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THE LAMBDA-PROPERTY FOR GENERALISED DIRECT
SUMS OF NORMED SPACES

ROBERT H. LOHMAN AND THADDEUS J. SHURA

This paper considers direct sums of normed spaces with respect to a Banach space
with a normalised, unconditionally strictly monotone basis. Necessary and suf-
ficient conditions are given for such direct sums to have the A-property. These
results are used to construct examples of reflexive Banach spaces U and V such
that U has the uniform A-property but U* fails to have the A-property, while V
and V fail to have the A-property.

If X is a normed space and x is in the closed unit ball Bx of X, a triple (e, y, A)
is said to be amenable to x in case e € ext (Bx), y G Bx, 0 < A ^ 1 and a; =
Ae + (1 — A)y. In this case, the number A(s) is defined by

A(s) = sup{A : (e,y, A) is amenable to a;}.

X is said to have the A-property if each x £ Bx admits an amenable triple. If X
has the A-property and A(X) = inf{A(z) : x £ Bx} > 0, then X is said to have the
uniform A-property .

General facts and geometric ramifications concerning the A-property can be found
in [1] and [4]. It is now known that many different types of classical sequence and
function spaces have the A-property or uniform A-property (see [1-3, 5, 7, 10]). In

this paper, our goal is to consider generalised direct sums of the form I © ^2 Xk ) i
V *=i / z

where Z is a Banach space with a normalised, unconditionally strictly monotone basis
and (Xk) is a sequence of normed spaces. We give necessary and sufficient conditions
for such spaces to have the A-property (Theorem 8, Corollary 10) or to have the uniform
A-property (Theorem 9, Corollary 11). In particular, our results generalise Theorem 3

/ oo \
of [5], which considered I © ^ %k I • Using our results, we are able to give exampl

of reflexive Banach spaces U and V such that U has the uniform A-property but U*
fails to have the A-property , while V and V* both fail to have the A-property .
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442 R.H. Lohman and T.J. Shura [2]

0. NOTATION

Throughout the paper, Z denotes a Banach space with a normalised uncondi-
tional basis (zjb). The basis (zj) is said to be unconditionally monotone in case
oo oo

Z and for all k imply

(1)
t = l J b = l

If, in addition, |a^| < \bk\ for some k implies strict inequality in (1), then (zk) is said
to be unconditionally strictly monotone. For example, the standard unit vector bases of
£p, 1 < p < oo, are unconditionally strictly monotone, while the standard unit vector
basis of Co is not. Throughout the paper, it is assumed that (z&) is unconditionally
strictly monotone. Sx denotes the unit sphere of a normed space X. If X and Y are
normed spaces, we write X = Y if X is isometrically isomorphic to Y.

Given a sequence of normed spaces, X = ( 0 X) -̂ * ) denotes the normed

space

{x — (xk) : xk 6 Xk for all Jb and \ . ||x*||zt £ Z}
k=i

with ||as|| defined by

x =
k = l

If each space Xk has the A-property , we denote its A-function by At. In this case, if
x = (x*) € Bx and x ^ 0, we write

lz*l

1. THE A-PROPERTY IN
V *=1 )2

/ oo \

In order to investigate the A-property for the normed space X — I © £) Xk I ,

it is necessary to have a description of the extreme points of Bx • We wish to thank
Professor Pei-Kee Lin for pointing out such a description (Lemma 1) and for suggesting
investigation of the A-property in general spaces X as above. The proof of the following
lemma is essentially the same as that for the case Z = lp (see [9]) and is omitted.
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[3] The lambda-property 443

LEMMA 1 . If x = (z*) G BX > the following are equivalent:

(a) x e ext{Bx)

(b) 53 ||**||** G ext {Bz) and zt/ | |zt | | £ ext (BXk), ifxk £ 0.
t=i

REMARK 2. Let (e*) be a sequence of scalars with \ek\ = 1 for all k.
The mapping T : Z -+ Z, defined by

( oo \ ex>

4=1 / 4=1

is a linear isometry of Z onto Z. In particular, z G ext {Bz) if and only if T(z) 6
ext (JBZ).

LEMMA 3 . Assume that each summand X^ has the \-property and x = (x*) 6
oo / oo oo \

Sx- C 53 ll**!!2* admits an amenable triple I 53 a*2*) 53^*^*>^J ant^ -^(z) > <̂
t=i \fc=i Jfc=i /

tiien x admits an amenable triple and A(x) ^ AA(x).
PROOF: Let 0 < a < A(x). If xk £ 0, then a < A(z) < Afc(xfc/||x*||). By

Proposition 1.2 of [1], there is a triple (e^,y^,a) amenable to Xt/||xj.||. If x». = 0,
define 64 = 1/̂  = 0. Then for all k, we have

(2) xh =

OO OO

Since 53 ||*4||*4 = 53 [^a* + C1 - )̂̂ ife]«fc> w e obtain

(3) ||*»|| = Ao4 + ( l - A ) 6 j

for all Jb. By (2) and (3), write xk = (aAJa^ej. + (1 — aA)yt, where

y* ~ 1 - aA

Next, observe that all of the sequences (ajte^), (6jet), (a*l/i), (6*l/J.) are in
00 00

(for example, ||(atej.)|| = || 53 lla*eJb|k*|| < II 53°*2*ll = !)• Thus, if y = (yk), we have
t=i *=i

- a)A||(aty't)|| + (1 - a)(l - \)\\{bky'k)\\
j3^ < I-

Letting e = (ate^), we see that ||e|| ^ 1. Since z = a\e + (1 — aA)y, 0 < aA < 1 and
||x|| = 1, we must have ||e|| = \\y\\ - 1. Therefore,

4=1 4=1
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oo

By strict monotonicity, ||<zjbejb|| = \a.k\ for all Jfc. Consequently, X) lla*e*llz* =

oo oo oo

53 latlzjfc. By hypothesis 53 a * z * e e x t [Bz)- Remark 2 yields 53 |a*lz* £ ext {Bz)-
fc=i *=i fc=i

Also, if ajtei ^ 0, then e* € ext [Bxk) and a*et/||ate*|| = e^e*, where |ejfe| = 1.
Therefore, ajfcefc/||aji.ejfe|| G ext [Bxk) whenever a^et ^ 0. By Lemma 1, e G ext {Bx)-
This shows (e,y, aA) is amenable to x and establishes the fact that A(x) ^ aA. Taking
the supremum over all such o establishes A(x) ^ AA(as).

THEOREM 4 . Assume that Xk,k = 1, 2 , . . . , and Z have the X-property . If
there exists a subset No of N, with Unite complement, such that inf Afc(Xjfc) > 0,

then
/ oo \

(i) X = I © ̂ 2 Xk I has the X-property .
\ fc=i Jz

(ii) IfO^x = (xk)EBx,

\Jfe=l

PROOF: Let 0 ^ x = (xk) e Bx. Then z/||x|| = (zjt)/||x|| G Sx and
oo / oo oo \
53 (||x/fe||/||a;||zib) admits an amenable triple I ^ a*2*, 53 6*2*, A I, where
*=i Vt=i *=i /

A < A f Edl**!!/!!1!!)2*)- S i n c e i n f A*(Xfc) > 0, it follows that A(a;) > 0. By
\t=i / *eNo

Lemma 3, z/||z|| admits an amenable triple and

Taking the supremum over all such A shows

(R)
OO „ i

By the proof of Lemma 2.1 of [1], x admits an amenable triple, establishing (i), and
X(x) > ((1 + \\x\\)/2)X(x/\\x\\), estabUshing (ii). D

In order to obtain a converse of Theorem 4, we need ext(Bz) to have a diversity
of extreme points.

DEFINITION 5. The extreme points of Bz are said to be diversified if for each increasing
oo

sequence (kn) in N, Bz has an extreme point of the form 53 anzkn > where an ̂  0 for
n=l

all n .
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REMARK 6. There are many different conditions under which the extreme points of
Bz are diversified. Let (jfen) be an increasing sequence in N . If Z is strictly convex,

oo

let w = 53 (z*n)/(2n)- Then w/||u>|| *s a n extreme point of Bz of the form required
n=l

in Definition 5. Also, if Z is a symmetric space (see [8]) and Bz contains an extreme
oo

point 5Z o-kZk with infinite support, let the nonzero ak 's be indexed by ji < J2 < • • • •
*=i

00

Then the vector J^ ajn
zkn is a n extreme point of Bz • Finally, if the extreme points of

n=l

Bz are diversified, then for each increasing sequence (kn) in N , Remark 2 guarantees
0 0

that there exists Ẑ °«z*n £ ext(JS^) with on > 0 for all n.
n = l

= (© £ Xk )
\ k=i )

THEOREM 7 . Assume X = (© £ Xk ) has the X-property . Then:
)

(i) Each summand Xk has the \-property .
(ii) Z has the X-property .
(iii) I/, in addition, the extreme points of Bz are diversified, there exists a

subset No of N, with finite complement, such that inf At(Xjt) > 0.
*€N

PROOF: (i) We show that X\ has the A-property (the proof for other indices
is the same). If x\ G Sxx > define x = (z i ,0 ,0, . . . ) . By hypothesis, we can write
x = Ae + (1 - X)y, where e = (efc) G ext (Bx), y = (yk) G Bx, 0 < A ^ 1. If
A = 1, then x = e and x\ = e\ £ ext (Bxy) by Lemma 1. If 0 < A < 1, then
xi = Aei + (1 — A)j/i forces ||ei|| = ||yi|| = 1. By strict monotonicity, ê  = yk — 0
for k ^ 2. Then e\ G ext (-B^!) and (ei,yi, A) is amenable to Zi. Since unit vectors
in Xi admit amenable triples, the proof of Lemma 2.1 of [1] shows that Xi has the
A-property .

00

(ii) It suffices to show that each z = ^2 UkZk G Sz admits an amenable triple.
fc=i

By Remark 2, we may assume ajt > 0 for all k. For each fc, choose et G ext (Bxk)
and define z = (a*ejb). Then ||z|| = ||z|| = 1. We can write x — Ae + (1 — X)y, where
e = (vk) G ext (Sjf) , 3/ = (j/k) G 5 x and 0 < A < l . IfA = l , then x = e and Lemma 1
yields 2 G ext (JB^r). Thus, we may assume 0 < A < 1. For all k, we have

= Xvk + (1 - X)yk.
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Therefore,

1 = llxll =
* = 1 t= i

k=l

oo

J b = l

= 1.

By strict monotonicity,

for all k. Consequently,

* =

= X\\vh\\+(l-X)\\yk\\

- A) (f; iiy4n^

by Lemma 1, it follows that I £) |jvjtĤ Jb> S Hytll^ti-
\Jfc=i fc=i

Since J3 ll^ibll-2* G
fc=i

amenable to z.
(iii) Assume, to the contrary, that no such set No exists. Then there exist k\ <

&2 < ••• with Ain(Xin) —• 0. Therefore, we can choose «in G Sxk such that
oo

Afcn(wjtn) —• 0. By hypothesis, there exists JZ akn
zkn € ext (Bz) with ajtn > 0 for all

n=l
n. If Jfc ^ {Jfei,*2,...}, define ak = 0, uk = 0. Then x = (akuk) € Sx •

We can write x = Ae + (1 — X)y, where 0 < A ^ 1, e = (vk) G ext (Bx), y =

(yk) G Sx • If A = 1, then x — e and, by Lemma 1, ukn 6 ext (-Sx^ ) for all n, which

contradicts Xkn(ukn) —* 0. Thus, 0 < A < 1 and, as in the proof of (ii), we obtain

for all A;. In particular, vk = yk = 0 for k £ {fcj, Jb2,...}. Therefore,

oo / oo \ / oo

Y*knzkn = x[Y
n=l \n=l
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oo

Since J3 °*nz*n £ ex* (Bz), we must have
n = l

oo oo oo

n= l n= l n= l

for all n. Therefore, for all n

But Wibn/llwifcnll G ext I-BJCJ ) implies Afcn(tttn) ^ A for all n, a contradiction. U

Combining Theorems 4 and 7, we obtain

THEOREM 8. Assume that the extreme points of Bz are diversified. The follow-
ing are equivalent:

/ oo \
(a) X — I © 53 -^* ) •'las *^e X-property .

\ *=i /z
(b) Each space A"* has the A-property , there exists a subset No of N, with

Unite complement, such that inf Afc(Xfc) > 0, and Z has the X-property
*6N

We now turn our attention to the uniform A-property .

THEOREM 9 . The following are equivalent:
/ oo \

(a) X = I © 53 -^* ) has the uniform X-property .
\ t=i /z

(b) Each summand Xk has the uniform X-property , A = iniXk(Xk) > 0 and

Z has the uniform X-property .

In this case, we have

X(X) > ±X(Z).

PROOF: (a) => (b). By Theorem 7, each summand Xk has the A-property .
Moreover, the proof of Theorem 7 shows that if Xk € Sxk , then

Xk(xk) > A(0,... ,0,*fc,0,...) > X(X) > 0.

It follows from Lemma 2.1 of [1] that A > 0.
(6) => (a). This follows from Theorem 4, as does the asserted inequality. D

In case the summands are the same, we can sharpen our results as follows.
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COROLLARY 1 0 . Let X* = Y for all k and assume Bz contains an extreme
point with infinite support. The following are equivalent:

(a) X = (© £ Y ) has the X-property .
\ t=i )z

(b) Y has the uniform X-property and Z has the X-property .

PROOF: (b) =» (a). This follows from Theorem 7.

(a) =>• (6). By Theorem 7, Y and Z have the A-property . If Y fails to have the
uniform A-property , there is a sequence (wn) in Sy with A(i»n) —• 0. By hypothesis,

oo
there exists ]Ca*nz*n e e x* (Bz) with ofcn > 0 for all n . Define a* = 0 if Jb £

n=l

, . . . } and let
wn, if k = kn for some n{

We can then write x = (a^ujt) and proceed as in the proof of part (iii) of Theorem 7
to obtain the same contradiction as before. D

An immediate consequence of Theorem 9 is

COROLLARY 1 1 . Let Xk = Y for all k. The following are equivalent:

(a) X = I © £ Y 1 has the uniform X-property .
V *=i )z

(b) Y and Z have the uniform X-property .

In this case, X(X) ^ X(Y)X(Z)/2.

Combining Corollaries 10 and 11, we obtain

COROLLARY 1 2 . Assume that Y has the uniform X-property and that Z has
the X-property but not the uniform X-property . If Bz contains an extreme point with

/ oo \
infinite support, then I © £ Y I has the X-property but not the uniform X-property

\ *=i >z

The preceding corollary provides us with the following curiosity which one should

compare to the well-known fact that I © £ tp I = tp, 1 ^ p < oo.
\ *=i /*, ,

COROLLARY 1 3 . If Z has the X-property but not the uniform X-property and
/ oo \
I © $3 % J — Z, then all the extreme points of Bz have finite support.
\ k=i ) z

REMARK 14. In view of Corollary 12, it should be noted that there are spaces Z which

have the A-property , fail to have the uniform A-property and for which Bz contains

extreme points with infinite support. For example, consider l\ and t^ over the reals

and let Z — (£i © £2)/3 (that is, Z £ (^ © R © R © • • • )tj V Then Z has a normalised
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unconditionally strictly monotone basis and, by Lemma 1, Bz contains extreme points
with infinite support. On the other hand, l\ has the A-property but not the uniform
A-property ([1]). Consequently, Theorems 8 and 9 imply that Z has the A-prbperty
but not the uniform A*property . • '

2. REFLEXIVITY AND THE A-PROPERTY

We close with two examples concerning reflexive Banach spaces. It has been con-
jectured that reflexivity might play a special role in the study of the A-property and
the uniform A-property . W e now show that the most natural questions one might pose
regarding reflexive spaces and the A-property have a negative answer. Consequently,
reflexivity does not appear to play any significant role in the study of these properties.

It follows from the results of [1] that A ( ^ ) = 1/2 and \{i\) < 1/ib for all k. By
Theorem 9, the reflexive Banach space

has the uniform A-property . Since U* = I © 53 ̂ i I > Theorem 8 shows that U* fails
\ *=i / / ,

to have the A-property (this fact was also obtained in [6] by means of direct calculations
rather than a general theorem).

Now let V = (U © U*)tj; that is,

Then V is a reflexive Banach space which fails to have the A-property by Theorem
8. Since V* = V, V* also fails to have the A-property . This is the first example
of a reflexive Banach space with this property (a nonreflexive Banach space with this
property was given in [1]).

Finally, it should be noted that a reflexive Banach space W with the A-property
does not necessarily have the uniform A-property . Such an example is given in [6]. In
fact, Bw can be constructed from Bi2 with very slight modifications.
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