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Almost-Free E-Rings
of Cardinality ¥,

Ridiger Gobel, Saharon Shelah and Lutz Striingmann

Abstract. An E-ring is a unital ring R such that every endomorphism of the underlying abelian group
R* is multiplication by some ring element. The existence of almost-free E-rings of cardinality greater
than 2% is undecidable in ZFC. While they exist in Godel’s universe, they do not exist in other models
of set theory. For a regular cardinal ®; < A < 280 we construct E-rings of cardinality ) in ZFC which
have R, -free additive structure. For A = N; we therefore obtain the existence of almost-free E-rings of
cardinality 8; in ZFC.

1 Introduction

Recall that a unital ring R is an E-ring if the evaluation map ¢: Endz(R*) — R given
by ¢ — (1) is a bijection. Thus every endomorphism of the abelian group R* is
multiplication by some element r € R. E-rings were introduced by Schultz [20] and
easy examples are subrings of the rationals Q) or pure subrings of the ring of p-adic
integers. Schultz characterized E-rings of finite rank and the books by Feigelstock
[9, 10] and an article [18] survey the results obtained in the eighties, see also [8, 19].
In a natural way the notion of E-rings extends to modules by calling a left R-module
M an E(R)-module or just E-module if Homy(R, M) = Homg(R, M) holds, see [1].
It turned out that a unital ring R is an E-ring if and only if it is an E-module.

E-rings and E-modules have played an important role in the theory of torsion-free
abelian groups of finite rank. For example Niedzwecki and Reid [17] proved that a
torsion-free abelian group G of finite rank is cyclically projective over its endomor-
phism ring if and only if G = R @ A, where R is an E-ring and A is an E(R)-module.
Moreover, Casacuberta and Rodriguez [2] noticed the role of E-rings in homotopy
theory.

It can be easily seen that every E-ring has to be commutative and hence can not be
free as an abelian group except when R = 7. But it was proved in [6] and extended in
[4, 5], using a Black Box argument from [3], that there exist arbitrarily large E-rings
R which are X -free as abelian groups, which means that every countable subgroup of
R is free. The smallest candidate in [4, 5, 6] has size 2. This implies the existence of
N, -free E-rings of cardinality 8; under the assumption of the continuum hypothesis.
Moreover, it was shown in [16] that there exist almost-free E-rings for any regular not
weakly compact cardinal £ > N, assuming diamond, a prediction principle which
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holds for example in Godel’s constructible universe. Here, a group of cardinality )\ is
called almost-free if all its subgroups of smaller cardinality than A are free.

Since the existence of N,-free E-rings of cardinality R, is undecidable in ordinary
set theory ZFC (see [15, Theorem 5.1] and [16]) it is hopeless to conjecture that
there exist almost-free E-rings of cardinality s in ZFC for cardinals x larger than
2%, However, we will prove in this paper that there are X,-free E-rings in ZFC of
cardinality \ for every regular cardinal X; < A < 2%, Thus the existence of almost-
free E-rings of size N; in ZFC follows.

The construction of X, -free E-rings R in ZFC is much easier if |R| = 2™, because
in case |R| = N; we are closer to freeness, a property which tries to prevent endomor-
phisms from being scalar multiplication. Thus we need more algebraic arguments
and will utilize a combinatorial prediction principle similar to the one used by the
first two authors in [14] for constructing almost-free groups of cardinality N; with
prescribed endomorphism rings.

The general method for such constructions is very natural and it will be explained
in full detail in Shelah [21, Chapter VII, Section 5]. Our notations are standard and
for unexplained notions we refer to [11, 12, 13] for abelian group theory and to [7]
for set-theory. All groups under consideration are abelian.

2 Topology, Trees and a Forest

In this section we explain the underlying geometry of our construction which was
used also in [14], see there for further details.

Let F be a fixed countable principal ideal domain with 1 # 0 with a fixed infinite
set S = {s, : n € w} of pair-wise coprime elements, that is s,F + s, F = F for all
n # m. For brevity we will say that F is a p-domain, which certainly cannot be a field.
We choose a sequence of elements

(2.1) qo =land gu41 = suqn foralln e w

in F, hence the descending chain g, F (n € w) of principal ideals satisfies [, ., g.F =
0 and generates the Hausdorff S-topology on F. Thus F is a dense and S-pure subring
of its S-adic completion F satisfying q,F = q,F N F forall n € w.

Now let T = “~2 denote the tree of all finite branches 7: n — 2 (n € w). More-
over, “2 = Br(T) denotes all infinite branches 77: w — 2 and clearly n [,€ T for all
n € Br(T) (n € w). If n # u € Br(T) then

br(n, p) = inf{n € w: n(n) # u(n)}
denotes the branch point of n and p. If C C w then we collect the subtree
Tc={reT: ifecl(r)\Cthenr(e) =0}

of T where I(T) = n denotes the length of the finite branch 7: n — 2.
Similarly,

Br(T¢) = {n € Br(T) : ife € w\ C thenn(e) = 0}
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and hence n [,€ T¢ forallnp € Br(T¢) (n € w).

Now we collect some trees to build a forest. Let X; < X < 2% be a regular
cardinal and choose a family € = {C, C w : a < A} of pair-wise almost disjoint
infinite subsets of w. Let T x o« = {v X v : v € T} be a disjoint copy of the tree
T andlet T, = T¢, x o for o < A. For simplicity we denote the elements of T,
by 7 instead of 7 X « since it will always be clear from the context to which « the
finite branch 7 refers to. By [14, Observation 2.1] we may assume that each tree T, is
perfect for & < A, i.e. if n € w then there is at most one finite branch 7 [, such that
N [men)F 1 [(ne1) for some p € T,,. We build a forest by letting

n:Um

a<A

Now we define our base algebra as B, = F(z; : 7 € T,] which is a pure and dense
subalgebra of its S-adic completion By taken in the S-topology on By.

For later use we state the following definition which allows us to view the algebra
By as a module generated over F by monomials in the “variables” z. (7 € Ty).

Definition 2.1 Let X be a set of commuting variables and R an F-algebra. If Y C R
then M(Y') will denote the set of all products of elements from Y, the Y-monomials.

Then any map o: X — R extends to a unique epimorphism o: F[X] — F[o(X)].
Thus any r € F[o(X)] can be expressed by a polynomial o, € F[X], which is a
preimage under o: There are ;. . ., I, in 0(X) such that

r=ol,....L)= Y fum withf, €F
meM({h,....l})

becomes a polynomial-like expression.

In particular, if Z, = {z; : 7 € To} (@ < A) and Zy = {z; : 7 € Ty}, then
as always the polynomial ring By can be viewed as a free F-module over the basis of
monomials, we have By = D, ¢y, 2F and a subring B, = €D, ¢ (. ZF-

Since ; < A < 2% = |Br(T¢,)| we can choose a family {V,, C Br(Tc,) :
a < A} of subsets V,, of Br(T¢,) with |V,| = A for @ < A. Note that for o # 3 < A
the infinite branches from V,, and V3 branch at almost disjoint sets since C, N Cg
is finite, thus the pairs V,,, V3 are disjoint. Moreover, we may assume that for any
m € w, A pairs of branches in V, branch above m.

3 The Construction
Following [14] we use the
Definition 3.1 Letx € By be any element in the completion of the base algebra B,.

Moreover, let n € V,, with o < A. We define the branch like elements y,,, forn € w
as follows: yyy := Ziz” Z_;(Z””") + xZiZn %n(i).
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Note that each element y,,, connects an infinite branch n € Br(T¢,) with fi-
nite branches from the tree T,,. Furthermore, the element y,,, encodes the infinite
branch 7 into an element of By. We have a first observation which describes this as
an equation and which is crucial for the rest of this paper.

(3.1) Yime = Sut1Ynnii)x + 2y, +xn(n)  foralla < A\,n € V,.

Proof We calculate the difference

QnYoms — Ane Yo = O @ilzgn) +x Y aim(@) = Y qilzg) —x Y qin(i)

i>n i>n i>n+l i>n+l
= qnzy, + quxn(n).

Dividing by gq,, yields yyux = Sut1¥yms1)x + 251, + x1(1). [ |

The elements of the polynomial ring By are unique finite sums of monomials in
Z with coefficients in F. Thus, by S-adic topology, any 0 # g € By can be expressed

uniquely as a sum
g=> &

z€[g]

where z runs over an at most countable subset [¢] C M(Zy) of monomials and
0+# g € zF. Weput [g] = @ifg = 0. Thusany g € By has a unique support
[g] € M(Z,), and support extends naturally to subsets of I§X by taking unions of the
support of its elements. It follows that

[ynno] = {Z'r][jX(l : ] € w?j > 1’1}

foranyn € V,,n € wand [z] = {z} forany z € M(Z}).
Support can be used to define the norm of elements. If X C M(Z,) then

X = inf{ 5 < x:x € | Mz}

a<f

is the norm of X. If the infimum is taken over an unbounded subset of \, we write
|X|| = co. However, since cf(\) > w, the norm of an element g € By is ||g|| =
llg]]l < oo which is an ordinal < A hence either a successor or cofinal to w. Norms
extend naturally to subsets of By. In particular ||yno|| = o + 1 forany n € V,,.

We are ready to define the final F-algebra R as a F-subalgebra of the completion of
By. Therefore choose a transfinite sequence b, (ov < A) which runs A times through
the non-zero pure elements

(3.2) b= meBy withfinite M C M(Ty).

meM

We call these b’s special pure elements which have the property that By /Fb is a free
F-module.
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Definition 3.2  Let F be a p-domain and let By := F[z, : 7 € Ty] be the polyno-
mial ring over Z, as above. Then we define the following smooth ascending chain of
F-subalgebras of By.

(1) Ro ={0}; R, = F;

2) R, = Uy<a R, for o a limit ordinal;

(3) Ryt = Ra[ynnxmzfr ine VomT S Ta'; ne w];

(4) R=Ry=J,_, R

We let x, = b, if b, € R, with ||b,|| < o and x,, = 0 otherwise.

For the rest of this paper purification is F-purification and properties like freeness,
linear dependence or rank are taken with respect to F. First we prove some properties
of the rings R, (av < A). It is easy to see that R, = Flyyux,,2- : ) € Vg, 7 € Tg,
n € w, [ < «] is not a polynomial ring: the set { ¥y, 2, : ) € Vg, 7 € Ty, n € w,
B < a} is not algebraically independent over F. Nevertheless we have the following

Lemma 3.3 For any fixed n € w and o < X the set {yyux,,2r : 7 € Vo, T €
T.} is algebraically independent over Ro. Thus Ro[yYpux,,2r 11 € Vo, T € Tyl isa
polynomial ring.

Proof Assume that the set of monomials M(yyux,,2- : 7 € Vo, T € T,) is linearly
dependent over R, for some o < A and n € w. Then there exists a non-trivial linear
combination of the form

(3.3) DY gyz=0

y€Y zE€E,

with g,, € R, and finite sets Y C M(yyu, : 7 € Vo) and E, C M(Z,). We have
chosen Vg NV, = @ forall 8 # v and M(Z,) NR, = @. Moreover ||R,|| < ||[Ra+]|
and hence there exists a basal element z, € B, (high enough in an infinite branch)
forany 1 # y € Y with the following properties

(i) z, €E;forally €Y;

(i) z, & [plforally # 7 €Y;

(iii) z, & [gy.] forall y €Y,z € Ej;
(iv) z, € [yl

Now we restrict the equation (3.3) to the basal element z,, and obtain g, ,z,z = 0
forall z € E,. Since z, & [g,.] wederiveg,, = Oforalll # y € Yandz € E,.
Therefore equation (3.3) reduces to ZZGE] 81,2 = 0. We apply M(Z,) "R, = @
once more. Since each z is a basal element from the set M(Z,) we get that g, = 0
forall z € E,. Henceg,, = Oforall y € Y, z € E,, contradicting the assumption
that (3.3) is a non-trivial linear combination. [ |

The following lemma shows that the F-algebras Rs/s,+1Rs are also polynomial
rings over F/s, F for every n < w. For § < A and n € w we can choose a set U5 C
Vs such that for any n € V; thereisn’ € U,s withbr(n,n’) > nand ifn,n’ € U,s,
then br(n,n") < n. Obviously |U,;| < 2". Moreover, let T{ = Ts \ {z,, :n € Uys}.
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Lemma34 Ifn < w, then the set X0, = {Vymeys Voniiyxss2r 2 M € U,
T E Té, B < A} is algebraically independent over F /s, F and generates the algebra
Rj/sus1Rs. Thus Rs/sys1Rs = F/s,+1F[X5,,] is a polynomial ring.

Remark Here we identify the elements in XJ,, C Rs with their canonical images

modulo s, 1Rs.

Proof First we show that X°,, is algebraically independent over F/s,, F. Suppose

(3.4) Z Z fyzyz =0 mod s, R

y€Y z€E,

with f,, € F and finite sets Y C M(yyux;s Yynrnyxy 1 € Ung, B < 6) and E, C
M (Uﬁ<6 T;)

Choose a basal element z, € [y] for any 1 # y € Y which is a product of basal
element z; with I(7) = nand z, ¢ [y'] forany y # y’ € Y and moreover require
z, ¢ E, forall y’ € Y. This is possible by the choice of U, 3 and T}. Restricting (3.4)
to z, yields ‘

g fy.22y2 = 0 mod 5,11 R
z€E,

hence f,, = 0 mods,;R. Therefore (3.4) reduces to ZzEEl fizz = 0 mod s, F
and thus also fi;, = 0 mod s, F is immediate. This shows that the set Xg l
algebraically independent over F/s,; F.

Finally we must show that R /s,s1R; = (F/s,41F)[X?,,]. We will show by induc-
tion on o < ¢ that

is

(Ra + $n41R5) /sur1Rs € (F/s1 F) (X0, 1.
If & = 0 or a = 1 then the claim is trivial, hence assume that « > 1 and forall 5 < «
we have

(R + $p41R5)/5011R5 € (F/5,11F) (X0, 1.

If v is a limit ordinal, then (R, + 5,4+1Rs) /sp+1Rs € (F/s541F)[X?,, ] is immediate.
Thus assume that « = §+1. By assumption and x3 € Rz we know that (x3+s,+1Rs) €
(F/sy1F) [Xgﬂ]. Hence equation (3.1) shows that the missing elements z,;, + 5,11 R5
(n € Uyp) arein (F/sp1F)[X0,,].

For 7 € Vg we can choose i’ € U, such that br(n,n’) > n. Then using (3.1) we
obtain y, .., — ¥y/ne, = 0 mod s, R and therefore y, ., + 5,:1R € (F/s,41F) [Xﬁ+1].
By induction on m < w using again (3.1) it is now easy to verify y,mx, + s,+1R5 €
(F/su1F)[X2,,] for every m < w,n € U,z and hence R, +s,41Rs C (F/s,1F)[X2,,]
which finishes the proof. ]

Now we are able to prove that the members R, of the chain {R, : 0 < A} are
F-pure submodules of R and that R is an X, -free domain.
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Lemma 3.5 R is a commutative F-algebra without zero-divisors and R, as an F-
module is pure in R for all o < \.

Proof By definition each R,, is a commutative F-algebra and hence R is commutative.
To show that R has no zero-divisors it is enough to show that each member R,, of the
chain {R, : ¢ < A} is an F-algebra without zero-divisors. Since F is a domain
we can assume, by induction, that R has no zero-divisors for all 5 < « and some
1 < a < A If v is a limit ordinal then it is immediate that R, has no zero-divisors.
Hence @ = v + 1 is a successor ordinal and R, is a domain. If g,h € R, with
gh = 0 # g, then we must show that h = 0. Write g in the form

() g=> Y guyz

yEeY z€Ey,

with 0 # g,, € R, and finite sets E,, C M(Z,) and Yy C M(yyux, : 7 € V) for
some 1 € w. By (3.1) and x, € R, we may assume 7 is fixed. Similarly, we write

(h) h=>Y "> hy.yz

y€EY) zEE,

with hy,, € R, and finite sets Yy C M(yynx, : n € V) and Ey,, C M(Z,).
Next we want h,,, = 0 forall y € Y}, z € Ej, . The proof follows by induction on
the number of b, /’s. If h = h,,,wz’, then

gh= Z gy 2P yzwz'

y€YZz€E,

and from Lemma 3.3 follows g, ;h,,,; = O forall y € Y,, z € Eg,. Since R, has no
zero-divisors we obtain h,,,» = 0 and thus h = 0. Now assume that k + 1 coefficients
hy. # 0 appear in (h). We fix an arbitrary coefficient h,, .- and write h = h,, . wz'+h’
so that wz’ does not appear in the representation of h’. Therefore the product gh is
of the form

(gh) gh= Z Z gy hw yzwz’ + gh'.

yEY, zEE,

If the monomial wz’ appears in the representation of (g) then the monomial w?(z’)?
appears in the representation of (gh) only once with coefficient g, ,+h,,,. Using
Lemma 3.3 and the hypothesis that R, has no zero-divisors we get h,,,» = 0.

If the monomial wz’ does not appear in the representation of (g) then g, ;h,, .- = 0
for all appearing coefficients g, , is immediate by Lemma 3.3. Thus h,,,, = 0 and
h = h' follows. By induction hypothesis also h = 0 and R has no zero-divisors.

It remains to show that R, is a pure F-submodule of R for & < A. Letg € R\ R,
such that fg € R, for some 0 # f € F and choose # < A minimal with g € Rg.
Then 3 > ovand it isimmediate that 3 = y+1 for some y > a, hence fg € R, C R,.
Now we can write

() g=>_ Y guyz

y€EYg zE€EE,
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with g, . € R, and finite sets Y; C M(yyy, : v € V) for some fixed k € w and
E, C M(Z,) and clearly

fg= Z Z f8zyz € R,.

yEY, zEE

Hence there exists g, € R, such that

fe—8g = Z Z f8:y2—8 =0.

yEY zE€EE,

From Lemma 3.3 follows fg,, = Oforall1 # y € Y,, 1 # z € Eg, thusg,, = 0
because R is a torsion-free F-module. Hence (g) reduces to the summand with y =
z = 1,butg = g1 € R, contradicts the minimality of 3. Thus g € R, and R,, is
pure in R. [ ]

From the next theorem follows for & = 0 that R is an X;-free F-module. We say
that R is polynomial X, -free if every countable F-submodule of R can be embedded
into a polynomial subring over F of R. Clearly, polynomial X, -freeness implies N, -
freeness.

Theorem 3.6  If F is a p-domain and R = |J,_, Ra is the F-algebra constructed
above, then R is a domain of size A with R/R,, is polynomial N -free for all « < \.

Proof |R| = X is immediate by construction and R is a domain by Lemma 3.5. It
remains to show that R is an polynomial R,-free ring. Therefore let U C R be a
countable pure submodule of R. There exist elements #; € R such that

U:<u1,...,un,...>*gR.

Here the suffix % denotes purification as an F-module. Let U, := (uy, ..., u,). for
n € w. Hence there is a minimal o, < A such that u; € R, fori < nandn € w,
which obviously is a successor ordinal ,, = ~y, + 1. Moreover, U, C R,, since R,, is
pure in R and by induction we may assume that R, is polynomial X,-free. Fixn € w.
Using R, = Ry 11 = Ry, [yymx, ,2r 2 € V., 7 € T,,,m € w] from Definition 3.2
we can write

=3 Y gz
y€Y; ZEE,‘A},
with g, .; € R,, and finite sets Y; C M(yymx, : 0 € V,,) for some fixed m € w and
Ei, C M(Z,,). Choose the pure submodule Ry, := (gy.i : y € Yi,z € Ej,,1 <
i <n), CR,, of R, andlet
Uy:={y,z:yeYi,zeE, 1<i<n}

By induction there is a polynomial subring L, C R,, of R,, which contains Ry,
purely. Again by induction we may assume that L,; is a polynomial ring over L,
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forall n € w. Hence U, := L,[U]] Ci R,, is a polynomial ring by Lemma 3.3
and purity of Ry, in R,,. Thus U, C, U, C. R,,. By construction L, [U,,,] is
a polynomial ring over L,[U,] and thus the union U" = J, ., U, is a polynomial
ring containing U. Similar arguments show that R/R,, is polynomial X, -free for every
a <A ]

4 Main Theorem

In this section we will prove that the F-algebra R from Definition 3.2 is an E(F)-
algebra, hence every F-endomorphism of R viewed as an F-module is multiplication
by some element r from R. Every endomorphism of R is uniquely determined by its
action on By which is an S-dense submodule of R. It is therefore enough to show that
a given endomorphism ¢ of R acts as multiplication by some r € R when restricted
to Ba. It is our first aim to show that such ¢ acts as multiplication on each special
pure element x,, for & < A. Therefore we need the following

Definition 4.1 A set W C \is closed if
X, € Ry, = F[ynn&,,zT meVyTeTEBEW,B<a,n€Ew]
for every o € W. Moreover let Ry := F[y,ux;, 2 1 € Vg, 7 € Tp, B € W,n € w].
We have a first lemma.

Lemma 4.2  Any finite subset of X\ is a subset of a finite and closed subset of \.

Proof If @ # W C )\ is finite then let v = max(W'). We prove the claim by induc-
tion on ~y. If vy = 0, then W = {0}, Ry = F, xo = 0 and there is nothing to prove. If
v > 0,thenx, € Ry = F[yynx,, 27 : 1 € w,n € V3,7 € Ty, B < ] and there exists
a finite set Q C -y such that

Xy € Flynpnxy,2r in€w,m e Vg, 7€ Ts,5 € Q.
IfQ = QU (W \ {v}) then max(Q;) < ~. Thus by induction there exists a closed
and finite Q; C A containing Q;. It is now easy to see that W/ = Q, U {7} is as
required. ]

Closed and finite subsets W of A give rise to nice presentations of elements in Ryy .

Lemma 4.3 Let W be a closed and finite subset of A and r € Ry. Then there exists
m, € Nsuch thatr € Fly,ux,,2 : 1 € Vg, 7 € Tg, 3 € W] for everyn > m,.

Proof We apply induction on |W|. If [W| = 0, then Ryy = Ry = F and Lemma 4.3

holds. If [W| > 0 then v = max(W) is defined. It is easy to see that W' = W \ {~}
is still closed and finite. Thus xs € Ry for all 6 € W. By induction there is m® such
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that x5 € Flyyn,,2- 1 € Vg, 7 € Ty, 8 € W'] for every n > m’ (6 € W). Any
r € Ry can be written as a polynomial

r= U({ynnlkhlx;;r_’yzﬂ_j M € V@hlaTr,j S Tﬁr_jyl < lraj < ]r})

forsomel,, j, € N, 3.1, 3,; € Wandn,; € Vg, 7, € Tp,; Letm) = max({m‘i, kyp:
I < 1,6 € W}). Using (3.1) now it follows easily that r € F[y,nxs,z, : n € Vg,
T € Ts, 8 € W] for every n > m,. [ |

We are ready to show that every endomorphism of R acts as multiplication on each
of the special pure elements x,,.

Definition 4.4 If R, is as above, thenlet G, = (Vynx,2r 1 € Vo, T € To,n € w)r
be the F-submodule of R, for any o < A.

From (3.1) we note that x, € G, and our claim will follow if we can show that
every homomorphism from G, to R* maps x,, to a multiple of itself.

Proposition 4.5 Ifh: G, — R is an F-homomorphism, then h(x,) € x,R.

Proof Let h: G, — R be an F-homomorphism and assume towards contradiction
that h(x,) & x,R. For a subset V. C V,, of cardinality A we define the F-submodule

Gy = <xo<>ynnx,, imeV,ne W>* C G,

and note that {z,;, : 7 € V,n € w} C Gy fromx, € Gy and (3.1). Also Gy, € H =:
{Gy : V C V,,|V| = A} # @ and we can choose 8, = min{5 < A : 3Gy € $ and
h(Gy) C Rs}. Thereis Gy € $ such that h(Gy) C Rg,.

We first claim that 8, < A and assume towards contradiction that 3, = X and we
can choose inductively a minimal countable subset U =: Uy C V such that

(4.1) (VneV)(Vnew)(dpeUy) suchthatn [,=p [, .

For each n € V we define the countable set Y,, = {yyu, @ # < w}. Using
cf(A\) = A > Y, we can find a successor ordinal 3 < A such that h(x,) € Rg and
h(Y,) C Rgforallp € U.Ifn, € wandn € V choose n, < n € wand p, € U by
(4.1) such that n [,= py [, From Definition 3.1 and (2.1) we see that

(42)  Vinaxe = Vounaxa
D ACHS EER P O ;_f(z,)n[,,) —xa > L)

i>n, 1M i>n, 1M i>n, 1M i>n, 1M
qi qi . qi qi .
=Y Flzg) A%y @) = Y T (z0) — %a Y ——pali)
i>n+l i>n 1 i>n+1 1 i>n qn.

is divisible by s,_;. Thus s,_; divides A(yyn,x, — Vpun.x,) for n, < n < w. From
h(ypn.x.) € Rp and the choice of p, € U it follows that h(y,,..,) + Rg € R/Rg
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is divisible by infinitely many s,. Hence h(y;,.,) € Rg since R/Ry is N;-free by
Lemma 3.6. However n, was chosen arbitrarily, we therefore have h(Y,)) C Rg for all
n € V and h(Gy) C Rp follows, which contradicts the minimality of 3,. Therefore
B. # A

Since h(Gy) C Ry, we can write h(ypox,) = UU({yl’ry.lmqud,,I_[’ZTnAk 1<y, k < ky})
for every n € V and suitable 3, , B,k < B, vy1 € Vp,, and 7« € Tp,,. Recall
that polynomials o, depend on 7 € V. For notational simplicity we shall assume
that all pairs (3,;, 3,,x) are distinct. For obvious cardinality reasons we may assume
without loss of generality that [, = I, and k,, = k, for some fixed I,, k, € N for all
n € V. Moreover, since F is countable, we may assume that the polynomials o,, are
independent of 77 and thus we can write 0, = o. Hence

h()/noxn) = 0({}’1/,,_,m,1_,x,5"_1727',,_;( < l*a k< k*}) .

We put W,, = {81, 8% : | < L,k < k.}, which is a finite subset of X for every
71 € V. By Lemma 4.2 we may assume that W, is closed. Moreover, possibly enlarging
Wy, we also may assume that h(x,) € Ry, forallp € V. Since 8, < A and A\ is
regular the ordinal 3, is a set of cardinality < A with W, C 3, foralln € V. By
cardinality arguments it easily follows that thereis W = {3, B : I < L,k < k,} C
B4 such that W,, = W for all € V' for some V’ C V of cardinality \. We rename
V =V'. Let m, € Nsuch that m, > I(7,4) forallp € V and k < k.. Again, passing
to an equipotent subset (of) V' we may assume that m, = m, is fixed for all n € V.
Now we apply Lemma 4.3 to obtain h(y,ox,) € Flyyux; 2 :1m € Vg, 7 € Tp,0 €
W] forn € V and some n,, € N. Since |V| > R, we may assume that n,, = n, does
not depend on 7 € V anymore. If m,, = max{#n., m, } we find new presentations

(4.3) h(Yyox,) = J({yyn_lm*m,zﬂl_k < k< k*})

foreveryn € V and 3, Bx € W, v, € Vg and 7,k € Tg,. Moreover, I(7;,x) < m,
foralln € V and k < k.. The reader may notice that when obtaining equation (4.3)
the polynomial ¢ and the natural number k, may become dependent on 7 again but
a cardinality argument allows us to unify them again and for notational reasons we
stick to o and k... Using that T, is countable, we are allowed to assume that 7,y = 7
forallnp € V and k < ki, hence h(yyox,) = U({)’vn‘zm*xalvsz l< Il k<k}).

Finally, increasing m, (and unifying o and k, again) we may assume that all
Upi Im, are different (I < I,) and that

(4.4) Uni rm*# Tk

forallp € Vand! < I, k < k.. Using a cardinality argument and the countability of
the trees T, we may assume that v, ; [,,, does not dependentonn € V foralll < I,.
Thus

(45) Ui rm* =T € Tﬁl

and 7 # 7 foralll < I, k < k, from (4.4). Since W is closed and h(x,) € Ry we
can finally write

h(xz) = Jﬂ({yus,lm*mﬂzmk < lﬁv k< kﬂ})
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for every 5 € W U {a} and suitable Ig, ks € N, 3}, Bx € W. Obviously, increasing
M, once more, we may assume that

(4.6) vl Im# Vgry [my  and  vgy [, # 7j

forall 3,8 e WU {a}l, I <lg,l' <lg:, j <.
Now choose any 7, > m, such that

(i) n.>sup(CsNCy/)forall g # g’ € WU {a};
(ii) s, is relatively prime to all coefficients in o;
(iii) sy, is relatively prime to all coefficients in o forall 3 € W U {a}.

Using Xy < |V| we can choose pairs of branches 1,7, € V with arbitrarily large
branch point br(n;,7,) = n+ 1 > n,. Let U be the infinite set of all such n’s. An
easy calculation using (3.1) shows

Ymoxa = Vmpoxa = (Hsl) (Ymnea = Vmanx,)

I<n

and as br(n;,1,) = n + 1 we obtain

(4.7) Vinoxa — VYmox, = (Hsl) x, mod s, R.
I<n

We now distinguish three cases.

Case 1 Ifbr(vy, 1,vy,1) > n+1forsome ! < I, then from (3.1) follows

Vv amaxg = Yy, imaxy = 0 mod s,41R.

Case 2 Ifbr(vy, j,vy,1) = n+ 1 for some ! < I, then from (3.1) follows

Yupmaxy = Vv imaxs, T Snt1R € X5 R+ 5511 R.
We have chosen br(n;,1m,) = n+1 > n, > sup(C3NCy) forall § # 3 € WU{a}.

Hence 1+ 1 can not be the splitting point of pairs of branches from different levels o
and ;. Thus 3; = « and the last displayed expression becomes

yu,]ljm*x(, - yy,,zilm*x,, + 5n+1R € xaR + 5n+1R-

Case3 Ifk = br(vy, 1,v,,1) < n+lforsomel < I, thenm, < kby (4.5). From (3.1)
and the choice of n we see that y,, .y, appears in some monomial of h(y, ox, — Vnyox, )
with coefficient relatively prime to s,.1. By an easy support argument (restricting to
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Uy, Ik and using (4.4), (4.5) and (4.6)) this monomial can not appear in h(x,). From
Lemma 3.4 now follows

h(}’moxa - ynzoxa) - (Hsl) h(x,) 3—6 0 mod s,4 1R

I<n

which contradicts (4.7).
Therefore, for all n € U we obtain

(H 51) h(x,) € syt 1R + x,R.

I<n

The elements [ ], sy and 5,41 are co-prime, thus

h(x,) € ﬂ Sur1R + xR,

nelU

Using that U is infinite, we claim

ﬂ spR+ x,R = x4 R,
nclU

which then implies h(x,) € x,R and finishes the proof of Proposition 4.5.

The special pure elements are of the form (3.2), thus x, = >
finite subset M of M(T},). Choose y €
n € U such that

mey M for some

weu SiR+xoR. Then there are f,, r, € R for

(4.8) Yy - 5nfn = XaTn-
Put R’ = ([xa], ¥, fus1n : n € U), and let L be the pure polynomial subring of R
that contains R’ and exists by Theorem 3.6. Hence equation (4.8) holds in L. We

may assume that the finite support M of x,, is contained in a basis of L and hence the
quotient L/x, L is free and therefore S-reduced. This contradicts

(4.9) ¥ = sy fy mod x,L

which follows from equation (4.8) for every n € U unless y € x,L and hence y €
XoR. |

We are now ready to prove that R is an E(F)-algebra.

Main Theorem 4.6  Let F be a countable principal ideal domain with 1 # 0 and in-
finitely many pair-wise coprime elements. If R, < X\ < 2% is a regular cardinal, then
the F-algebra R in Definition 3.2 is an X, -free E(F)-algebra of cardinality \.
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Proof If h is a F-endomorphism of R viewed as F-module, then we must show that
h is scalar multiplication by some element b € R. From Proposition 4.5 for h | G,
there exists an element b, € R such that h(x,) = x,b, for any o < A, where the x,’s
run through all special pure elements.

Now let U, be a countable subset of V,, for every v < A as in (4.1). Then

R = Flypux,,2r :n €U, 7€ Tg, 5 < a,ne€wl

is a countable subalgebra of R,. Since A is regular uncountable there exists for ev-
ery @ < A an ordinal 7, < A such that A(R}) C R,,. WeputC = {6 < A :
V(e < §)(74 < 0)} whichis a cub in \. Intersecting with the cub of all limit ordinals
we may assume that C consists of limit ordinals only. If § € C, then similar argu-
ments as in the proof of Proposition 4.5 after equation (4.1), using the fact that R/R;
is N -free show that h(Rg) C Rs for every 8 < § and taking unions h(R;5) C Rs.

Let us assume for the moment that there is some §, € C such that for every
special pure element r € By we have b, € R;,. Suppose r; and r, are two distinct
pure elements with b,, # b,,. Then choose §, < § € C such that 1,7, € Rs and
7 € Ty with 7 & ([r] U [r2]). Then

(410) bTT + brl rn = h(’T) + h(rl) = h(T + T]) = b7—+r1 (’7' + Tl) = b‘r+r17_ + bT+r1 r1.

Now note that R; is an Rs, -module and that R/R; is torsion-free as an Rs, -module.
Moreovet, b-, b, and b.,, are elements of R;, , hence 7 is not in the support of either
of them. Thus restricting equation (4.10) to 7 we obtain

b7 =brnT

and therefore b; = b,,,. Now equation (4.10) reduces to b,,r; = b,.,, 1 and since R
is a domain we conclude b,, = b;,,. Hence b,, = b, and similarly b,, = b, therefore
b,, = b,, which contradicts our assumption. Thus b, = b does not depend on the
special pure elements r € Bp and therefore h acts as multiplication by b on the special
pure elements of Bx. Thus / is scalar multiplication by b on B, and using density also
onR.

It remains to prove that there is d, < A such that for every r € By we have
b, € Rs,.

Assume towards contradiction that for every € C there is some element rs € By
such that bs = b,; & R;. We may write r; and also b,, as elements in some polynomial
ring over R;, hence r5 = o, (xf ti < i) and bs = oy, (92? i < ip,). Thus o, and oy,
are polynomials over Rs and the x0’s and %! are independent elements over R;. For
cardinality reasons we may assume that for all § € C we have i,, = i, and i}, = 7
for some fixed i,,i, € N. Now choose n < w and note that canonical identification
©: Uyer Ra/snRa — Uyo) (RS + 5,R)/s,R is an epimorphism. Let ,; and 4, be
the images of the polynomials o,; and oy, under ¢. Since || J,_;(R} + s,R)/suR| <
A for every § < X and C consists of limit ordinals the mapping ¢: C — R/s,R,
0 — (&4, 0p,) is regressive on C. Thus application of Fodor’s lemma shows that ¢
is constant on some stationary subset C’ of C and without loss of generality we may
assume that C = C’.
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For & € C choose 61,5, € C such that §; < §, and xf,kg € Ry, foralli < i,
j < ip. Let R’ be the smallest polynomial ring over R; generated by at least the
elements xfl , xfz and Xfl , xfz such that aja, = as and a,,a; € R’ implies a; € R’. We
may choose R’ = Rs[H] as the polynomial ring where H C R\ R; contains the set

{xf‘,xfz,ﬁfﬂ,iiz 11 <1, j <ip}. Wenow consider

(4.11) bf§+f52 (1’5 + 1‘52) = h(T5 + T52) = h(r(;) + h(T(;z) = b57’5 + bgzi’(;z.

By choice of R" and 75, 15,, bs, bs, € R’ follows by, € R'. If some x) appears in the
support of b,ﬁ,ﬁ.z, then the product x?x?z appears on the left side (for some j < i)

of (4.11) but not on the right side—a contradiction. Similarly, no xfz can appear
in the support of b,ﬁ,&z. Thus (bmw2 — bs)rs = —(b,odr,t;2 — bs,)rs, and therefore
bmmz = bs; = bs,. Hence b5, € Rs,. But this contradicts the choice of r5,. The
existence of 0* such that all elements b, related to special pure elements are in Rs« is
established. ]

Corollary 4.7  There exists an almost-free E-ring of cardinality N,.

Remark 4.8 We note that the Main Theorem could also be proved for cardinals
N; < A < 2% which are not regular. The proof for cf(\) = w would be much more
technical and complicated.
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