 𝐾𝑎1
1 × · · · × 𝐾𝑎𝑚

𝑚 −→ 𝐾𝑏1
1 × · · · × 𝐾𝑏𝑚

𝑚

be a surjective morphism of F-algebras. Then for each 𝑖 ∈ {1, . . . , 𝑚}, there exists an injection
𝜎𝑖{1, . . . , 𝑏𝑖} → {1, . . . , 𝑎𝑖} and a tuple (𝜑𝑖,1, . . . , 𝜑𝑖,𝑏𝑖 ) of automorphisms of 𝐾𝑖 such that

𝑓
(
(𝑥𝑖, 𝑗 )1≤𝑖≤𝑚,1≤ 𝑗≤𝑎𝑖

)
=

(
𝜑𝑖, 𝑗 (𝑥𝑖,𝜎𝑖 ( 𝑗) )

)
1≤𝑖≤𝑚,1≤ 𝑗≤𝑏𝑖 .
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Proof. Write 𝑥 = (𝑥𝑖, 𝑗 )1≤𝑖≤𝑚,1≤ 𝑗≤𝑎𝑖 . Given 𝑖 ∈ {1, . . . , 𝑚} and 𝑗 ∈ {1, . . . , 𝑏𝑖}, Lemma 5.1 tells us
that the (𝑖, 𝑗) coordinate of 𝑓 (𝑥) must be of the form 𝜑𝑖, 𝑗 (𝑥𝑖,𝜎𝑖 ( 𝑗) ) for some automorphism 𝜑𝑖, 𝑗 of 𝐾𝑖

and some 𝜎𝑖 ( 𝑗) ∈ {1, . . . , 𝑏𝑖}. This establishes the shape we have given for f. Finally, the fact that the
𝜎𝑖s are injective follows from the surjectivity of f. �

When 𝑎𝑖 = 𝑏𝑖 for all i, Corollary 5.2 indicates that the group of automorphisms of F-algebras of
𝐸 = 𝐾𝑎1

1 × · · · × 𝐾𝑎𝑚
𝑚 , denoted by Aut𝐹−alg(𝐸), is canonically isomorphic to

𝑚∏
𝑖=1

(
𝔖𝑎𝑖 � Aut𝐹−alg(𝐾𝑖)𝑎𝑖

)
,

where 𝔖𝑎𝑖 is the symmetric group on 𝑎𝑖 letters and acts on Aut 𝐹−alg(𝐾𝑖)𝑎𝑖 by permuting the automor-
phisms. In particular we deduce that

#Aut𝐹−alg(𝐸) =
𝑚∏
𝑖=1

𝑎𝑖!
(
#Aut𝐹−alg(𝐾𝑖)

)𝑎𝑖 .
Another property of étale algebras it will be important to keep in mind in the sequel is recorded in the
next proposition.

Proposition 5.3. Any F-subalgebra of a finite étale F-algebra is finite étale.

Proof. It is obvious from the definition. �

We now go back to our topic. Given a polynomial 𝑃 ∈ 𝐹 [𝑋], a root of P in a finite étale F-algebra E
is, by definition, an element 𝑥 ∈ 𝐸 such that 𝑃(𝑥) = 0. It is a standard fact that the datum of a root of P
in E is equivalent to the datum of a morphism of F-algebras 𝐹 [𝑋]/𝑃 → 𝐸 : to a root x, we associate the
morphism taking X to x; and, conversely, to a morphism 𝜑 : 𝐹 [𝑋]/𝑃 → 𝐸 , we associate the root 𝜑(𝑋).

The notion of new elements we introduced in the case of extensions in Definition 2.5 immediately
extends to finite étale algebras.

Definition 5.4. Let E be a finite étale algebra over F. An element 𝑥 ∈ 𝐸 is new in E if it does not belong
to any strict F-subalgebra of E: that is, if 𝐹 [𝑥] = 𝐸 .

Lemma 5.5. Let P be a polynomial over F. Let 𝑥 ∈ 𝐸 be a root of P and 𝜑 : 𝐹 [𝑋]/𝑃 → 𝐸 be its
associated morphism. Then x is new in E if and only if 𝜑 is surjective.

Proof. It follows from the fact that the image of 𝜑 is the F-algebra generated by x. �

Given a positive integer n, a finite étale F-algebra E and an open subset 𝑈 ⊂ 𝐸 , we define the random
variables 𝑍𝑈,𝑛 : Ω𝑛 → Z and 𝑍new

𝑈,𝑛 : Ω𝑛 → Z by

𝑍𝑈,𝑛 (𝑃) = number of roots of 𝑃 in 𝑈,

𝑍new
𝑈,𝑛 (𝑃) = number of roots of 𝑃 in 𝑈 that are new in 𝐸.

It follows from Lemma 5.5 that 𝑍𝑈,𝑛 (𝑃) (respectively, 𝑍new
𝑈,𝑛 (𝑃)) is also the number of morphisms

(respectively, surjective morphisms) of F-algebras 𝜑 : 𝐹 [𝑋]/𝑃 → 𝐸 such that 𝜑(𝑋) ∈ 𝑈. In particular,
𝑍𝐸,𝑛 (𝑃) = # Hom𝐹−alg

(
𝐹 [𝑋]/𝑃, 𝐸

)
and 𝑍new

𝐸,𝑛 (𝑃) = # Homsurj
𝐹−alg

(
𝐹 [𝑋]/𝑃, 𝐸

)
(where the notations are

transparent). This reformulation shows directly that 𝑍new
𝐸,𝑛 identically vanishes when 𝑛 < [𝐸 : 𝐹]. In

addition, the random variables 𝑍𝑈,𝑛 and 𝑍new
𝑈,𝑛 are related by the formula

𝑍𝑈,𝑛 =
∑
𝐸′ ⊂𝐸

𝑍new
𝐸′∩𝑈,𝑛, (5.1)
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which simply comes from the observation that an element 𝑥 ∈ 𝐸 is new in a unique subalgebra 𝐸 ′ of
E, namely 𝐸 ′ = 𝐹 [𝑥]. This algebra is moreover necessarily étale over F by Proposition 5.3. We note
furthermore that the construction 𝑍𝑈,𝑛 is multiplicative with respect to the parameter U: that is,

𝑍𝑈1×𝑈2 ,𝑛 = 𝑍𝑈1 ,𝑛 · 𝑍𝑈2 ,𝑛

for any positive integer n, any finite étale F-algebras 𝐸1 and 𝐸2 and any open subsets 𝑈1 and 𝑈2 of 𝐸1
and 𝐸2, respectively. This property is interesting for us because it implies the formula

Cov
(
𝑍𝑈1 ,𝑛, 𝑍𝑈2 ,𝑛

)
= E

[
𝑍𝑈1×𝑈2 ,𝑛

]
− E

[
𝑍𝑈1 ,𝑛

]
·E

[
𝑍𝑈2 ,𝑛

]
, (5.2)

which shows that the covariance of 𝑍𝑈1 ,𝑛 and 𝑍𝑈2 ,𝑛 can be computed in terms of means of random
variables of the form 𝑍𝑈,𝑛. The next proposition highlights a similar property for the higher (factorial)
moments of certain random variables 𝑍new

𝑈,𝑛.

Proposition 5.6. Let K be a finite extension of 𝐹, and set 𝑎 = # Aut𝐹−alg(𝐾). Let 𝑚, 𝑛 be two positive
integers, and let U be an open subset of K stable by all morphisms in Aut𝐹−alg(𝐾). Then

𝑍new
𝑈𝑚 ,𝑛 = 𝑍new

𝑈,𝑛 ·
(
𝑍new
𝑈,𝑛 − 𝑎

)
·
(
𝑍new
𝑈,𝑛 − 2𝑎

)
· · ·

(
𝑍new
𝑈,𝑛 − (𝑚−1)𝑎

)
.

Proof. Write 𝑟 = [𝐾 : 𝐹], and pick a polynomial 𝑃 ∈ Ω𝑛. Let 𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ 𝑈𝑚. We claim that x is
a new root of P in E if and only if 𝑥𝑖 is a new root of P in K for all i and the 𝑥𝑖s are pairwise nonconjugate.
To prove the claim, we let Z be the minimal polynomial of x over F; similarly, for all 𝑖 ∈ {1, . . . , 𝑚},
we denote by 𝑍𝑖 the minimal polynomial of 𝑥𝑖 over F. We then have 𝑍 = lcm(𝑍1, . . . , 𝑍𝑚). Notice that
all the 𝑍𝑖s are irreducible since we assume that K is a field. On the other hand, the fact that x is new in
E (respectively, 𝑥𝑖 is new in K) is equivalent to the equality deg 𝑍 = 𝑟𝑚 (respectively, deg 𝑍𝑖 = 𝑟). We
deduce from this that x is new in E if and only if 𝑥𝑖 is new in K for all i and the 𝑍𝑖s are pairwise coprime.
By irreducibility, the coprimality condition is equivalent to the fact that the 𝑍𝑖s are pairwise distinct,
which is further equivalent to the fact that the 𝑥𝑖s are pairwise nonconjugate. This establishes our claim.

We are now ready to count the number of new roots of P in𝑈𝑚. Based on the preceding, it is equivalent
to count the number of tuples (𝑥1, . . . , 𝑥𝑚) ∈ 𝑈𝑚 of new roots in K that are pairwise nonconjugate.
By definition of 𝑍new

𝑈,𝑛, we have 𝑍new
𝑈,𝑛 (𝑃) possibilities for 𝑥1. The fact that 𝑥2 cannot be conjugate to

𝑥1 eliminates exactly a possibilities because we have assumed that U is stable under the action of
Aut 𝐹−alg(𝐾). There then remain 𝑍new

𝑈,𝑛 (𝑃) − 𝑎 possibilities for 𝑥2. Similarly, we have 𝑍new
𝑈,𝑛 (𝑃) − 2𝑎

possibilities for 𝑥3 because it has to be nonconjugate to both 𝑥1 and 𝑥2. Repeating this argument m times,
we end up with the formula of the proposition. �

5.2. Density functions

In this subsection, we aim at extending the definition of density functions to the setting of étale algebras
and at proving variants of Theorems A and B in this framework. For this, the first step is to find an
adequate generalisation of the p-adic Kac-Rice formula.

Kac-Rice formula
If E is a finite étale algebra over F presented as 𝐸 = 𝐾1 × 𝐾2 × · · · × 𝐾𝑚 (where the 𝐾𝑖s are finite
extensions of F), we endow it with the norm ‖ · ‖ defined by

‖(𝑥1, 𝑥2, . . . , 𝑥𝑚)‖ = max
(
‖𝑥1‖, ‖𝑥2‖, . . . , ‖𝑥𝑚‖

)
(𝑥𝑖 ∈ 𝐾𝑖).

We deduce from Corollary 5.2 and the discussion just after that the above definition is intrinsic in the
sense that it does not depend on the chosen identification 𝐸 
 𝐾1 × · · · × 𝐾𝑚. We let O𝐸 be the subring
of E consisting of elements of norm at most 1. When E is presented as 𝐸 = 𝐾1 × · · · × 𝐾𝑚, we have
O𝐸 = O𝐾1 × · · · ×O𝐾𝑚 .
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Given E as above, we also define the norm map 𝑁𝐸/𝐹 : 𝐸 → 𝐹 taking an element 𝑥 ∈ 𝐸 to the
determinant of the F-linear mapping 𝐸 → 𝐸 , 𝑦 ↦→ 𝑥𝑦. When 𝐸 = 𝐾1 × · · · × 𝐾𝑚, we have

𝑁𝐸/𝐹
(
(𝑥1, . . . , 𝑥𝑚)

)
= 𝑁𝐾1/𝐹 (𝑥1) · · · 𝑁𝐾𝑚/𝐹 (𝑥𝑚)

from which we derive

‖𝑁𝐸/𝐹
(
(𝑥1, . . . , 𝑥𝑚)

)
‖ = ‖𝑁𝐾1/𝐹 (𝑥1)‖ · · · ‖𝑁𝐾𝑚/𝐹 (𝑥𝑚)‖
= ‖𝑥1‖ [𝐾1:𝐹 ] · · · ‖𝑥𝑚‖ [𝐾𝑚:𝐹 ] .

The latter formula shows in particular that 𝑁𝐸/𝐹 maps O𝐸 to O𝐹 .
With the above preparation, the extension of the p-adic Kac-Rice formula to our new setting can be

formulated as follows.

Theorem 5.7. Let E be a finite étale algebra over 𝐹, and set 𝑟 = [𝐸 : 𝐹]. Let U be a compact open
subset of E, and let 𝑓 : 𝑈 → 𝐸 be a strictly differentiable function. We assume that 𝑓 ′(𝑥) is invertible
in E for all 𝑥 ∈ 𝐸 such that 𝑓 (𝑥) = 0. Then

# 𝑓 −1(0) = lim
𝑠→∞

𝑞𝑠𝑟 ·
∫
𝑈
‖𝑁𝐸/𝐹 ( 𝑓 ′(𝑥))‖ · 1{ ‖ 𝑓 (𝑥) ‖≤𝑞−𝑠 } 𝑑𝑥.

Proof. It is entirely similar to that of Theorem 2.1. �

Density functions
We define the discriminant 𝐷𝐸 of a finite étale F-algebra 𝐸 = 𝐾1×· · ·×𝐾𝑚 as the product 𝐷𝐾1 · · ·𝐷𝐾𝑚 .
One checks that 𝐷𝐸 is also the discriminant of the bilinear form 𝐸 × 𝐸 → 𝐹, (𝑥, 𝑦) ↦→ Tr𝐸/𝐹 (𝑥𝑦),
where Tr𝐸/𝐹 is the trace map of E over F. This alternative definition shows in particular that 𝐷𝐸 does not
depend (up to multiplication by an invertible element) on the choice of the presentation 𝐸 = 𝐾1×· · ·×𝐾𝑚.

In the case of étale algebras, the density functions cannot be defined exactly the same way as for
extensions (see Definition 2.3) because it may happen that neither x nor 𝑥−1 falls in the ring of integers.
We will then proceed in a slightly different manner. We denote by 𝜆𝐸 the Haar measure on E normalised
by 𝜆𝐸 (O𝐸 ) = 1. If 𝐸 = 𝐾1 × · · · × 𝐾𝑚, we simply have 𝜆𝐸 = 𝜆𝐾1 ⊗ · · · ⊗ 𝜆𝐾𝑚 . A second important
ingredient we will need is a height function 𝐻 : 𝐸 → R; writing again 𝐸 = 𝐾1 × · · · × 𝐾𝑚, it is defined
as follows:

𝐻
(
(𝑥1, . . . , 𝑥𝑚)

)
=

𝑚∏
𝑖=1

max
(
1, ‖𝑥𝑖 ‖ [𝐾𝑖 :𝐹 ]

)
(𝑥𝑖 ∈ 𝐾𝑖).

Again using Corollary 5.2, we conclude that this notion does not depend on the choice of the identification
𝐸 = 𝐾1 × · · · × 𝐾𝑚.

Given a positive integer n and a finite étale F-algebra E of degree r, we set

𝜌𝐸,𝑛 (𝑥) =
‖𝐷𝐸 ‖ · 𝜆𝐸

(
O𝐹 [𝑥]

)
𝐻 (𝑥)𝑛+1 ·

∫
Ω𝑛−𝑟
‖𝑁𝐸/𝐹 (𝑄(𝑥))‖ 𝑑𝑄.

The main benefit of the above expression is its validity for any 𝑥 ∈ 𝐸 . In particular, when x is not new
in E, we observe that O𝐹 [𝑥] is included in a strict F-linear subalgebra of E and thus has measure zero;
𝜌𝐸,𝑛 (𝑥) then vanishes as well in this case. In a similar fashion, when x is new in O𝐸 , the height of x is
1 and the measure of O𝐹 [𝑥] is the inverse of the cardinality of O𝐸/O𝐹 [𝑥]; we then get in this case

𝜌𝐸,𝑛 (𝑥) =
‖𝐷𝐸 ‖

#
(
O𝐸/O𝐹 [𝑥]

) ·
∫
Ω𝑛−𝑟
‖𝑁𝐸/𝐹 (𝑄(𝑥))‖ 𝑑𝑄,
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which is exactly the formula of Definition 2.3. Theorems A and B now extend almost verbatim but with
one notable exception: the monotony property of Theorem B no longer holds in the framework of étale
algebras and there only remains the fact that the sequence (𝜌𝐸,𝑛)𝑛≥1 is eventually constant.

Theorem 5.8. For any positive integer n, any finite étale F-algebra E and any open subset U of E, we
have

E
[
𝑍new
𝑈,𝑛

]
=

∫
𝑈

𝜌𝐸,𝑛 (𝑥) 𝑑𝑥

E[𝑍𝑈,𝑛] =
∑
𝐸′ ⊂𝐸

∫
𝑈∩𝐸′

𝜌𝐸′,𝑛 (𝑥) 𝑑𝑥,

where the latter sum runs over all F-subalgebras 𝐸 ′ of E. Moreover, writing 𝑟 = [𝐸 : 𝐹], the function
𝜌𝐸,𝑛 satisfies the following list of properties, in which x denotes an element of E:

1. (Vanishing) If 𝐹 [𝑥] ≠ 𝐸 or 𝑛 < 𝑟 , then 𝜌𝐸,𝑛 (𝑥) = 0.
2. (Continuity) The function 𝜌𝐸,𝑛 is continuous on K.

3. (Transformation under homography) For
(
𝑎 𝑏
𝑐 𝑑

)
∈ GL2(O𝐹 ), we have

𝜌𝐸,𝑛

(
𝑎𝑥 + 𝑏

𝑐𝑥 + 𝑑

)
= ‖𝑁𝐸/𝐹 (𝑐𝑥 + 𝑑)‖2 · 𝜌𝐸,𝑛 (𝑥).

4. (Ultimate constancy) If 𝑛 ≥ 2𝑟 − 1, then 𝜌𝐸,𝑛 = 𝜌𝐸,2𝑟−1.
5. (Formulas for extremal degrees) If 𝐹 [𝑥] = 𝐸 and 𝑥 ∈ O𝐸 , then

𝜌𝐸,𝑟 (𝑥) = ‖𝐷𝐸 ‖ ·
1

#
(
O𝐸/O𝐹 [𝑥]

) · 𝑞𝑟+1 − 𝑞𝑟

𝑞𝑟+1 − 1

for 𝑛 ≥ 2𝑟 − 1, 𝜌𝐸,𝑛 (𝑥) = ‖𝐷𝐸 ‖ ·
∫
O𝐹 [𝑥 ]

‖𝑁𝐸/𝐹 (𝑡)‖ 𝑑𝑡.

Proof. The proof follows the same pattern than in the case of extensions. The first step is to extend
Proposition 2.2 and show that

lim
𝑠→∞

∫
Ω𝑛

𝑞𝑠𝑟 · ‖𝑁𝐸/𝐹 (𝑃′(𝑥))‖ · 1{ ‖𝑃 (𝑥) ‖≤𝑞−𝑠 } 𝑑𝑃 = 𝜌𝐸,𝑛 (𝑥) (5.3)

when x is new in E. As in the proof of Proposition 2.2, we write 𝐼𝑠 for the above integral. Let Z be the
minimal monic polynomial of x; it does not need to be irreducible, but it has degree r since x is assumed
to be new in E. Let 𝑐 ∈ 𝐹 be the content of Z that is, by definition, the gcd of the coefficients of Z. Using
that the content of a product is the product of the contents, we find that a product 𝑄𝑍 ∈ O𝐹 [𝑥] if and
only if 𝑄 ∈ 𝑐−1O𝐹 [𝑋]. Moreover, we saw in the proof of Proposition 2.2 that there exists a positive
constant 𝛾 such that ‖𝑅(𝑥)‖ ≥ 𝛾·‖𝑅‖ for all polynomials R of degree at most 𝑟−1. We deduce from
these facts that for any fixed R with ‖𝑅‖ ≤ 𝛾, the property 𝑄𝑍 + 𝑅 ∈ Ω𝑛 is equivalent to 𝑄 ∈ 𝑐−1Ω𝑛−𝑟 .
Remarking in addition that the mapping (𝑄, 𝑅) ↦→ 𝑄𝑍 + 𝑅 preserves the measure (it is linear and has
determinant one in the canonical bases), we obtain the equality

𝐼𝑠 = 𝑞𝑠𝑟 ·
∫
Ω𝑟−1

∫
𝑐−1Ω𝑛−𝑟

‖𝑁𝐸/𝐹
(
𝑄(𝑥)𝑍 ′(𝑥) + 𝑅′(𝑥)

)
‖ · 1{ ‖𝑅 (𝑥) ‖≤𝑞−𝑠 } 𝑑𝑄 𝑑𝑅,
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which holds true provided that s is sufficiently large. Repeating the argument presented in the proof of
Proposition 2.2, we end up with

𝐼𝑠 = ‖𝐷𝐸 ‖ · 𝜆𝐸
(
O𝐹 [𝑥]

)
·
∫
𝑐−1Ω𝑛−𝑟

‖𝑁𝐸/𝐹 (𝑄(𝑥))‖ · 𝑑𝑄

= ‖𝐷𝐸 ‖ · 𝜆𝐸
(
O𝐹 [𝑥]

)
· ‖𝑐‖−𝑛−1

∫
Ω𝑛−𝑟
‖𝑁𝐸/𝐹 (𝑄(𝑥))‖ · 𝑑𝑄

for s large enough. Consider a decomposition 𝐸 = 𝐾1×· · ·×𝐾𝑚, and write 𝑥 = (𝑥1, . . . , 𝑥𝑚) accordingly.
For each index i, set 𝑟𝑖 = [𝐾𝑖 : 𝐹], and let 𝑍𝑖 be the minimal monic polynomial of 𝑥𝑖 . Then Z is the lcm
of the 𝑍𝑖s and comparing degrees, we get 𝑍 = 𝑍1 · · · 𝑍𝑚. On the other hand, using relations between
coefficients and roots, we find that the coefficient on 𝑍𝑖 in 𝑋 𝑗 has norm at most ‖𝑥𝑖 ‖𝑟𝑖− 𝑗 , and equality
is reached for 𝑗 ∈ {0, 𝑟𝑖}. Therefore, the content 𝑐𝑖 of 𝑍𝑖 is 1 when 𝑥𝑖 ∈ O𝐾𝑖 and is equal to 𝑁𝐾𝑖/𝐹 (𝑥𝑖)
otherwise. Hence ‖𝑐𝑖 ‖ = max

(
1, ‖𝑥𝑖 ‖𝑟𝑖

)
in all cases. By the multiplicativity property of the contents,

we conclude that ‖𝑐‖ = 𝐻 (𝑥), which finally establishes equation (5.3). After this result, the proof of the
first part of the theorem is totally similar to that of Theorem 2.6.

It remains to establish the properties of the density functions. Continuity and formulas for extremal
degrees are derived exactly as in the case of extensions (see Section 2.3.1 and Section 2.3.3, respectively).
Although the transformation formula under homography can be tackled as in Section 2.3.2, it is probably
easier, in the case of étale algebras, to use a different argument that we present now. First, we remark
that thanks to continuity, the set of equalities

E
[
𝑍new
𝑈,𝑛

]
=

∫
𝑈

𝜌𝐸,𝑛 (𝑥) 𝑑𝑥

(when U varies) entirely determines the density function 𝜌𝐸,𝑛. Given an homography ℎ : 𝑡 ↦→ 𝑎𝑡+𝑏
𝑐𝑡+𝑑 , it

is then enough to prove that E
[
𝑍new
𝑈,𝑛

]
= E

[
𝑍new
ℎ (𝑈 ) ,𝑛

]
for any open subset U of E, which follows from the

fact that the transformation

Ω𝑛 → Ω𝑛, 𝑃(𝑋) ↦→ (𝑐𝑋 + 𝑑)𝑛 · 𝑃
(
𝑎𝑋 + 𝑏

𝑐𝑋 + 𝑑

)
preserves the measure.

It finally only remains to prove that 𝜌𝐸,𝑛 = 𝜌𝐸,2𝑟−1 as soon as 𝑛 ≥ 2𝑟 − 1. Let x be a new element in
E. As in the first part of the proof, we consider the minimal monic polynomial 𝑍 ∈ O𝐹 [𝑋] of x and let
𝑐 ∈ O𝐹 be its content. We pick a decomposition 𝐸 = 𝐾1 × · · · ×𝐾𝑚, and we let 𝐸0 (respectively, 𝐸∞) be
the product of the 𝐾𝑖s for which x falls in the ring of integers (respectively, outside the ring of integers).
We thus have the decomposition 𝐸 = 𝐸0 × 𝐸∞, and we write 𝑥 = (𝑥0, 𝑥∞) accordingly. It follows from
the definition of the height function that 𝐻 (𝑥) = ‖𝑁𝐸∞/𝐹 (𝑥∞)‖. For 𝑡 ∈ {0,∞}, set 𝑟𝑡 = [𝐸𝑡 : 𝐹], and
let 𝑍𝑡 be the minimal monic polynomial of 𝑥𝑡 . From the fact that x is new in E, we find deg 𝑍 = 𝑟 , from
which we deduce that deg 𝑍𝑡 = 𝑟𝑡 and 𝑍 = 𝑍0𝑍∞. In addition, both polynomials 𝑍0 and 𝑐−1𝑍∞ have
integral coefficients. Even better, if we write

𝑐−1𝑍∞ = 𝜆0 + 𝜆1𝑋 + · · · + 𝜆𝑟∞𝑋𝑟∞ , (5.4)

the fact that the roots in �̄� of 𝑍∞ all have positive valuation implies that the constant coefficient 𝜆0 is
invertible in O𝐹 while the next ones lie in the maximal ideal of O𝐹 : that is, ‖𝜆0‖ = 1 and ‖𝜆𝑖 ‖ < 1
for 𝑖 ∈ {1, . . . , 𝑟∞}. For a polynomial 𝑄 ∈ Ω𝑛, we define 𝑄 % 𝑍0 as the remainder of the division of
Q by 𝑍0 and 𝑄 %𝜏 𝑍∞ as the remainder of the division by increasing power order of Q by 𝑍∞. The
notation %𝜏 comes from the fact that

𝑄 %𝜏 𝑍∞ = 𝜏
(
𝜏(𝑄) % 𝜏(𝑍∞)

)
,
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where 𝜏 is the involution of Ω𝑛 taking 𝑃(𝑋) to 𝑋𝑛𝑃(𝑋−1). We derive from the fact that 𝑍0 ∈ O𝐹 [𝑋]
(respectively, from equation (5.4)) that 𝑄 % 𝑍0 (respectively, 𝑄 %𝜏 𝑍∞) has integral coefficients when
Q has. We consider the O𝐹 -linear mapping

𝜑 : Ω𝑛 −→ (Ω𝑟0−1) × (𝑋𝑛−𝑟∞+1Ω𝑟∞−1)
𝑄 ↦→

(
𝑄 % 𝑍0, 𝑄 %𝜏 𝑍∞

) .

We claim that 𝜑 is surjective. Given 𝑃 ∈ Ω𝑟0−1, checking that (𝑃, 0) is in the image of 𝜑 amounts
to proving that there exists a polynomial that is divisible by 𝑍∞ and congruent to P modulo 𝑍0. This
follows from the fact that 𝑍∞ is invertible in the quotient O𝐹 [𝑋]/𝑍0, which is itself a consequence of
equation (5.4), which implies that the series

∑∞
𝑖=1

(
𝜆0 − 𝑐−1𝑍∞

) 𝑖 converges in O𝐹 [𝑋]/𝑍0. Twisting by
𝜏, we prove similarly that all elements of the form (0, 𝑋𝑛−𝑟∞+1𝐵) with 𝐵 ∈ Ω𝑟∞−1 are attained by 𝜑.
Hence the surjectivity.

We deduce that Ω𝑛 can be decomposed (noncanonically) as follows:

Ω𝑛 

(
ker 𝜑

)
×

(
Ω𝑟0−1

)
×

(
𝑋𝑛−𝑟∞+1Ω𝑟∞−1

)
.

This isomorphism moreover preserves the measure since it is O𝐹 -linear. Thus, if we set

𝐽𝑡 =
∫
Ω𝑟𝑡−1

‖𝑁𝐸𝑡/𝐹 (𝑄(𝑥𝑡 ))‖ 𝑑𝑄 (𝑡 ∈ {0,∞})

we get

1
𝐻 (𝑥)𝑛+1

∫
Ω𝑛

‖𝑁𝐸/𝐹 (𝑄(𝑥))‖ 𝑑𝑄 =
‖𝑁𝐸∞/𝐹 (𝑥∞)‖𝑛−𝑟∞+1

𝐻 (𝑥)𝑛+1 · 𝐽0 · 𝐽∞

=
1

𝐻 (𝑥)𝑟∞ · 𝐽0 · 𝐽∞,

which shows that the latter quantity does not depend on n (provided that 𝑛 ≥ 2𝑟 − 1) and so neither does
𝜌𝑛,𝐸 (𝑥). �

5.3. The case of 𝐹2

The algebra 𝐸 = 𝐹2 is the simplest example of finite étale algebra that is not a field, but it leads to
nontrivial and interesting results about the distribution of roots in F of a random polynomial. It allows
us to compute precisely the second moment and covariances between the random variables 𝑍𝑈,𝑛 when
U is an open subset of F. In what follows, we present a panorama of results in this direction.

Proposition 5.9. For 𝑥, 𝑦 ∈ O𝐹 , we have

𝜌𝐹2 ,2 (𝑥, 𝑦) =
𝑞2

𝑞2 + 𝑞 + 1
·‖𝑥 − 𝑦‖

for 𝑛 ≥ 3, 𝜌𝐹2 ,𝑛 (𝑥, 𝑦) =
𝑞2

𝑞2 + 𝑞 + 1
·‖𝑥 − 𝑦‖ − 𝑞3

(𝑞 + 1)2 (𝑞2 + 𝑞 + 1)
·‖𝑥 − 𝑦‖4.

Proof. First, observe that ‖𝐷𝐹2 ‖ = ‖𝐷𝐹 ‖2 = 1. Set ℎ = 𝑥 − 𝑦, and let A be the O𝐹 -subalgebra of
O2
𝐹 generated by (𝑥, 𝑦). A basis of A is formed by the vectors 𝑒1 = (1, 1) and 𝑒2 = (0, ℎ). Hence

#(O𝐹2/𝐴) = ‖ℎ‖−1, and the proposition follows when 𝑛 = 2 using the explicit formulas of Theorem
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5.8. For 𝑛 ≥ 3, we have to compute the integral of ‖𝑁𝐹2/𝐹 (𝑡)‖ over A. Applying the linear change of
variables O2

𝐹

∼→ 𝐴, (𝑢, 𝑣) ↦→ 𝑢𝑒1 + 𝑣𝑒2 = (𝑢, 𝑢 + ℎ𝑣), we obtain∫
𝐴
‖𝑁𝐹2/𝐹 (𝑡)‖ 𝑑𝑡 = ‖ℎ‖

∫
O2
𝐹

‖𝑎‖·‖𝑢 + ℎ𝑣‖ 𝑑𝑢 𝑑𝑣. (5.5)

In order to compute the latter integral, we first integrate with respect to the variable v. For a fixed
𝑢 ∈ O𝐹 , we claim that ∫

O𝐹
‖𝑢 + ℎ𝑣‖ 𝑑𝑣 = ‖𝑢‖ if ‖𝑢‖ > ‖ℎ‖

=
𝑞

𝑞 + 1
· ‖ℎ‖ otherwise.

Indeed, when ‖𝑢‖ > ‖ℎ‖, the integrand is constant equal to ‖𝑢‖. On the other hand, when ‖𝑢‖ ≤ ‖ℎ‖,
we can perform the change to variables 𝑣 ↦→ 𝑣−ℎ−1𝑢 and conclude by using equation (2.8). Injecting the
above result into equation (5.5) and decomposing the integral according to the values of ‖𝑢‖, we obtain∫

𝐴
‖𝑁𝐹2/𝐹 (𝑡)‖ 𝑑𝑡 = ‖ℎ‖ ·

(
1 − 1

𝑞

)
·
(
𝛿−1∑
𝑠=0

𝑞−3𝑠 + 𝑞

𝑞 + 1
·‖ℎ‖·

∞∑
𝑠=𝛿

𝑞−2𝑠

)
,

where 𝛿 is defined by ‖ℎ‖ = 𝑞−𝛿 . A straightforward computation now gives∫
𝐴
‖𝑁𝐹2/𝐹 (𝑡)‖ 𝑑𝑡 =

𝑞2

𝑞2 + 𝑞 + 1
·‖ℎ‖ − 𝑞3

(𝑞 + 1)2 (𝑞2 + 𝑞 + 1)
·‖ℎ‖4,

which concludes the proof thanks to the formulas for extremal degrees of Theorem 5.8. �

Using the transformation formulas reported in Theorem 5.8, we can derive from Proposition 5.9 the
values of 𝜌𝐹2 ,𝑛 on the whole domain 𝐹2. Indeed, if 𝑥 ∈ O𝐹 and 𝑦 ∈ 𝐹\O𝐹 , considering the homography
𝑡 ↦→ 1

1−𝑥+𝑡 , we get

𝜌𝐹2 ,𝑛 (𝑥, 𝑦) = ‖1−𝑥+𝑦‖−2 · 𝜌𝐹2 ,𝑛 (1, 𝑦′) = ‖𝑦‖−2 · 𝜌𝐹2 ,𝑛 (1, 𝑦′)

with 𝑦′ = 1
1−𝑥+𝑦 . From the fact that 1 − 𝑥 + 𝑦 ∉ O𝐹 , we deduce that 𝑦′ is in the maximal ideal of F and

so ‖1 − 𝑦′‖ = 1. Applying Proposition 5.9, we finally find

𝜌𝐹2 ,2(𝑥, 𝑦) =
𝑞2

𝑞2 + 𝑞 + 1
· ‖𝑦‖−2

for 𝑛 ≥ 3, 𝜌𝐹2 ,𝑛 (𝑥, 𝑦) =
𝑞2

(𝑞 + 1)2 · ‖𝑦‖−2

in this case. Similarly when both x and y do not belong to O𝐹 , we use the homography 𝑡 ↦→ 𝑡−1 and get

𝜌𝐹2 ,2 (𝑥, 𝑦) =
𝑞2

𝑞2 + 𝑞 + 1
· ‖𝑥 − 𝑦‖
‖𝑥‖2·‖𝑦‖2

for 𝑛 ≥ 3, 𝜌𝐹2 ,𝑛 (𝑥, 𝑦) =
𝑞2

𝑞2 + 𝑞 + 1
· ‖𝑥 − 𝑦‖
‖𝑥‖2·‖𝑦‖2 − 𝑞3

(𝑞 + 1)2 (𝑞2 + 𝑞 + 1)
· ‖𝑥 − 𝑦‖
‖𝑥‖5·‖𝑦‖5 .

Applications to covariances
Proposition 5.6 tells us that the integral of 𝜌𝐹2 ,𝑛 over 𝐹2 gives twice the second factorial of the random
variable 𝑍new

𝐹,𝑛 = 𝑍𝐹,𝑛 (which was computed as the value called 𝜌(2, 𝑛) in [3]). Similarly, it turns out
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that we can obtain information about the variances and covariances of the random variables 𝑍𝑈,𝑛 for
𝑈 ⊂ 𝐹 by integrating over smaller domains.

Proposition 5.10. For any positive integer n and any open subsets U and V of F, we have

E
[
𝑍𝑈,𝑛·𝑍𝑉 ,𝑛

]
=

∫
𝑈

∫
𝑉

𝜌𝐹2 ,𝑛 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 +
∫
𝑈∩𝑉

𝜌𝐹,𝑛 (𝑥) 𝑑𝑥.

Proof. The étale algebra 𝐹2 admits a unique subalgebra, which is F embedded diagonally. Hence,
applying Theorem 5.8 with the open subset 𝑊 = 𝑈 ×𝑉 ⊂ 𝐹2, we get

E
[
𝑍𝑈,𝑛·𝑍𝑉 ,𝑛

]
= E

[
𝑍𝑊 ,𝑛

]
=

∫
𝑊

𝜌𝐹2 ,𝑛 (𝑥) 𝑑𝑥 +
∫
𝑊∩𝐹

𝜌𝐹,𝑛 (𝑥) 𝑑𝑥.

Given that F is embedded diagonally in 𝐹2, the intersection 𝑊 ∩ 𝐹 is the set of elements 𝑥 ∈ 𝐹 such
that (𝑥, 𝑥) ∈ 𝑊 = 𝑈 ×𝑉 : that is, 𝑊 ∩ 𝐹 = 𝑈 ∩𝑉 . The proposition follows. �

When U and V are open balls of O𝐹 , one can fully compute the integrals of Proposition 5.10 and
come up with closed formulas for the mean of 𝑍𝑈,𝑛·𝑍𝑉 ,𝑛 and then for the covariance of 𝑍𝑈,𝑛 and 𝑍𝑉 ,𝑛.
The easiest case occurs when U are V are disjoint; under this additional assumption, the distance ‖𝑥− 𝑦‖
does not vary when x runs over U and y runs over V. According to Proposition 5.9, the function 𝜌𝐹2 ,𝑛 is
then constant over 𝑈 ×𝑉 and easy to integrate. Doing so, we end up with the formula given in Theorem
F (in the introduction).

On the other hand, when 𝑉 ⊂ 𝑈, the computation is a bit more painful but can nevertheless be carried
out without trouble. For 𝑛 ≥ 3, the final result we obtain reads

E
[
𝑍𝑈,𝑛·𝑍𝑉 ,𝑛

]
=

𝑞

𝑞 + 1
·𝜆(𝑉) + 𝑞3

(𝑞 + 1) (𝑞2 + 𝑞 + 1)
·𝜆(𝑈)2·𝜆(𝑉)

− 𝑞7

(𝑞 + 1)2 (𝑞2 + 𝑞 + 1) (𝑞4 + 𝑞3 + 𝑞2 + 𝑞 + 1)
·𝜆(𝑈)5·𝜆(𝑉),

where we recall that 𝜆 denotes the Haar measure on F.

Numerical simulations
As we did in Section 3.4, we conducted some numerical experiments illustrating the results of this
subsection: we picked a sample of 500,000 random polynomials over Z2 and located the pairs of distinct
roots of those polynomials (which are exactly their new roots in Q2

2) in the 2-adic plane. The results we
obtained are reported in Figure 4; we refer to Section 3.4 for an explanation of how to read this figure.
In agreement with Proposition 5.9, we observe that pairs of roots are less and less numerous when we
get closer to the diagonal.

It is also interesting to compare Figure 4 with Figure 3 (on page 24). Indeed, given that Q2
2 and Q4

both have discriminants of norm 1, we might expect at first glance that the number of new roots in
both algebras will be comparable. However, looking at the figures, we clearly see that Figure 4 is much
brighter than its counterpart. In other words, the conclusion of our numerical experiments is that there
are significantly more new roots in Q4 than in Q2

2. Coming back to Propositions 3.2 and 5.9, we realise
that the aforementioned phenomenon can be explained by looking at the higher-order term (that is, the
term in dist(𝑥,Q2)4 in the case of Q4 and the term in ‖𝑥 − 𝑦‖4 in the case of Q2

2); this term contributes
positively – that is, it comes with a plus sign – in the case of Q4, whereas it contributes negatively in the
case ofQ2

2. When we are sufficiently far from Q2, this error term is no longer negligible, and the sign
change makes a significant difference.
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Z2

Z2

Figure 4. Distribution of pairs of distinct roots of a polynomial. Sample of 500,000 polynomials over
Z2 picked uniformly at random.

5.4. A mass formula

In this last subsection, we prove Theorem G. For a positive integer r, we denote by Ét𝑟 the set of
isomorphism classes of étale algebras of degree r over F. To simplify notation, we set

Σ(𝑟, 𝑛) =
∑
𝐸 ∈Ét𝑟

𝜌𝑛 (𝐸)
#Aut𝐹−alg(𝐸)

for all integers r and n. Our goal is to prove that Σ(𝑟, 𝑛) = 1 provided that 𝑛 ≥ 𝑟 . We first consider the
extreme case where 𝑛 = 𝑟 , for which we have the following nice reinterpretation of the summands above.

Proposition 5.11. For a finite étale F-algebra E of degree r, we have

𝜌𝑟 (𝐸)
#Aut𝐹−alg(𝐸)

=
∫
Ω𝑟

1{𝐹 [𝑋 ]/𝑃 
𝐸 } 𝑑𝑃.

Proof. From Theorem 5.8, we know that

𝜌𝑟 (𝐸) = E
[
𝑍new
𝐸,𝑟

]
=

∫
Ω𝑟

#Homsurj
𝐹−alg

(
𝐹 [𝑋]/𝑃, 𝐸

)
𝑑𝑃. (5.6)

If P is a polynomial of degree r, the quotient algebra 𝐹 [𝑋]/𝑃 has degree r as well, so any surjective
homomorphism of F-algebras 𝐹 [𝑋]/𝑃 → 𝐸 has to be an isomorphism. Consequently, the integrand
in equation (5.6) is equal to #Aut𝐹−alg(𝐸) if 𝐹 [𝑋]/𝑃 
 𝐸 , and it vanishes otherwise. The proposition
follows. �

Proposition 5.11 tells us that 𝜌𝑟 (𝐸)/#Aut𝐹−alg(𝐸) is exactly the probability that a random polynomial
𝑃 ∈ Ω𝑟 satisfies 𝐹 [𝑋]/𝑃 
 𝐸 . On the other hand, note that the quotient 𝐹 [𝑋]/𝑃 is an étale F-algebra
of degree r as soon as P is separable. This event almost certainly occurs. Therefore the probabilities
that 𝐹 [𝑋]/𝑃 
 𝐸 sum to 1 when E runs over Ét𝑟 : that is, Σ(𝑟, 𝑟) = 1. Theorem G is then proved when
𝑛 = 𝑟 . For higher n, the key ingredient of the proof is the following symmetry result.

Lemma 5.12. For 𝑛 > 𝑟 , we have Σ(𝑟, 𝑛) = Σ(𝑛−𝑟, 𝑛).
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Proof. Unrolling the definitions of Σ(𝑟, 𝑛) and 𝜌𝑛 (𝐸), we obtain

Σ(𝑟, 𝑛) =
∫
Ω𝑛

∑
𝐸 ∈Ét𝑟

#Homsurj
𝐹−alg

(
𝐹 [𝑋]/𝑃, 𝐸

)
#Aut𝐹−alg(𝐸)

𝑑𝑃.

Pick a separable polynomial 𝑃 ∈ Ω𝑛, and set 𝐸𝑃 = 𝐹 [𝑋]/𝑃; it is an étale F-algebra of degree n.
Define Ét𝑟 [𝑃] as the subset of Ét𝑟 consisting of étale algebras E for which there exists a surjective
morphism of F-algebras 𝐸𝑃 → 𝐸 . Let 𝐸 ∈ Ét𝑟 [𝑃], and choose writings 𝐸𝑃 = 𝐾𝑎1

1 × · · · × 𝐾𝑎𝑚
𝑚 and

𝐸 = 𝐾𝑏1
1 × · · · ×𝐾𝑏𝑚

𝑚 , where the 𝐾𝑖s are pairwise nonisomorphic finite extensions of F and 𝑎𝑖 , 𝑏𝑖 ∈ Z≥0.
From Corollary 5.2, we deduce that 𝑎𝑖 ≥ 𝑏𝑖 for all 𝑖 ∈ {1, . . . , 𝑚} and that

#Homsurj
𝐹−alg(𝐸𝑃 , 𝐸)

#Aut𝐹−alg(𝐸)
=

(
𝑎1
𝑏1

)
·
(
𝑎2
𝑏2

)
· · ·

(
𝑎𝑚
𝑏𝑚

)
.

Hence, if we define 𝐸∨ = 𝐾𝑎1−𝑏1
1 × · · · × 𝐾𝑎𝑚−𝑏𝑚

𝑚 , we find

#Homsurj
𝐹−alg(𝐸𝑃 , 𝐸)

#Aut𝐹−alg(𝐸)
=

#Homsurj
𝐹−alg(𝐸𝑃 , 𝐸∨)

#Aut𝐹−alg(𝐸∨) .

Moreover, it follows again from Corollary 5.2 that the association 𝐸 ↦→ 𝐸∨ induces a well-defined
function Ét𝑟 [𝑃] → Ét𝑛−𝑟 [𝑃]. This function is moreover bijective because its inverse can be built in a
similar fashion. We conclude that, for a fixed separable polynomial 𝑃 ∈ Ω𝑛, we have

∑
𝐸 ∈Ét𝑟 [𝑃 ]

#Homsurj
𝐹−alg(𝐸𝑃 , 𝐸)

#Aut𝐹−alg(𝐸)
=

∑
𝐸∨∈Ét𝑛−𝑟 [𝑃 ]

#Homsurj
𝐹−alg(𝐸𝑃 , 𝐸∨)

#Aut𝐹−alg(𝐸∨) ,

which further gives

∑
𝐸 ∈Ét𝑟

#Homsurj
𝐹−alg(𝐸𝑃 , 𝐸)

#Aut𝐹−alg(𝐸)
=

∑
𝐸∨∈Ét𝑛−𝑟

#Homsurj
𝐹−alg(𝐸𝑃 , 𝐸∨)

#Aut𝐹−alg(𝐸∨)

since all the additional summands that appear in both sums are zero. Finally, we obtain the lemma by
taking the integral over Ω𝑛 and remembering that a polynomial in Ω𝑛 is almost surely separable. �

After Lemma 5.12, it is easy to conclude the proof of Theorem G by induction on n. When 𝑛 = 1, the
condition 𝑛 ≥ 𝑟 indicates that 𝑟 = 1 as well, and we fall in the case where 𝑛 = 𝑟 , which has already been
treated. We now pick an integer 𝑛 > 1 and assume that Σ(𝑟, 𝑚) = 1 provided that 1 ≤ 𝑟 ≤ 𝑚 < 𝑛. Also
let 𝑟 ∈ {1, . . . , 𝑛}. If 𝑛 = 𝑟 , we have already seen that Σ(𝑟, 𝑛) = 1, and there is nothing more to prove.
If 𝑟 ≤ 𝑛/2, it follows from the fourth property of Theorem 5.8 that Σ(𝑟, 𝑛) = Σ(𝑟, 2𝑟−1), from which
we deduce that Σ(𝑟, 𝑛) = 1 thanks to our induction hypothesis. Finally, if 𝑛/2 ≤ 𝑟 < 𝑛, we use Lemma
5.12 to write Σ(𝑟, 𝑛) = Σ(𝑛−𝑟, 𝑛); and, observing that 0 < 𝑛−𝑟 ≤ 𝑛/2, we conclude by applying the
previous case.
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