Can. J. Math., Vol. XXVII, No. 1, 1975, pp. 200-217

BOUNDARY AND INTERIOR CONTROL FOR
PARTIAL DIFFERENTIAL EQUATIONS

ROBERT DELVER

1. Introduction. From the time that the basic existence and regularity
problems for partial differential equations have been solved many interesting
new variational and control problems could be studied. In general a differential
equation or boundary value problem is used to define a class of admissible
functions, and then the problem is that of finding the extrema of a given func-
tional defined on that class of functions.

Consider for example the Dirichlet problem for a given second order elliptic
differential expression L on a domain G with boundary dG: Lu(x) = f(x),
x € G;u(x) = g(x), x € dG. To generate a class of admissible functions one
could, for example, vary one of the coefficients of L within a given collection of
functions. Another possibility is to vary f or write f(x) = &(x, p(x)) and vary p
and the same could be done for the function g. A collection of functions in
which the variations occur is called a control set. For parabolic, hyperbolic and
higher order equations one can proceed analogously.

The variational problem is that of finding elements in the class of admissible
functions for which a given functional attains an extremum. The control
problem is that of finding an element in the control set to generate such a
function.

These problems appear in physics and engineering in the control of processes
that are described by partial differential equations. Also from a purely mathe-
matical point of view the problems are of importance. Their study often leads
to new boundary value problems and in variational problems it makes good
sense to restrict a priors the class of functions that is considered to functions
that can actually occur or that are otherwise interesting.

An extensive study of this type of control problems is given in the book of
J. L. Lions; Contréle optimal de systémes gouvernés par des equations aux
dérivées partielles, [7]. In this book many references to the literature and
historical remarks are given.

Elliptic variational problems, the main subject of this paper is closely related
to the classical calculus of variations. It is the variational problem for the
common functional of the calculus of variations where the class of admissible
functions consists of all sufficiently smooth solutions of an elliptic partial
differential equation. Of course it can also be considered as a control problem,
for example, modelled on the Dirichlet problem where the control is exercised
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through the boundary by freely choosing sufficiently smooth values for the
boundary conditions.

A more explicit description for second order equation and first order func-
tional omitting some smoothness requirements is the following. Let G be an
open bounded domain in R* with boundary dG and let Du denote the first
order partial derivatives of #. Let a functional J be given by

1.1) J@m) = f F(x, u(x), Du(x)) dx
G
and let a uniformly elliptic differential equation be given by

(1.2) L= ) a.(x)D% x €G.

laT<2
The class of admissible functions U consists of all sufficiently smooth solutions
of the equation Lu(x) = f(x), x € G, where f is a given function. For this
problem necessary conditions equivalent to the vanishing of the first variation
of J at # with respect to all admissible variations are given by

Lu(x) = f(x),x € G,

L*(x) = [Fluy,x € G

(1.3) v(x) = 0,x € 3G,

dv/on = — g 'Z 1 (x) 2—1 ﬂzl W (0F/8(D’u)), x € 4G.

=2 —
(L* is the formal adjoint of L.) Thus if J has a relative extremum within U at
u then corresponding to that u there exists a function v that satisfies the last
three conditions of (1, 3). Such a function v is called a variational adjoint of u.

The result (1.3) was first published in [4]. Here it was assumed that L was
uniformly strongly elliptic with uniquely solvable Dirichlet problem. In [6]
the results were extended to the case where the differential expression is of
order m and the functional is of order m/2. In addition, the problem with
parabolic differential expression was considered. In these papers some examples
of how (1.3) can be used are given. In the sections 3 and 4 of the present paper,
necessary conditions analogous to (1.4) are derived for the variational problem
where the differential expression is uniformly strongly elliptic of order m and
the functional is of order m. It is no longer required that the Dirichlet problem
is uniquely solvable. The improvements were made possible and the deriva-
tions were greatly simplified by Lemma 2.4.

In section 5, the techniques that are developed for the variational problem
are used to obtain necessary conditions for a more specific control problem. In
the second order elliptic boundary and interior control problem for J and L
as given in (1.1) and (1.2) the class of admissible functions W is the set of all
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sufficiently differentiable solutions of

(L4)  Lw(x) =[x, p(x)), pCPxcG,
w(x) = g(x q(x)), ¢€ Q,x¢€ dG.

It is assumed that the Dirichlet problem for L is uniquely solvable, f and g
are given functions, P is the interior control set and Q is the boundary control
set. For simplicity in this chapter P = C*(G) and Q = C*(dG). Now the
necessary conditions take the form

Lu(x) = fx,p(x)),p € P,x €G
L*(x) = [Flu,x € G
v(x)af (x, p(x))/0p = 0,x € G.

(L5)  ulx) =gl qg@)),x € 3G, ¢ € Q
v(x) =0,x € 3G

J o nada—i—z né)Fng

lon &2, & a(Du) S ag

This set of equations is called the control boundary value problem.

Let 4 = {x € G: df(x, p(x))/dp # 0}, let 94 be the boundary of 4 and
B = {x € dG : dg(x, q(x))/dq = 0}. Then one observes that u satisfies the
Euler equation in 4 and the transversality condition on (94 N dG) ~ B
while the variational boundary value problem is satisfied in G ~ 4 and on
dG ~ B. Thus both the classical necessary conditions of the calculus of varia-
tions and the variational boundary value problem are contained in (1.5).

The methods of this paper are basically integration by parts and classical
variation techniques. While the results of the Dirichlet problem are used no
Sobolev space methods appear. The results are necessary conditions in the
form of boundary value problems for sufficiently differentiable minimizing
functions. Except for some isolated and simple results (see e.g. [4; 6]), little
yet is known about sufficient conditions. For certain special functionals (see
e.g. [8]) the problems are within the range of the methods in J. L. Lions
[7, Chapters I, II]. In this book, using a generalization of the Lax-Milgram
lemma, existence conditions in Sobolev spaces are established. The differ-
entiability results however are not sufhcient to justify the derivation of the
necessary conditions of this paper.

An analysis of the elliptic variational problem in a generalized sense is given
in our paper Critical points on closed elliptic affine subspaces to appear in Proc.
Amer. Math. Soc. In this paper an extension of the Lagrange multiplyer
method, based on Banach’s closed ranged theorem, is derived and then is used
to get necessary conditions which are equivalent to the elliptic boundary value
problem if the differentiability conditions of this paper are satisfied. The paper
also contains existence results.

=0,x € aG.
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Notation. R? is the y-dimensional Euclidian space. G is an open domain in
R» with boundary dG. dG € C* denotes that G is k-times continuously differ-
entiable. (See, e.g., [12].) If G € C! thenn is the outward unit normal to 4G.
If A C Ry then nbh. 4 is an open set in R that contains A. The usual multi-
index notation is used. (See, e.g., [11].) Multi-indices are denoted by «, 8, v
and 6. Du(x) = du(x)/0x:. DFulx) = 0*u(x)/dxF. D¥u(x) denotes the k'th
order partial derivatives of u. (8/dn)’u(x) denotes the j'th normal derivative
of u. C*(G) is the collection of all k-times continuously differentiable functions
defined on G. C*(G) consists of all elements of C*(G) whose derivatives of order
less than or equal to £ can be extended as continuous functions in G.

2. Preliminary theorems. In this section some results that are needed in
the sequel are stated. Proofs of the new material are given in the appendix.
The Lemmas 1, 2, 3 and 4 are technical in nature.

LEMMA 2.1. Let G be a bounded domain in R” with 3G € C¥" k=2 0, h = 0,
and let Q be an open domain in R” that contains G. Then to every set of functions
gi(x) € CH"=9(8G), 0 < j = k, there exists at least one function w € C**(Q)
that satisfies (8/0n)'w = g,;(x), x € G, 0 = j < k.

LeEMMA 2.2, Assume that:

(1) G 1s bounded domain in R* with oG € C%

(2) w € CHG);

(3) (8/on)w = 0,x € G, 0 <j <k — 1.
Then D*w = 0,x € 0G,0 < |a] £k — 1, and Dw = n*(d/dn)*w, x € 3G,
| = k.

The proofs can be found in [12] and in [6] respectively.

LeEmMA 2.3. Let G, 3G, Q and the functions g;, 0 < j < k, be as in Lemma 2.1
and let B;, 0 < j < k be a system of differential expressions defined near 3G,
given by

B, = >, bfx)D% b € C*™™"(nbh. 4G), with

lel=g

1Z n"(x)b(x) # 0, x € 4G.
a=j

Then there exists at least ome function w € C**(Q) that satisfies Bw(x) =
gl(x)y x E OG) 0 _S_j é k-

An analogous Lemma, without precise differentiability results, was proved,
in [3]. This proof depends on a transformation of the system Nw(x) = g,(x),
x € dG,0 = j = k, into a system that acts directly on the normal derivatives
of w. A simple proof depending only on Lemmas 1 and 2 is given in the
appendix.
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LeEMMA 2.4. Let an integral I be given by

@1 I= i 0%(x) D% (x)dS

4G |la|=0

and assume that G ts a bounded domain in R* with oG € C™, r = m, that

be € Clel(nbh. 9G) and that ¢ € C™(nbh. 0G). Then there exist linear differential
expressions M #

la|—j

(2.2) Mf= Y2 m D, m® c cHPIEqbh, 6G),
181=0

such that

m

23) I= > (8/om)’g > MSbdS.
G j=0 | j

al=j
A proof is given in the appendix.

In J. L. Lions — E. Magenes [9] a very general Green’s formula for elliptic
differential expression is given. The equation (2.4) below corresponds to the
case where one of the systems of boundary operators are the normal derivatives.
The Green'’s identity thatisgiven below is more general than the corresponding
special form in [9] because it is not restricted to elliptic equations and because
it gives explicit information about the leading part of the boundary operators,
equation (2.5). This is of vital importance for the derivation of the forth
equation in (4.12).

It follows immediately that the boundary is non-characteristic in points that
have a neighbourhood where L is elliptic.

THEOREM 2.1. GREEN’S IDENTITY. Assume that:
(1) G is a bounded domain in R* with 4G € C"t', ¢t = 0;
2)u € C*G),v € C"(G):

(8) L= Y. aalx)D* witha, € c'"M (&), s = max. (0,¢ + 1).

|| <m

Then Green's Identity can be written as (2, 4) with (2, 5)

m—1

> (8%/on?)N,"udsS,

aG j=0

(2.4) f . (uLv — vL*u)dV =

ij—l—j = 3 pj"(’)D“, 0sj=m-—1, »pjE€ ClHaIH(aG)-

laj<m—1—j

Moreover,

(2.5) > prt = (=" 3 an®, x € 4G

laj=m—1—3j laj=m
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A proof based on Lemma 2.4. is given in the appendix. L* is the formal
adjoint of L.

3. The variational adjoint. Let a functional J on C*(G) into R be given by

J(u) = fG F(x,u(x), Du(x), ..., Du(x))dVv

where F is continuous with respect to all its variables.

The class of admissible functions U consists of all solutions of a given differ-
ential equation of order m, m = I, Lu(x) = f(x),x€G,where L = 3" 4 1<na*(x) D=,
that are of class C*(G). With norm

[ull, = I;lsxlelg |D%u(x)],

C'(G) is a Banach space. U is considered as an affine subspace of this Banach
space. As usual the class of admissible variations U, is defined by U, =
{0u : du = u1 — us, ur € U, us € U}. It is observed that éu € U, implies that
Léu = 0 and that U, is a linear subspace of the Banach space C!(G).

A relative extremum of J at w € U within U is defined with respect to the
norm || || If J has a (Frechet) derivative at # € U denoted by J’(x) then
J'(u)du, du € U,, is called the first variation of J at » with respect to éx. This
quantity is written as 6J (u; du).

LemMA 3.1. If F is continuously differentiable with respect toall its arguments,
u € Uand du € Uy then

3.1) 6J(u;6u) = f IEI (D%u)(9F/a(Du))dV.
G |a|=0

Moreover, if J has a relative extremum within U for someu € U then 6J (u; 6u) =
0, for all éu € U,.

The proof follows immediately from application of the mean value theorem
to F. Details can be found in [6].

LEmMA 4.2. If F is (I + 1)-times continuously differentiable, u € C*Y(G),
du € CYG), and 6G € C*, then 8J (u; du) can be put in the form

3.2) o6J(u;dou) = fG u[F) AV + j;G Ilfl—_;,lo (D%u)Q"ud S

(3.3) [Fl.= l;l(—1)“"D"@F/a(D"u))

@ _ _silat B+ s oF
4 Qu= |Bl|§z[“;'1:—1a|,( 2 |6¥+3+7“nD d(D “)

This is well-known. [F], is the Euler-expression for J. The differential
expressions Q* appear in the transversality conditions of the classical calculus
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of variations problem. The proof depends on integration by parts. Details can
be found in [6].

THEOREM 3.1. Suppose
(i) Fis (I + 1)-times continuously differentiable, u € C*(G), su € C™(G),
aG € C™.
(ii) Léu(x) = 0,x € G.
(iii) aq € ClI(G), 0 £ |a| < m.
(iv) There exists a function v € C™(G) that satisfies L*v = [F) ., x € G. Then
8J (u; 6u) can be written as

(8.5)  6J(u;éu) = fa G{; (8%u/0n’) {Miij“(Q“u)
! a

— N,-'”‘l"'v} — > (8%u/on’)N,;" f ds.
=1
(For the definitions of M and N,/ 17 see (2.2) and Theorem 2.1.
respectively.)

Proof. Under the above conditions one obtains from Green’s Identity (2.4)

f ulFl AV = f (duLl*y — vLéu)dV
G (e

m—1
=f > —(8%u/on’)N;"" " ud S.

8@ j=0

Substitution of the result into (3.2) and application of Lemma 2.4 to the
boundary integral in (3.2) completes the proof.

Definition. Suppose (1) F is (I 4+ 1)-times continuously differentiable
ag € Clel(G) for 0 £ |a| £ m, and 3G € C™

(ii) Lu(x) = f(x),x € G;u € C*(G).

(iii) There exists a function v € C™(G) that satisfies

3.6) L*(x) = [Flu,x € G,and
-1

m—1—j — e - << _
@ M= X MAQW, 0sisi-1

N/ =0, 1£j<m—1x € dG.

’

Then that function v is called a variational adjoint of u with respect to J and L.
(If m = 1, the last set of equations is vacuous.)

If the conditions (i), (ii) of the above definition are satisfied and if % has a
variational adjoint with respect to J and L then 6J(u; éu) = 0 for all
ou € Uy CYG). In general, with some additional conditions, the converse
is also true. For strongly elliptic equations with uniquely solvable Dirichlet

problem, [ < % m, and for uniformly parabolic equations, [ < im, this was
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shown in [6]. In section 4 of this paper the converse is proved for general
strongly elliptic equations, I < m.

THEOREM 3.2. Let v be a variational adjoint of u and let G’ denote the non-
characteristic part of 0G. Then the variational adjoint boundary conditions (3.7),
for x € 3G, are equivalent with

—1

(3.8) N/ W= M Qu),0=<j=<Il-2
Py

aj=j

(3.9) (/m)" = > (=1)" ') 'n"(0F/dD).

lal=1,18l=m
(3.10) (3/9n)" "y = 0,1 £ 7 < m — 1 (wacuous if L = m).

Proof. Let I < m. From Theorem 2.1 one obtains N, 1% = pp_1v =
> lai=m @a0% so that N, 1% = 0, x € dG’, implies that v = 0, x € 9G’, and

conversely.
If ] <m —1, thenv = 0, x € dG’, hence by Theorem 2.1 and Lemma 2.2
Nps'v =2, pnsD=— Y am*(dv/dn).
|

laf=1 aj=m

Hence, under the present conditions, N, _.'v = 0,x € 3G’ implies (dv/on) = 0,
x € 9G'.

Repeating this process one obtains the equivalence on dG’ of the last set of
equations of (3.7) to (3.10). (If I = m, the above part of the proof should be
omitted.)

I't remains to be shown that the equation

"= Y, M,_(Q%), x € 4G,

la|=1—1

can be written as (3.9) if (3.10) is satisfied. If the last is true then using
Theorem 2.1 and Lemma 2.2 one obtains as before

(8.11) N5 = (—=1)™" > a.n*(9/on)" .
la|=m
As in the proof of Theorem 1 of this section one obtains from Lemma 2.4 that

-1 -1 -1

2. (D) (Qu)dsS = 2. (8/on)q > M (Qu)dS
4G |aj=0 G j=0 laj=j
where ¢ can be chosen freely in C'=! (nbh. dG). Letting (9/dn)’q = 0,0 = j =
!l — 2, x € 4G, one obtains from varying (d/9dn)*—1q that

(3.12) | > 1n"‘(Q"‘u) = l > M(Q%)

al=i— al=1-1

and from substitution of (3.4),

(3.13) IZ n“(Q%u) = >, n*(dF/9(D%u)).
1 |

al=1— al=1

From (3.11), (3.12) and (3.13) one gets the desired equation.
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4. Necessary conditions for the elliptic variational problem. In this
section L is a umniformly strongly elliptic differential expression of order m
defined on an open bounded domain G in R*. So

(41) L= > a.,x)D% x €G,

laj=m

with uniformly bounded principal coefficients and

(="~ l; ta(®)E" 2 clg],
for some positive constant ¢ and arbitrary »-vector £.

First a well-known existence and regularity theorem for the classical Dirichlet
problem will be stated (see e.g. [11] and Lemma 2.1). It will be used in the
derivation of Theorem 2, the main result of this paper.

THEOREM 4.1. Let the following conditions be satisfied for integers p and t
pz0,t=p+ /2 +1.

(1) G s a bounded domain in R* with G € C™**,

(ii) L is uniformly strongly elliptic in G, with a, € C'(G), 0 < |a| < m/2;
Uo € CllT=m2(GYym/2 £ |a| < m.

(iii) f € CYG).

(iv) gy € C™=1(3G), 0 < j < m/2 — 1.
Then the Fredholm alternative holds for the classical Dirichlet problem

Lu(x) = f(x), x¢€G,
(/) u(x) = g;(x), x € 9G,0=j7=<m/2 —1,

’

(4.2)

while any solution is of class C™?(G).

FREDHOLM ALTERNATIVE. Let N(L) and N(L*) denote the null space of L
and L*, respectively. Then N (L) and N (L*) are subspaces of L:(G) of the
same finite dimension. If this dimension is zero, then the Dirichlet problem is
uniquely solvable, independent of the particular choice of the functions f and
g;. If the dimension of the null spaces is positive then the Dirichlet problem

Lu(x) = f(x), x€G

(4.3) du/on? =0, 0=<j=<m/2 —1,x € 9G,

is solvable if and only if f is orthogonal in L.(G) to N(L*).

THEOREM 4.2. Let k be a positive integer and suppose that
(1) G 1is bounded in R’ with 4G € Cmtlr/2+1+k,
(it) L s uniformly strongly elliptic with a, ¢ CHUR+TIH(G) 0 < |of <
m/2, and, a, € CEU/ATIR2I=m2(G) m/2 + 1 £ |a| < m;
(iii) f € Chrivia+ (G_),
(iv) Fis 1+ [v/2] + 1 times continuously differentiable with respect to all its
arguments;
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(v) U is the collection of all solutions of Lu = f. Then U C C™*(G) and if
there exists a w € U such that 6J (u; du) = 0 for all du € U, (U, is the class of
admissible variations corresponding to U), then to that function u there exists a
variational adjoint with respect to L and J. Conversely, if there exists a variational
adjoint to some u € U then 6J (u; du) = 0 for all éu € U,.

Proof. In consequence of the Fredholm alternative two cases are to be
considered. They are treated separately.

I. N(L) and N(L*) both consist of the trivial solution only.
Let v € C™(G) be a solution of

1*v(x) = [Fla,x €G
(44) N = O m— 1=72max. (,m/2),x € G,
NPy = Z MA(Qu),l —1=2j=m/2,x € 3G.

la|=j
(If I < m/2, the last condition is vacuous). That such a function » exists
follows directly from Lemma (2.3) and Theorem 1 of this section. The N »—1—7-5,
given in (2.4) satisfy the conditions of the Lemma because of property (2.5)
together with the uniform strong ellipticity condition on L (4G is non-
characteristic for all N;"=1=7’s).
With this function v one obtains from Theorem 3.1

4.5) 6J(u;du) = \ mfl (9/0n)%su {g_]&[ Q%) — N,m_l'jv} ds.

(If j =1 then Mp2(Q*#) must be omitted.) For any choice of sufficiently
differentiable functions g; the system
(4.6) Léu(x) =0, x¢€ G,

) (9/0mn)ou(x) = g;(x), x € 9G

has a solution which is an element of U,y As 6J(u; ou) = 0, 6u € Uy, one
obtains from varying the normal derivatives in (4.5)

ij—l—%zo m/2_1>_7>lx€6G
Ny = EM (Q9), I1-=12j=0,x € aG.

la|=j

(4.7)

(If I = m/2, the first set of equations is vacuous.) As v satisfies both (4.4) and
(4.7) it is a variational adjoint.

II. Dim. N(L) and Dim. N(L*) are positive.
Again, first it will be shown that there exists a function » € C"(G) that
satisfies (4.4). In view of Theorem 1 this is true if and only if

(4.8)  (ou,[Flu— L*w) =0, éu € N(L)

Here w € C™+[»/21+1(G) is any function that satisfies the boundary conditions
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of (4.4), w= 0if [ £ m/2. Now it will be shown that
(4.9)  (ou,[Fly — L*w) = 6J(u; 0u), ou € N(L).

If I £ m/2, this follows immediately from (3.2). If I > m/2 and éu € N(L)
one has

(6u, [Fl. — L*w) = (u, [Fl.) + (wLéu — duL*w) =

-1
(Ou, [Fl.) + ((8/0n)8u)N,;""wdS =
[ Xed /2

Jj=m
—1

Gu, (L) + ) ij ((0/om)bu) 3 M (Q'u) dS =

j=m/ al=j

(6u, [Flu) + lil (D%u)QudS

G la|=m/2
and again (4.9) follows from (3.2). As N(L) C Uyand 6J(u; éu) = 0,8u € U,,
one obtains (4.8) from (4.9).

Let o' be one of the functions that satisfy (4.4). With this function
8J (u; 6u) can be written again as in (4.5). This expression must vanish for all
du & Uy. The normal derivatives of éu can not be chosen freely. Using Green's
Identity one gets that

m/2—1

(4.10) > ((8/on)’su)N;"*zdS, forallz € N(L*).
8G j=0

must be satisfied. Therefore

-1

(4.11) > M5 (Qu) — N/ "% =N"""%, m/2—-12j20,

laj=j

where 2’ € N(L*). (If j = I then X M #(Q*u) must be omitted.) From (4.4) and
(4.11) it follows that v = 9’ 4 2’ is a variational adjoint of » with respect to
L and J.

In both cases the converse follows directly from Theorem 1 of the previous
section. This completes the proof.

COROLLARY. If the conditions (1)—(v) of Theorem 2 are satisfied and if J has a
relative extremum within U for some u € U then there exists a functionv € C™(G)
such that

Lu(x) = f(x), x € G,
L*@) = [Flu © €6,
(8/n)v(x) =0, x € G, 0=j<m—1—1,

(4.12) m—1 m—z N oF
a/on = —1 RN A aG,
(9/9m)" 0 () la[=zl:'l/3|=5n ) (0’a5) 9(D%) "~ €
—1
N () = 3, MA(Qu), 1 —2=j=0.
P

aj=j
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The above set of equations is called the wariational boundary value problem.
The first set of boundary conditions is vacuous if I = m. If [ = 1 the last
equation is vacuous. In this case the boundary value problem takes a much
simpler form as no complicated computations for the functions M, and Q=
need to be carried out.

5. The elliptic boundary and interior control problem. As in the
previous sections a functional J is given by

J(w) = fc F(x,w(x), Dw(x), ..., Dw()dV,

where F is continuous with respect to all its arguments and a differential expres-
sion L is given by

L= IZ a"(x)D*, x € G,m = L.
alsm
Throughout this section it is assumed that L is uniformly strongly elliptic and
that the Dirichlet problem is uniquely solvable. (N(L) = {0}.)
The interior control set P and the boundary control sets Q;,0 = j < m/2 — 1,
are given linear function spaces defined on G and 9G respectively. The class of
admissible functions W is the set of all solutions of

Lw(x) = f(x, p(x)), p € P,x€G,

GD /o)) = gy as®), @) € 000 Sj < m/2 — 1,5 € 96,

which are of class C*(G). The functions f and g;, 0 < j < m/2 — 1, are given
fixed functions defined on (G X R) and (4G X R), respectively. The functions
p and ¢, can be chosen freely in P and Q;, 0 £ j £ m/2 — 1, respectively.
The class of admissable variations §I¥ and a relative extremum are defined as
in section 3. In this section 6J (#; éu) will not simply be J'(u)éu but J' (u)du
where 8, is the principal part of 6u which will be given a precise meaning in
the sequel (6u = 14 + 6ou and see (5.3), (5.4)).

THEOREM 5.1. Let the following conditions be satisfied.
(i) F is continuously differentiable.
(ii) au € C/U+2(G), 0 Z o] £ m/2,
Qo € ClelFbrre=mi2(G) /2 < |a| < m.

(iii) The functions f, g; and thewr first and second derivatives with respect to
their second variable are of class CUV/2A+1(G X R) and CU/2A+2m=1(9G X R),
0=j=m/2—1, respectively.

(iv) P C CU/A+2(G); Q; C Cl/A+2=1(9G), 0 £ j = m/2 — 1.

Then

(5.2) §8J(w, dw) = 'Z:;O (D%w) (0F /0D w)dV,

https://doi.org/10.4153/CJM-1975-025-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-025-6

212 ROBERT DELVER

where 8w is a solution of

fLoww = 8p(9f/ap)
1 (3/9n)%w = 8g,;(3g;/dg;), 0 =j=<m/2—1,

equals zero for all dw € 6W if J has a relative extremum within W at w € W.

(5.3)

Proof. The existence and regularity requirements are based on Theorem 4.1.
They will not be mentioned explicitely.
The function dw is the solution of
(6/611)]671} = gj(xy g + 5q}) - gj(xy Q.’i)r 0 é ] é m/2 - 1,
so that dw = dw + d.w, where 61w is given above and §,w is the solution of
Léxw = (8p)20%f/ap?
(8/0m)%6w = (8g;)%0°g,/dq,%, 0 =j<=m/2 — 1.
(An overbar indicates that the function must be evaluated for intermediate
values; e.g., 93/ap? = 3% (x, p(x) + 0(x)dp(x))/dp% 0 < 0(x) <1, x € G.)
As unique solvability of the Dirichlet problem is assumed the following
Schauder estimate for §.w is valid. (See e.g. [2, Theorem 7.3. and Remark 2].)

m/2~1

[16:20]|mtp = K{[|6p2(62f/8p2)l| + 2 H5g,-2(62g,~/8g,-2||m+p_]-}

=0
(p € (0, 1) is the exponent of Hélder continuity), so that
(5.4) lim% 18220 (x5 adp, adg)||msn = O.
a0

Applying the mean value theorem to the integrand of AJ(w; dw), AJ =
J(w + éw) — J(w), one obtains

5.5) AJ(w,dw) = §J(w, dw) + R(w, dw), with,

Go) K@ ow) = f . .:Z:é (D) (9F/0D"w)

+ (D:w) (0F/0D"w — 9F/dD%w)}d V.

From (5.3), (5.4) and dF/dD*w, evaluated for dw(x, adp, adq) — dF/dD*w,
uniformly on G, as a — 0 it follows that

(5.7)  lim = Raw; su (s, adp, asg)) = 0.
a—0
From (6.3) and (6.4) it follows that
(5.8) lim ||dw(x, adp, adq)||, = O.
a->0

If J has a relative extremum at w then AJ(w, dw) must be either non-positive
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or else non-negative for all éw € éw with ||dw||; < 8, for some positive 5. As
AJ(w, dw(x, adp, adg)) = a{s] (w, bw(x; 6p, 8g)) + (1/a)R(w, dw(x; adp, adg))
and (5.7), (5.8) this can only be true if 6J(w; dw) = 0, dw € §W.

THEOREM 5.2. Let k be a non-negative integer, k = [v/2] + 1 + max. (1, k),
No=[/2] + 1 4+ m 4+ max. (1, k) — j and let the following conditions be
satisfied.

(1) G is bounded 1n R” with oG € C™+»/2+1,

(i1) L is uniformly strongly elliptic, N(L*) = {0},
g € Cl/ATIHmaxLlad(G) 0 < le| < m/2, and
Ay € CURATIZIal=m2(T) /2 < |a| < m.

(iii) The functions f, g;, and their first two derivatives with respect to their
second variable are of class C*(G X R) and CM(6G X R), 0 £j <= m/2 — 1,
respectively.

(iv) P C C*(G) and Q; C CM(8G),0 £ j £ m/2 — 1.

(v) Fis (I + [v/2] + 1)-times continuously differentiable.

(vi) The function v € C™(G) is the solution of

(5.9 L*(x) = [Flux € G,
-1
N/ = 3 MfA(Qw), m/2sj<1—1

laj=j

N/% =0, max. (,m/2) £j<m —1,x € 3G.
Then 6J (w, dw), given in (5.2), (5.3), can be written as

Il

7w, = [ apes/apnay
min(1,m/2)—1

(5.10) + e ; 6g,(3g/9q;) {lali:j M (Qw) — Nim—l—j'”} s

m/2—1
+ faG 2 0¢;(0¢/0g)N;"" " dS.
=

(If I = m/2 then the second set of equations in (5.9) is vacuous. If I = m/2
then the last integral of (5.10) must be omitted. For the definitions of M * and
N ™17 see (2.2) and (2.4) respectively.)

The proof of the above theorem is analogous to that of Lemma 3.2 and
Theorem 4.1. The existence and regularity properties are derived from Theorem
4.1.

Necessary conditions for the existence of an optimal solution of the boundary
and interior control problem follow directly from the Theorems 5.1 and 5.2.
The most interesting conditions are given in the next theorem.

THEOREM 5.3. If

(1) the conditions of Theorem 5.2 are satisfied,

(i) C*(G) C Pand C*(3G) C Qj,0 =j =m/2 — 1,
(iii) J has a relative extremum within W at w € W,
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then the solution of (5.9) also satisfies

B -1 L e l B
(5.11) (8f/9p)w = 0, x € G, (9g;/9q,) {MZ#MJ‘ (Qw) — N; vl( =0,

x € 0G,0 <7 =min (I, m/2) — 1, (3g,/dq,) (N v} = 0,
x €9Gl<j<m/2 — 1.
(If I = m/2 then the last set of equations is vacuous.)

Definition. Let the conditions of Theorem 5.3 be satisfied. Then (5.1), (5.9)
and (5.11) together constitute the control boundary value problem.

Remark 118 f (v, p(x)) /0p # 0, € G, and dg,(x, q,(x)) /g, = 0,0 < j <
m/2 — 1, x € 9G, then the control boundary value problem reduces to the
Euler equation with transversality conditions for J.

Remark 2. If f = f(x) and 9g;(x, ¢;(x))/9¢; # 0,0 = j = m/2 — 1,x ¢ IG,
then the control boundary value problem reduces to the variational boundary
value problem.

6. Appendix. The appendix contains the proofs of the results stated in
section 2. The following additional notation is used. If « is a multi-index then
perm « is an |a|-vector the components of which take values in {1, 2, . . . »}
such that 7 € {1, 2, . . . v} occurs «; times (e.g., let « = (2, 1) then perm
a€{1,1,2), (1,2, 1), (2,1, 1)}). In the proof of Lemma 2.4 summation
indices a; and B; are used. If repeated in the same term they run independently
from 1 to », primed indices run from 1 to» — 1.

Proof of Lemma 2.3. Using Lemma 2.1, functions w;, 0 < j < k, each of
class C¥t"(Q), can be chosen, that satisfy

wo(x) = go(x)/bo(x), x € G,
and forl = 1,1 = 2,...,1] = k, respectively
(8/om)w, = 0,0 =j <1 — 1,x € 4G,

(3/0n) %, = glz n"bl‘*g—l {g,—B,(S w)} x € 0G.

al=1 =0

Using Lemma 2 one obtains

Dwi(x) =0, 0=<|a] <Il—1,x € oG
—1

Blwl(x) = gl(x) — B, (Z wt(x)) , X € 9G

i=

so that w = 3 <, w; satisfies Bw(x) = g;(x),x € 4G, 0 £ j =< k.

Proof of Lemma 2.4. Let m =< 1. Since 9G is compact in R’ and at least of

class C? there exists a small enough open strip about 4G in which new co-
ordinates can be introduced as follows. Let {O,} be an open covering of G
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such that corresponding to each # a mapping T, of an open set P, C R’ onto
Oy, which is one to one and together with its inverse of class C” can be defined
by:

x,(t) = ti + t,ni(t'), 1 = ]., _,j _— 1
6.1) x;(0) =tia+tm(), 1=7+1,—,»

x;(t) = fult') + tiny(t'),
where fy(x1 — X;_1X;4010 — %) = x; x € 0, M 3G, t, = *dist. (x, 9G),
+or—asx € Gorx € G;t' = (tv — /t,1).

Let { ®,} be a partition of unity subordinate to {O,} and put

6.2) I,= fo maGclv,,(ac) ZO V7 (%) Day - .« Dayq(x) dS
h i=

with par—ai = (al/|a|)b%, arr — «a; = perm. o and D,; = 9/0%,;, so that
I = ZI},.
Going over to {-coordinates one gets

(6'3) Ih = f Z Bhﬁl‘n,ﬂj(t) DBI LR Dﬂth(t)dtl, v ey dtv—ly
Q

h 7=0

with Qp = {t € R*: £ € Py A t, = 0}; Dg, = 9/0s;; gu(t) = q(Tw(t)), t € Py,
and

B (1) = i Tn®@(Ta )™ =T, O)R ).

In the last formula J) is an extension into C"(P;) of (1 + (dfn/dt1)2 + ... +
(8fn/0t,—1)%)* and the functions R*—=ekBi—8i ¢ C™+/=*(P,) are the transfor-
mation coefficients of the derivatives of g. One observes that the B,#1—8i have
compact support in P, and are symmetric in ;v — 8, Thus after rearrange-
ment of the summation the integrand of (6.3) takes the form

O NP
Z Z (J )Bh' e ’B]kD']Dﬂfﬂ’---Dﬂnk'Qh'

7=0 k=0 k

and after integration by parts it is

m . m—Jj k _|_ y Yo ¥8ii1’ — Bian?
Zo (319;./35/) kZO (_l)k ( E ]> Dﬂj+1’ e Dﬂj+k' Bh B ik .
= —

From (8¢n/0dt,) = (0%a;/0)Dayq = 10 Dayq(x), x € O, it follows that
(8%g,(t)/0t,7) = (8/9mn)’q(x), x € Oy, so that in x-coordinates

64) I,= ] ((3/0n)’q)E,;, d.S, where

0N G j=
m—j Kk % k +] -1 -1
6.5) E;(x) = g{) z—Zo (—1) ( b ) (n(Tw (%))

ot Bty  y1Biit? — Biipt
X Shﬁgu =B+’ Y1, =71 (x) D’“ L Dthl', WV B+ — Btk .
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The functions Syfi+1/—8i+"vy1—al ¢ C™+1=F((,) are transformation coefficients,
D,; = 3/0xy;.
Summing again over k one obtains

6.6) I= fa 27: (8/omn)q > E; dS.

Finally, from (6, 5) and the information below (6, 3) it follows that

m lal—j .
6.7) X En= > > m o)D), withm® € =1 (nph. 9G).
% laT=7 [81=0
Remark. The expression M; are independent of m and of the coordinate
transformations used in the sense that if

I' = f > v (x)D%G (x) dS = f > (8/omn)g > M'SdS,
4G |la|=0 G j=0 a=j

and correspondingly for I', then M'* = M" 2, |a|] £ min (m/, m’’) in some

neighbourhood of dG. For choose (d/dn) ‘g’ = (9/dn)¢"’ = 0,1 #= j,(8/on)’q

= (d/an)%q" = r,b'® = b"F = 0,8 # aand b* = 5. Then from varying r one

obtains M';s = M" s independent of the particular choice of s so that

M= Mo

Proof of Theorem 2.1. For two functions # and v both of class C"(Q) and
a domain G C R’ with G € C, Green’s identity is

m—1 m—|al—1

(6.8) f (uLv — vL*u)dV = f > > DuD%PdsS,

e 4G laj=0 |8]=0

where the functions P*¥ are given by

m—|a|—|Bl—1
et (el + v} e+ B8+ v +8)!
Z (=1) ( || )[a—l—ﬁ-{—*y—{—&]!

This result depends only on integration by parts. The computations can be
found in [6]. The first part of Theorem 2.1 follows immediately from (6.S) and
Lemma 2.4. To prove (2.5) choose any integer jin [0, m — 1] and let 9*z/9n* =
0,0k =j—1,x ¢ 9dG,and 0*u/0n* = 0,0 <k =m — 2 — j, x € 9G, so
thatforx € 9G; D = 0,0 < |a| £j — 1; D = n*(d%/on?), la| = j; Do =
0,0 L] Em —j—2;Du =n*(8" 7 lw/In"), [a| =m — 7 — 1 (Lemma
2.2). Substitution of these results into (6.8) and (2.4), respectively yields

fa'(a/an)jv(a/an)"‘_j_lu PRI (—l)m—j—l“l(gi—ﬁg+5)!

lal=m—j—1 |8|=j |8]=1

v s
e, D" dasgiyysn’.
=1 =

X Garppsn™ TS = f (8/8mn)%w(3/on)™" " 3. ndS.
kXl 1

|eel=m—j—

As the above normal derivatives of # and v can be chosen freely one obtains
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an identity that after rearrangement of the summation takes the form (2.5).
This completes the proof.
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