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Abstract

Microstructures, including crystallographic fabric, within the margin of streaming ice can exert
strong control on flow dynamics. To characterize a natural setting, we retrieved three cores,
two of which reached bed, from the flank of Jarvis Glacier, eastern Alaska Range, Alaska. The
core sites lie ~1 km downstream of the source, with abundant water present in the extracted
cores and at the base of the glacier. All cores exhibit dipping layers, a combination of debris
bands and bubble-free domains. Grain sizes coarsen on average approaching the lateral margin.
Crystallographic orientations are more clustered and with c-axes closer to horizontal nearer the
lateral margin. The measured fabric is sufficiently weak to induce little mechanical anisotropy,
but the data suggest that despite the challenging conditions of warm ice, abundant water and
a short flow distance, many aspects of the microstructure, including measurable crystallographic
fabric, evolved in systematic ways.

Introduction

Globally, the glaciological community has only medium confidence in the prediction of ice
discharge (Vaughan and others, 2013), in part because of uncertainty in the viscous rheology
of streaming ice that constitutes glaciers and is responsible for draining most of the ice sheets.
Although we recognize how temperature, water content and microstructure affect ice flow (e.g.
Barnes and others, 1971; Duval, 1977; Lile, 1978; Weertman, 1983; Castelnau and others, 1996,
1998; Goldsby and Kohlstedt, 2001; Cuffey and Paterson, 2010; Minchew and others, 2018;
Haseloff and others, 2019), we do not have a robust understanding of how these factors are
distributed in natural settings, particularly in locations of high mechanical significance.

These critical locations include the lateral and basal margins of ice streams and glaciers,
which deform under different conditions than do the fairly well studied ice beneath divides.
As such, knowledge of, for example, fabric, grain size, temperature and interstitial water con-
tent at ice divides is not directly transferable to the margins of streaming ice. However, meas-
uring rheologically relevant parameters in the margin of streaming ice presents a logistical
challenge due to high deformation rates, safety considerations and internal structures that
complicate geophysical surveys. Nevertheless, knowledge of the magnitude and distribution
of those parameters are critical given that margins, whether frozen or sliding, commonly pro-
vide the majority of the resistance to flow (cf. Raymond and others, 2001).

Measuring fabric is a particularly important challenge to overcome. As the early experi-
ments determined (McConnel and Kidd, 1888), ice exhibits strong mechanical anisotropy
in the viscous regime. Additional experiments and increasingly sophisticated numerical mod-
els illustrate that fabric and other microstructural variables can have a large effect on ice kine-
matics (e.g. Barnes and others, 1971; Ashby and Duval, 1985; Alley, 1992; Castelnau and
others, 1998; Goldsby and Kohlstedt, 2001; Thorsteinsson and others, 2003; Pettit and others,
2007; Martin and others, 2009, 2014; Ma and others, 2010; Treverrow and others, 2012; Budd
and others, 2013; Minchew and others, 2018; Hruby and others, 2020). Nevertheless, a few
studies report marginal microstructures, particularly fabric from direct observation
(Hudleston, 1977, 1980; Jackson, 1999; Hellmann and others, 2021; Monz and others, 2021)
(Jackson and Kamb, 1997). Although some have calculated the effect of fabric on rheology
based on observational data (Minchew and others, 2018), without more in situ measurements,
questions remain about how well models and experiments reflect natural settings.

Below, we describe the fabric and related microstructure from two surface-to-bed cores and
one partial core in the lateral margin of a small polythermal glacier in Alaska. We find system-
atic changes in grain size and shape, as well as bubble aspect ratio, consistent with a strain
gradient. To our knowledge, our study is the first to report fabric from surface to bed within
the margin of a temperate glacier, and only the third from any lateral margin (cf. Jackson,
1999; Monz and others, 2021). The fabric is relatively weak, but the fact that any fabric devel-
ops in the short flow distance of relatively slow-moving ice in a water-rich environment
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indicates that substantial fabric development is probable in larger
glaciers and ice streams. As such, fabric is likely to play a large
mechanical role in controlling the kinematics of those settings.

Field setting

Jarvis Glacier, a north-flowing glacier in the eastern Alaska Range
(—145.68" W, 63.48" N), is ~5.2 km? in surface area, ~8 km long
and up to ~220 m thick, with at least one cirque-based tributary,
and a headwall elevation of ~2000 m (Fig. 1). The glacier under-
goes a nearly right angle turn a quarter of the way down its length,
and has an overall surface slope of ~5". The bedrock valley is
approximately U-shaped, with typical 10-100 m wavelength,
1-10m amplitude irregularities. The tributary (Fig. 1b) lies
1km upstream of our study site and, based on debris lines
(Fig. 1c), contributed the ice examined in this study, part of the
western quarter of the glacier.

Velocity stake data (Fig. 1d) indicate that the glacier flows up to
24ma in the vicinity of the study site, decreasing to 18 ma™"
near the margins. These measurements indicate a transverse surface
shear strain rate of 1.5x10™° s ! between JA and JE, with no evident
longitudinal velocity gradient at the study area. This velocity pat-
tern suggests most of the residual velocity is accommodated by
slip at the margin. The lateral glacier boundary itself is difficult
to define due to debris coverage. Orientations of debris bands mea-
sured at the surface are somewhat variable, with most having a
moderate northwest or southeast dip (Fig. le), consistent with
fold axes observed in the field. Qualitative observations reveal
more intense crevassing near JE than near JA. Mean englacial tem-
peratures are warmer than —2'C (Lee, 2019). Jarvis Glacier is losing
mass, with the 2016 season seeing 2 m of surface ice loss near the
study site. Approximate average temperatures at a nearby meteoro-
logical station ridge, 630 m WNW and 25 m higher than the drill
site, are 5 C in the summer and —13°C in winter (http:/ine.uaf.
edu/werc/projects/jarvis/offglacier.aspx).

Methods
Radar

We used a Geophysical Survey Systems Incorporated (GSSI)
SIR-4000 ground-penetrating radar (GPR) control unit coupled
with a GSSI 100 MHz antenna to select appropriate ice core
sites and place micro-structural observations from ice cores into
a broader context. Radar profiles were recorded with a Trimble
5700 survey unit and Zephyr GPS antenna operating at 1 Hz to
georeference data. Additionally, we collected profiles spaced
10 m apart within a 100m by 60 m grid near the valley wall
and collected a longer profile perpendicular to the valley wall.
Data were collected in time mode at 1024-2048 samples per
scan and 24-40 scans per s. Profiles were time-zero corrected,
distance-normalized and stacked three times to improve signal
to noise ratios. We also applied background, low (300 MHz),
and high pass (25 MHz) filters to reduce noise.

Cores

Using the radar data, we selected core sites in order to minimize
the probability of encountering debris bands. We retrieved the
cores using a 3-in Badger Eclipse rotary drill during April and
May 2017. The cores reported here are JA (63.4750° N,
145.6753° W, 1621 m), JB (63.4749" N, 145.6759° W, 1625 m)
and JE (63.4743" N, 145.6766 W, 1625 m), collected ~100, ~75
and ~25m from the lateral boundary (Fig. 1). Three additional
cores were attempted, with englacial debris preventing access to
the bed. Core segments were logged, moved to a —20°C freezer
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on site, then flown to —20°C cold rooms at the Fairbanks, AK,
Cold Regions Research and Engineering Laboratory. There, we
photographed all core segments on a light table and selected a
subset of core segments to return to Maine. During shipping,
cores remained below —15'C. Storage at a commercial freezer
facility in Maine is maintained at —20°C or colder. We were
unable to retain azimuthal data for the core segments.

Televiewer

Using a QL40 OBI optical televiewer from Advanced Logic
Technology, we recorded the intensity of light return of the bore-
hole walls with depth. The televiewer produces an unwrapped
image of the wall, converting a cylinder in real space to a 2-D
image. Thus, a planar dipping layer appears as a sinusoid, with
the peak and trough representing the azimuth of the up- and
down-dip directions. Using this relationship, we calculated the
orientation of dipping layers throughout the borehole and charac-
terized them as light, dark or intermediate. In addition, by com-
paring photographs of the core with the televiewer images, we
attempted to document the azimuth of each core segment. We
concluded that the uncertainty was too high to have confidence
in the determinations; therefore, although we report azimuthal
data for the borehole wall imagery, we present all core data with
no azimuthal component.

Microanalysis

For selected core segments, we prepared thin sections for imagery
and slabs for electron backscatter diffraction (EBSD) analysis. All
sections are in plan view, perpendicular to the core axis, with a
downbhole viewing direction. We photographed whole thin sections
on a light table at multiple orientations relative to crossed polariz-
ing filters. For samples cut from a single block, we manually traced
complete grain boundaries (i.e. no edge grains) and bubbles. Using
Image] (https://imagej.nih.gov/ij/), we calculated grain and bubble
geometric statistics. Here we report grain size, grain circularity
and bubble aspect ratio. We report grain size as the diameter of
a circle with an area equivalent to that measured in the grain.

EBSD analysis employed a Tescan Vega II electron microscope
fitted with a tungsten filament and a custom-built liquid nitrogen
cooled stage. Hardware and software were a EDAX Digiview IV
camera and OIM Data Collection v. 5.3. To prepare the sample,
we manually cut, shaved and mechanically abraded (using sand-
paper and polishing cloths) the ice block in a —20°C freezer to
~5 cmx7 cmx1 cm, generating a smooth, flat surface. Although
we cut most sections from a single layer of ice, for segments
with very large grains (multi-cm), we cut strips from two or
three segments spaced farther apart than the grain size in order
to incorporate a greater number of grains in a single analysis
(cf. Monz and others, 2021). We froze the sample to a similarly
sized copper plate. We prepared all samples in a cold room
then transferred them to the electron microscope laboratory in
a cooler containing liquid nitrogen, thus preventing frosting.
We introduced samples to the electron microscope through a
nitrogen-gas flooded glovebox onto a copper plate precooled to
~—150". In most cases, frosting was sufficiently minimal that
we were able to begin analysis as soon as the system achieved
our target pressure of 5 Pa. For some samples, we cycled the pres-
sure (see Prior and others, 2015) to reduce frost. During analyses,
sample temperatures were typically —110 to —100°C.

Although total area and step size varied from sample to sam-
ple, typical step sizes were 60 um, collected at a tilt angle of 60°
and working distance of ~35mm with a dwell time of 50 us.
Beam conditions were ~125nA with 15KkV accelerating voltage.
We utilized 60", rather than the more common 70, tilt for the
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Fig. 1. Geographic and glaciological frameworks of the study area. (a) Location of Jarvis within the eastern Alaska Range, with the study area marked by the white
rectangle. View direction for (b) is marked. Basemap image provided by the Polar Geospatial Center. (b) Oblique view of the field site (view to the southeast), with
the core ice origin (arrow) labeled. Rectangle indicates the study area. (c) Aerial view of core site with no snow cover and core locations marked. (d) Stake-derived
velocity map of field site. (e) Lower hemisphere stereographic plot of orientations of debris bands measured at the surface.

samples in order to image as large as possible within the geomet-
rical constraints of the electron microscope chamber. Tests indi-
cated that the different tilt did not affect data quality or accuracy.

EBSD data processing

Although the EDAX indexing rate was high (typically better than
90%), accuracy due to symmetry challenges was not sufficiently
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high to permit automatic grain analyses. However, we were able
to manually identify grains. By validating orientations through
multiple point analyses in each grain, we produced a dataset
with one point per grain for each sample. Some orientations
(<5% of the dataset) were particularly challenging for the software
to index accurately, even though the diffraction pattern was suffi-
ciently strong to identify bands. In nearly all of those cases, we
manually indexed the diffraction pattern. In the end, our dataset
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represents over 99% of the grains in the slabs. Because of the
orientation artifacts within grains, we did not calculate grain
geometry statistics from EBSD data, but rather utilized the data
from the thin sections made from ice adjacent to the EBSD slab.

From each sample’s grain orientation dataset, we calculated
an orientation tensor for c-axes, a mathematical construct
describing the weighted distribution of c-axes in three dimensions
(cf. Allmendinger and others, 2011).

The components of a symmetric 3-by-3 orientation tensor a
are:
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where n is the number of points and x, y and z are the spatial
components of the unit vector describing the c-axis orientation
for the ith grain.

Although the tensor has both shape and orientation, because
of the lack of azimuth control on our samples, we compared
only the length and inclination of the principal axes (i.e. eigenva-
lues and eigenvectors) of the tensor between samples.

Christopher Gerbi and others

Macroscopic observations

We employed radar surveys to determine ice thickness, select
areas for coring with minimal englacial debris and determine
the thermal structure of Jarvis Glacier as it relates to each core
site. Surface-to-bedrock 100 MHz GPR profiles collected within
the local study area revealed ice thicknesses reaching over 100 m
and 10-22 m of a low-scattering layer overlying higher scattering
(Fig. 2). Past studies have interpreted this as a polythermal archi-
tecture, with cold ice over warm, but the scattering increase could
be due solely to ice with low water content overlying ice with high
water content (e.g. Campbell and others, 2012). Temperature data
(Lee, 2019) suggest that all ice is warmer than —2°C.

Based on abundant water, resistance to drilling deeper and
GPR surveys, we infer that JA and JE reached the bed at 80 and
18 m, respectively, whereas JB terminated at a debris band at
30 m. The coring and GPR results suggest a bedrock slope reach-
ing 41°. The local 100 by 60 m GPR data grid collected near the
valley wall revealed debris or shear bands dipping up-glacier at
10-15". Using an interpretation scheme focused on the phase
polarity of the radar triplet (Arcone and others, 1995), these hor-
izons, in most cases, suggested a transition to very high permittiv-
ity values relative to the ice above. We attribute that transition to
high water content, which is consistent with observations of water
flowing out of borehole walls at certain depths while drilling.

Visual core logging at the time of extraction and in a cold
room with transmitted light revealed that the cores were heteroge-
neous in many aspects, including bubble size, bubble density,
presence of debris layers, presence of bubble-free layers and frac-
tures (Fig. 3). Many distinct structural features have length scales
of centimeters (Fig. 3c). Below 6m in JA, 21 m in JB, and
throughout JE, the extracted chips and/or cores were commonly
wet; some core segments were wet enough to characterize as
slushy. Abundant water resided at the bottom of borehole JA.
Bands measured at the surface had a general dip distribution to

Fig. 2. Profiles of 100 MHz ground-penetrating radar grid survey along the lateral margin of Jarvis Glacier showing bedrock (black arrows), ice with low- and high-
signal scattering (separated by dotted white line), inferred debris bands which act as water conduits advected into the ice from the bed due to ice flow (white
arrows), and successful drill site JE. Location of the radar grid shown in Figure 1. Depth is derived from two way travel time (TWTT) based on a relative permittivity

of ice of 0.169 m ns™%.
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the northeast and southwest at a moderate angle. Layers measured
in the borehole walls using optical televiewer images show a more
diffuse northeast-southwest pattern, with no strong concentra-
tions. JA and JE exhibit overlapping band orientation distribu-
tions, with some unique areas (Fig. 3d): JE contains nearly
exclusively southwest-dipping bands, whereas JA is more dis-
persed northeast to southwest. Consistent with surface band mea-
surements (Fig. le), the strike of almost all bands recorded in the
borehole walls is subparallel to the flow direction. We discerned
no substantive difference in orientation of the dark versus light
bands. Tiltmeters installed in JA and JE indicate shear along hori-
zontal planes (i.e. change in longitudinal velocity with depth) in
both holes, with a higher degree in JE (Lee, 2019). The horizontal-
plane shear strain rate reported by Lee and others (2020) at the
bottom of JE is comparable to the vertical-plane shear strain
rate indicated by the velocity stake data. The base of JA appears
to deform at approximately half that rate. Moreover, flow at JE
appears to be more sensitive to stress via a higher stress exponent
(Lee and others, 2020).

Microstructural observations

We performed EBSD analysis on 19 samples for JA and eight
samples from JE and light microscopy for 13, 8 and 6 samples
from, respectively, JA, JB and JE. Although we analyzed each
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Fig. 3. Macroscale core and borehole data. (a) Depths
of samples used for this study. (b) Example optical
televiewer image of borehole wall. With the
‘unwrapped’ borehole wall image, planes appear as

JA  sinusoids (e.g. annotated with red dotted line). (c)

JE Example televiewer image of ice core illustrating
bands, which are variably present throughout the
cores. (d) Lower hemisphere stereographic plot of
orientations of bands determined from televiewer
images.

core with depth, differences therein were smaller than between
cores; as such we focus most of our discussion on the latter. See
Tables S1 and S2 for additional information and Figures 4 and S1
for thin section images.

General description. As with the macroscopic observations,
many microstructures are heterogeneous on the centimeter
scale, but heterogeneity is not ubiquitous. To pick two metrics,
grain size and bubble distribution, in JA, nine out of 20 samples
shown in Figure S1 exhibit bimodal grain size distributions and
eight out of 13 samples in which we mapped bubbles exhibit a
patchy distribution. For JB, the frequency is three out of eight
for grain size and two out of eight for bubble distribution. For
JE, the frequency is one out of six for grain size and three out
of eight for bubble distribution. Grains in JE, including fine
grains, are more lobate than those in JA or JB. In most samples,
grain lobes exhibit one or more straight segments. Triple junction
angles in all sample span a wide range; no samples manifest a
strong foam texture appearance.

Bubble aspect ratio. The bubble aspect ratio distribution
(Fig. 5) is relatively consistent within each core, as well as across
JA and JB. Both of these cores exhibited right-skewed distributions,
with, respectively, 25 and 28% of the bubbles in the range of
1.05-1.15 (Fig. 5). Aspect ratios >2 constitute 9 and 1.6% of the
total. Aspect ratios in core JE data are left-skewed and distinct from
JA and JB. Approximately 24% of all bubbles have aspect ratios >2.


https://doi.org/10.1017/jog.2021.62

1168

JATT7 (79m)

Christopher Gerbi and others

" JE15 (10m)

Fig. 4. Representative images of thin sections, illustrating grain shape and size distribution. Fine-grained areas on the perimeter are where water seeped under the

sample.

Grain size. Although grain size can be heterogeneous at the
thin section scale, the overall distribution throughout each core
is relatively constant (Fig. 6). JA has dominant small grain popu-
lations, under 2 mm diameter. JB has a mixture of dominant areas
of small and large populations. JE largely comprises large grains,
with many over 5 mm diameter, although one sample has exten-
sive small grains.

Grain circularity. Circularity measures the full perimeter of an
object relative to that of its contained area:

C=4mA/P? )

where A is the area of the grain and P is the perimeter. Hexagonal
grains have a circularity of 0.907. Core JA exhibits some coherence
down core, with most grains exhibiting circularity from 0.6 to 0.8
(Fig. 7). JB and JE exhibit little coherence, in part due to the small
number of grains in some samples, and therefore contain a wide
range of grain shapes, with most circularities from 0.35 to 0.8.
However, averages across the data profiles — thick lines in Figure 7
— reveal that JE is skewed toward lower values than are JA and JB.
Crystallographic orientation. The data reported here are one
point per grain, with no additional processing (Fig. 8). We recog-
nize the possibility (Fan and others, 2020) (Monz and others,
2021) that highly lobate grains may be represented in the dataset
more than once, and discuss this further below. With that acknowl-
edgement, consistent with the grain size data (Fig. 6), we observed a
wide range of number of grains per sample, from #n =13 to 454.
Pole figures (Figs 9, 10) illustrate that some non-isotropic fab-
ric exists, visible in both the ¢- and a-axes. The orientation tensors
of c-axes for each sample (Fig. 11; Table S1) reveal significant
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overlap between JA and JE, but also some distinctions. A ‘Flinn’
style diagram (Fig. 11a), in effect describing the shape of the
aggregate crystallographic fabric, reveals that the orientation ten-
sor for JE is more prolate than that of JA, as well as consistently
farther from isotropy. The ratio of the maximum to minimum
principal axes of the orientation tensor (Fig. 11b) indicates that
JE has a stronger fabric than JA at comparable depth. JA increases
in fabric intensity with depth, approaching that of JE at their
respective bases. The base of JA contains large grains, so the
grain statistics at that depth yield higher uncertainty.

The a-axes of all samples range in distribution consistent with
the c-axis patterns (Fig. 10). Several samples display relatively dis-
persed a-axes (e.g. JA22, 106), but many contain a diffuse girdle
(e.g. JA74, JA91, JE12). The JE samples have stronger girdle pat-
terns than do the JA samples, consistent with the more prolate
c-axis orientation tensors (Fig. 11a, Table S1). No sample displays
strong clusters of a-axes.

Discussion
Optical observations

Grain size is similar within each of the cores, but the patterns dif-
fer between cores (Fig. 6). On average, grains closer to the margin
are coarser. Grain shape, as determined by circularity, is also
somewhat different. Only core JA has a coherent grain shape pat-
tern, with most samples displaying a similar distribution of circu-
larity (Fig. 7), peaking at 0.7 and having a long tail toward 0.3. JB
and JE have some samples that display a similar circularity profile
as JA, but also several samples that exhibit highly variable


https://doi.org/10.1017/jog.2021.62

Journal of Glaciology

1169

Bubble aspect ratio

a 05r- (o
1.0 1.2 1.4 1.6 1.8 2.0
0
045
c —
Re) '
o] 10
©
S
L
- b i
] _— —_—
o) —
E _—
2 20 ,
—_— 4 —
g
— e
—
30
c
-
Q.
]
. =~ ——— 0O F !
3 3.5 4 4.5
b — — 40
c
Re] 50
e
9]
©
S
L
S
()] 1
Q ———S—
£ 60 ,
S
=z
]
=
-
o
>
70
£ JA .
v —— JB
0 | | | | | | | 80
1 1.5 2 2.5 3 3.5 4 4.5

Bubble aspect ratio

Fig. 5. Bubble aspect ratio measurements. (a) Number frequency histograms of bubble aspect ratios for all samples (thin lines) and core averages (thick lines).
(b) Cumulative frequency plots, using the same dataset and legend as in (a). (c) Plot of average bubble aspect ratio, with standard deviation, versus depth.

patterns. As noted previously, the low number of grains in some
samples may introduce some of the noise in the data. The some-
what faceted geometry of the lobate grain boundaries may be due
to the high homologous temperature (cf. Piazolo and others,
2006) or the presence of liquid water during recrystallization or
post-extraction liquid water crystallization.

To a first order, bubble aspect ratios relate to the degree of
finite strain. JE exhibits higher aspect ratios than JA or JB, consist-
ent with the strain measurements derived from the tiltmeter data
(Lee and others, 2019), the velocity stake measurements, and
standard model predictions.

In sum, the optically visual microstructure indicates that core
JE experienced more strain than JA and JB, and that a larger grain
size and less circular grain shapes correlate with the strain differ-
ence. The grain sizes lie in a range where they are unlikely to have
a significant effect on the local ice rheology, although strain may
have localized along fine-grained bands.

https://doi.org/10.1017/jog.2021.62 Published online by Cambridge University Press

Crystallographic orientation fabric distribution

In this section, we compare the distribution of crystallographic
axes between the cores in more detail. Our main focus is to define
the rheologically significant patterns to the extent possible and
identify any differences between the margin of streaming ice
(JE) and ice closer to the centerline (JA). JA is not at the center
of the ice, but aerial imagery suggests that it occupies a strain
regime similar to the centerline (Fig. 1). Although no strong fab-
rics (e.g. single pole, multipole, girdle) developed in any sample,
we do observe some notable relationships.

First, c-axes in JE are more clustered near horizontal than are
those in JA (Figs 9, 11c). We interpret this to mean that, for the
most part and consistent with theory, the highly inclined c-axes
have rotated toward the horizontal and/or preferentially grown
in this orientation with increased strain in JE. The c-axis orienta-
tions at the base of JA are of intermediate inclination values
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Fig. 6. Grain size measurements. (a) Number frequency histograms of grain sizes for all samples (thin lines) and core averages (thick lines). (b) Cumulative fre-
quency plots, using the same dataset and legend as in (a). (c) Plot of average grain size, with standard deviation, versus depth.

compared to JA and JE. With no azimuth control, we cannot
evaluate the horizontal orientation of any samples relative to
the shear plane.

Second, even without azimuth control, we can evaluate the
shape of the orientation tensor and find that JE has on average
more concentrated c-axes than does JA (Fig. 1la). Moreover,
the shape of the c-axis distribution is closer to prolate (single
pole) than oblate (girdle). However, the shape of the orientation
tensors for JA and JE do exhibit some overlap.

Third, although slight, we observe a change in crystallographic
fabric intensity in JA with depth. This is best seen in the increase
in the ratio of the maximum and minimum principal axes of the
orientation tensor (Fig. 11b). Again, this is consistent with theory
in that ice near the bed should have higher shear strain and there-
fore develop stronger fabric. Taken at face value and assuming
that the area sampled represents the local volume, the strength
of the fabric at the base of JA approaches the strength of the fabric
throughout JE.
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The a-axis patterns are consistent with the c-axis patterns and
suggest that there is little clustering of a-axes, promoting the
notion that the ice sample rheology approaches transverse isot-
ropy. The lack of a-axis clustering contrasts somewhat with obser-
vations of natural and experimental sample sets that display a
mixture of clusters and girdle distributions (Miyamoto and
others, 2005; Wongpan and others, 2018; Journaux and others,
2019; Qi and others, 2019; Monz and others, 2021). In both of
our cores, the microstructure, including fabric, is heterogeneous
with depth, indicating that the mechanical history and structure
are not completely systematic.

Implications for fabric formation in other settings

By almost any measure, our measured fabrics are relatively weak.
However, as with other microstructural metrics (Figs 6, 7), JE has
developed a fabric distinct from that of JA (Figs 9, 11). This fabric
gradient is consistent with the strain gradient, as suggested by
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Fig. 7. Grain shape measurements. (a) Number frequency histograms of circularity for all samples (thin lines) and core averages (thick lines). (b) Cumulative fre-
quency plots, using the same dataset and legend as in (a). (c) Plot of average circularity, with standard deviation, versus depth.

surface features (Fig. 1c), tiltmeter data (Lee and others, 2020)
and bubble morphology (Fig. 5). In general, fabric formation is
likely to be strongest where dislocation creep is the dominant
deformation mechanism and as flow distance increases
(Russell-Head, 1985; Castelnau and others, 1996; Treverrow and
others, 2012; Journaux and others, 2019). The study area, where
warm, wet ice has moved a short distance along a wet bed presents
extremely challenging conditions for fabric development. Yet, the
presence of a discernible fabric in this setting indicates that crys-
tallographic alignment should become prominent in larger gla-
ciers ice streams and/or colder settings, consistent with results
from, for example, (Hudleston, 1977), (Jackson and Kamb,
1997) and (Monz and others, 2021).

Given the potential rheological impact of anisotropic ice (e.g.
Russell-Head and Budd, 1979; Gillet-Chaulet and others, 2005;
Martin and others, 2009; Minchew and others, 2018; Hruby
and others, 2020), it is clear that the community needs additional
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fabric measurements in glacier and ice stream margins from dif-
ferent settings.

Rheological controls

Ice rheology reflects a number of properties and processes,
including grain size, grain shape, stress magnitude and orienta-
tion, interstitial water content and crystallographic fabric. When
considering the importance of crystallographic fabric, we first
must acknowledge that three-dimensionally lobate grains that
appear as separate grains in two dimensions (cf. Monz and
others, 2021) certainly impact the statistical robustness of
strength-of-fabric calculations derived from one point per
grain. However, if we view the mechanical properties of the
ice as a response to the volume fraction of different orientations,
the absolute number of grains is less significant than the area
sampled. Recognizing that, a one-point-per-grain data analysis,
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For JA10, we present large and small grains separately.

such as we perform here due to the analytical restrictions, impli-
citly assumes an equigranular microstructure. Because several
samples display a wide grain size variation, we calculated the
impact of the equigranular approximation (e.g. JA10L versus
10S in Figs 9-11). That calculation found that although individ-
ual sample properties can be affected, the approximation does
not impact the overall study conclusions, particularly given
that the fabrics are not strong.

Even though Jarvis Glacier exhibits a relatively weak fabric, vel-
ocity patterns, macroscopic structures, tiltmeter data and bubble
morphology all indicate that strain concentrated in the margin.
This could be due to a number of factors, including temperature,
water content, and stress concentrations. Liquid water existed at
all core sites, meaning that the water content does not appear
to have been higher in the margin than toward the center of gla-
cier. However, we did not perform a contemporaneous assessment
of intergranular water and cannot quantitatively assess whether
differences exist between core sites. Given that mean temperatures
were above —2°C across all cores (Lee, 2019), any thermal effect
would have been small. Finally, as noted above, crystallographic
fabric does not appear strong enough to measurably influence
bulk kinematics (cf. Hruby and others, 2020). Taking these inter-
pretations together, a likely candidate to drive the observed strain
gradient is a stress gradient, rather than a change in material
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properties. Because the bed geometry highly influences the stress
state, we would require more detailed bed measurements and
modeling to test that hypothesis.

Conclusions

Our investigation of three ice cores in the margin of Jarvis Glacier,
two of which reached the bed, reveals that microstructural prop-
erties are more consistent within cores than between cores. Grain
shape, grain size, bubble aspect ratio and crystallographic fabric
all vary with proximity to the lateral margin. Grains are less cir-
cular and larger, and bubbles are more elongate nearer the mar-
gin. The c-axes closer to the margin are slightly more
concentrated and fewer are steeply inclined. The relationship
between microstructural features and rheology remains insuffi-
ciently known to establish outside uncertainty whether the
observed differences in grain size, grain shape and crystallo-
graphic orientation are sufficient to account for the increased
strain at JE compared to JA. The other leading factor driving
increased strain is stress concentrations near the margin, which
we are not able to evaluate at the present time. The study site
has abundant englacial water, mean temperatures warmer than
—2°C, and lies less than a kilometer from the source, all factors
that impede fabric development. The fact that a measurable fabric
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developed in Jarvis Glacier, where conditions are unfavorable,
suggests that many shear margins will develop a rheologically
significant crystallographic orientation fabric.

Supplementary material. The supplementary material for this article can
be found at https:/doi.org/10.1017/j0g.2021.62
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