ON THE RELATION BETWEEN BOUNDEDNESS AND OSCILLATION OF DIFFERENTIAL EQUATIONS OF SECOND ORDER

A.G. Kartsatos

(received March 30, 1967)

1. In this paper we are dealing with differential equations of the forms:

$$(E_{i})$$
 $\dot{x} + p_{i}(t)g_{i}(x, \dot{x}) = 0$, $i = 1, 2$,

where the functions p; are positive.

By a solution of an equation of the above forms, we mean a function $x(t) \in \mathcal{C}^2[c, +\infty)$ where c is a non-negative constant, which satisfies the corresponding equation on the whole interval $[c, +\infty)$. By an oscillatory solution of (E_i) , we mean a solution with arbitrarily large zeros.

In the second section (g_i) homogeneous with respect to both variables together) we give a "semi-comparison" theorem relating the character of the solutions of the equation (E_1) to those of the equation (E_2) , and in the third section we extend the results of the second section to the case $g_i(x, y) = g_i(x)$ where the g_i 's are not necessarily homogeneous. Sufficient smoothness of the functions p_i, g_i , i = 1, 2, for the existence of solutions on an interval of the form $[c, +\infty)$, will be assumed without mention.

2. THEOREM 1. Consider the differential equation (E_i) i = 1,2 with the following assumptions:

(1,i)
$$p_i: I \to \mathbb{R}_+$$
, $I = [t_0, +\infty)$, $t_0 \ge 0$, $\mathbb{R}_+ = (0, +\infty)$, continuous and such that $p_1(t) \ge p_2(t)$ for every $t \in I$;

Canad. Math. Bull. vol. 10, no. 5, 1967

(1, ii) $g_i: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $\mathbb{R} = (-\infty, +\infty)$, continuous, $xg_i(x,y) > 0$ for every $x \neq 0$ and $g_i(\lambda x, \lambda y) = \lambda^{2n_i+1} g_i(x,y)$ for any $(\lambda, x, y) \in \mathbb{R}^3$, where n_i are positive integers; (1, iii) $g_2(1,y) \leq k_2$ for every $y \in \mathbb{R}_+$, where k_2 is a positive constant; (1, iv) there exists an oscillatory solution $y(t) \neq 0$ of (E_2) which is bounded on I (i.e. there exists a constant L > 0 such that $|y(t)| \leq L$, $t \in I$);

then every solution of (E_1) is bounded or oscillatory.

<u>Proof.</u> Suppose that there exists a solution x(t) of (E_1) which is non-oscillatory. Then without any loss of generality, we may (and do) assume that x(t) is defined and positive on I. Now, if $\dot{x}(t_1) < 0$ for some $t_1 \ge t_0$, then since $\dot{x} < 0$ for every $t \in [t_4, +\infty)$, we must have:

(1)
$$x(t) = x(t_1) + \int_{t_1}^{t} \dot{x}(s)ds \leq x(t_1) + \dot{x}(t_1)(t-t_1) \rightarrow -\infty \text{ as } t \rightarrow +\infty,$$

a contradiction. Thus, x(t) is strictly increasing on I, while its derivative x(t) is positive and strictly decreasing on I. Here we distinguish two cases:

Case I. $\lim_{t\to +\infty} x(t) < +\infty$ and $\lim_{t\to +\infty} x(t) = \alpha \ge 0$. Then if $\alpha > 0$ we obtain

(2)
$$x(t) = x(t_0) + \int_{t_0}^{t} \dot{x}(s)ds \ge x(t_0) + \alpha (t-t_0) \rightarrow +\infty \text{ as } t \rightarrow +\infty,$$

a contradiction. Thus $\alpha=0$, and consequently $\lim_{t\to +\infty} x(t)/x(t)=0$.

Case II. $\lim_{t\to +\infty} x(t) = +\infty$. Then since $\dot{x}(t)$ is bounded on I,

 $\lim_{t\to +\infty} \bar{x}(t)/x(t) = 0.$

Now, by use of the continuity of g_1 and the fact that $\lim_{t\to +\infty} \dot{x}(t)/x(t) = 0, \quad \text{given a fixed positive } \epsilon < g(1,0), \quad \text{there exists } t\to +\infty$

a $t* \ge t_0$ such that:

(3)
$$0 < k_1 = g_1(1, 0) - \varepsilon < g_1(1, x(t)/x(t)) < g_1(1, 0) + \varepsilon$$
 for every $t > t^*$.

Since the function y(t) is oscillatory on I, there exists an interval $(a_1, b_1)(t*< a_1 < b_1)$ such that: $y(a_1) = y(b_1) = 0$, $y(a_1) > 0$, $y(b_1) < 0$ and y(t) > 0 for every $t \in (a_1, b_1)$. From (E_1) i = 1, 2, after multiplication of (E_1) by y(t) and (E_2) by x(t), $t \in (a_1, b_1)$, we find

$$x(b_{1})\dot{y}(b_{1}) - x(a_{1})\dot{y}(a_{1}) = \int_{a_{1}}^{b_{1}} xy \left[p_{1}(t) \frac{g_{1}(x, \dot{x})}{x} - p_{2}(t) \frac{g_{2}(y, \dot{y})}{y} \right] dt$$

$$= \int_{a_{1}}^{b_{1}} xy \left[p_{1}(t)x^{2n_{1}} g_{1}(1, \dot{x}/x) - p_{2}(t)y^{2n_{2}} g_{2}(1, \dot{y}/y) \right] dt$$

The first member of (4) is negative, so that there must exist a point $t_4 > t$ * such that $t_4 \in (a_4, b_4)$ and

(5)
$$p_1(t_1)x^{2n_1}(t_1) \left[g_1(1, x/x)\right]_{t_1} < p_2(t_1)y^{2n_2}(t_1) \left[g_2(1, y/y)\right]_{t_1}.$$

Now, taking into account our assumptions, we obtain

(6)
$$x(t_1) < C_1 y^{n_2/n_1}(t_1)$$
 where $C_1 = (k_2/k_1)^{\frac{1}{2}n_1} > 0$.

Proceeding in the same way, we construct a sequence of points $\{t_n\}$, $t_n \in (a_n, b_n)$ where (a_n, b_n) are suitable intervals, $b_n < +\infty$, such that $\lim_{n \to \infty} t_n = +\infty$, $y(t_n) > 0$ and $t_n \to \infty$

where C_n are positive constants. It follows that $\liminf_{t\to +\infty} x(t) \le L$, which implies that $x(t) \le L$, tell. Thus, every non-oscillatory solution of (E_A) is bounded on I.

COROLLARY. Let the equations (E_i) i = 1, 2, be such that:

- (i) the assumptions (1,i) (1,iii) are satisfied;
- (ii) there exists a solution $y(t) \not\equiv 0$, $t \in I$ of (E_2) which is oscillatory on I and tending to zero as $t \rightarrow \infty$; then every non-trivial solution of (E_4) is oscillatory.

Proof. The proof can be easily derived from Theorem 1, for in this case (7) implies $\liminf_{t\to +\infty} x(t) = \lim_{t\to +\infty} x(t) = 0$, which contradicts the increasing character of x(t).

- 3. THEOREM 2. Consider the equations $(E_{\underline{i}})$ i = 1, 2, under the following assumptions:
- (2,i) $p_i(t)$ as in (1,i) of Theorem 1; (2,ii) $g_i(x,y) \equiv g_i(x)$: $\mathbb{R} \to \mathbb{R}$, continuous, $xg_i(x) > 0$ for $x \neq 0$, $g_i(-x) = -g_i(x)$, and

$$\lim_{x\to 0} g_i(x)/x = 0, \lim_{x\to +\infty} g_i(x)/x = +\infty;$$

(2, iii) there exists a bounded oscillatory solution $y(t) \not\equiv 0$ of (E_2) ; then every solution of (E_4) is bounded or oscillatory.

Proof. Assume the existence of a solution x(t), $t \in I$ of (E_1) , which is positive on I. Let $y(t) \not\equiv 0$ be a bounded oscillatory solution of (E_2) . Then by (4) of Theorem 1, we have

(8)
$$x(b_1)\dot{y}(b_1)-x(a_1)\dot{y}(a_1) = \int_{a_1}^{b_1} xy[p_1(t)g_1(x)/x-p_2(t)g_2(y)/y] dt.$$

The left hand member of (8) is negative, so that there exists a point $t_1 \in (a_1, b_1)$ for which we have

(9)
$$p_1(t_1)g_1(x(t_1))/x(t_1) < p_2(t_1)g_2(y(t_1))/y(t_1),$$

from which it follows that:

(10)
$$g_1(x(t_1))/x(t_1) < g_2(y(t_1))/y(t_1);$$

thus, continuing in the same manner, we construct a sequence of points $\{t_n\}$ n = 1, 2, ..., such that:

(11)
$$g_{1}(x(t_{n}))/x(t_{n}) < g_{2}(y(t_{n}))/y(t_{n}),$$

and $\lim_{n\to\infty} t = +\infty$.

Since every eventually positive solution of (E_1) is strictly increasing, (11) implies that $\lim_{t\to +\infty} \mathbf{x}(t) < +\infty$.

Thus, every non-oscillatory solution of (E_4) is bounded.

REMARK. If instead of $\lim_{x\to\infty} g_1(x)/x = +\infty$, we suppose in Theorem 2 that $\liminf_{x\to\infty} g_1(x)/x > 0$ and $y(t)\to 0$ as $t\to +\infty$, then it is obvious that every solution of (E_1) must be oscillatory since (11) implies now $\lim_{n\to\infty} x(t) = 0$.

The author wishes to express his thanks to the referee for his helpful suggestions.

Wayne State University Detroit Michigan U.S.A.