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BOUNDARY AND INTERIOR CONTROL FOR 
PARTIAL DIFFERENTIAL EQUATIONS 

ROBERT DELVER 

1. Introduction. From the time that the basic existence and regularity 
problems for partial differential equations have been solved many interesting 
new variational and control problems could be studied. In general a differential 
equation or boundary value problem is used to define a class of admissible 
functions, and then the problem is that of finding the extrema of a given func­
tional defined on that class of functions. 

Consider for example the Dirichlet problem for a given second order elliptic 
differential expression L on a domain G with boundary dG: Lu(x) = / ( x ) , 
x G G; u(x) = g(x), x G dG. To generate a class of admissible functions one 
could, for example, vary one of the coefficients of L within a given collection of 
functions. Another possibility is to v a r y / or write/(x) = h(x,p (x) ) and vary p 
and the same could be done for the function g. A collection of functions in 
which the variations occur is called a control set. For parabolic, hyperbolic and 
higher order equations one can proceed analogously. 

The variational problem is that of finding elements in the class of admissible 
functions for which a given functional attains an extremum. The control 
problem is that of finding an element in the control set to generate such a 
function. 

These problems appear in physics and engineering in the control of processes 
that are described by partial differential equations. Also from a purely mathe­
matical point of view the problems are of importance. Their study often leads 
to new boundary value problems and in variational problems it makes good 
sense to restrict a priori the class of functions that is considered to functions 
that can actually occur or that are otherwise interesting. 

An extensive study of this type of control problems is given in the book of 
J. L. Lions; Contrôle optimal de systèmes gouvernés par des equations aux 
dérivées partielles, [7]. In this book many references to the literature and 
historical remarks are given. 

Elliptic variational problems, the main subject of this paper is closely related 
to the classical calculus of variations. It is the variational problem for the 
common functional of the calculus of variations where the class of admissible 
functions consists of all sufficiently smooth solutions of an elliptic partial 
differential equation. Of course it can also be considered as a control problem, 
for example, modelled on the Dirichlet problem where the control is exercised 
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through the boundary by freely choosing sufficiently smooth values for the 
boundary conditions. 

A more explicit description for second order equation and first order func­
tional omitting some smoothness requirements is the following. Let G be an 
open bounded domain in Rv with boundary dG and let Du denote the first 
order partial derivatives of u. Let a functional J be given by 

(1.1) J(u) = I F(x, u(x), Du(x)) dx 
J G 

and let a uniformly elliptic differential equation be given by 

(1.2) L = X aa(x)£>a, x e G. 
| a | = 2 

The class of admissible functions U consists of all sufficiently smooth solutions 
of the equation Lu(x) = f(x), x £ G, whe re / is a given function. For this 
problem necessary conditions equivalent to the vanishing of the first variation 
of J at u with respect to all admissible variations are given by 

Lu(x) =f(x),x Ç G, 

[F],u,x £ G 

0,x G dG, 

- \ E na^l-1 Y, n\dF/d(lfu)), x 6 dG. 
( |« |=2 ) 0=1 

(L* is the formal adjoint of L.) Thus if J has a relative extremum within U at 
u then corresponding to that u there exists a function v that satisfies the last 
three conditions of (1, 3). Such a function v is called a variational adjoint of u. 

The result (1.3) was first published in [4]. Here it was assumed that L was 
uniformly strongly elliptic with uniquely solvable Dirichlet problem. In [6] 
the results were extended to the case where the differential expression is of 
order m and the functional is of order m/2. In addition, the problem writh 
parabolic differential expression was considered. In these papers some examples 
of how (1.3) can be used are given. In the sections 3 and 4 of the present paper, 
necessary conditions analogous to (1.4) are derived for the variational problem 
where the differential expression is uniformly strongly elliptic of order m and 
the functional is of order m. I t is no longer required that the Dirichlet problem 
is uniquely solvable. The improvements were made possible and the deriva­
tions were greatly simplified by Lemma 2.4. 

In section 5, the techniques that are developed for the variational problem 
are used to obtain necessary conditions for a more specific control problem. In 
the second order elliptic boundary and interior control problem for J and L 
as given in (1.1) and (1.2) the class of admissible functions W is the set of all 

L*v(x) 

(1.3) ( v 

dv/dn 
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sufficiently differentiable solutions of 

(1.4) Lw(x) = f(x, p{x)), p £ P,x £G, 

w(x) — g(x, q(x)), q G Q, x G dG. 

It is assumed that the Dirichlet problem for L is uniquely solvable, / and g 
are given functions, P is the interior control set and Q is the boundary control 
set. For simplicity in this chapter P = Cœ(G) and Q = C°°(dG). Now the 
necessary conditions take the form 

Lu(x) = f(x,p(x)),p G P, x e G 

L*v(x) = [F],u,x G G 

v(x)df(x,p(x))/dp = 0,x G G. 

(1.5) u(x) = g(x,q(x)),x G dG,q G Q 

v(x) = 0, x G dG 

j o » ^ tt , \^ ^"dF 1 dg n /- r > ^ 
U n |îît2 i^li d p w); dq 

This set of equations is called the control boundary value problem. 
Let A = {x G G : df(x, p(x))/dp ^ 0}, let dA be the boundary of A and 

B = {# G dG : dg(#, q(x))/dq = 0}. Then one observes that z/ satisfies the 
Euler equation in A and the transversality condition on (dA O dG) ~ B 
while the variational boundary value problem is satisfied in G ~ A and on 
SG ~ B. Thus both the classical necessary conditions of the calculus of varia­
tions and the variational boundary value problem are contained in (1.5). 

The methods of this paper are basically integration by parts and classical 
variation techniques. While the results of the Dirichlet problem are used no 
Sobolev space methods appear. The results are necessary conditions in the 
form of boundary value problems for sufficiently differentiable minimizing 
functions. Except for some isolated and simple results (see e.g. [4; 6]), little 
yet is known about sufficient conditions. For certain special functionals (see 
e-g- [8]) the problems are within the range of the methods in J. L. Lions 
[7, Chapters I, II] . In this book, using a generalization of the Lax-Milgram 
lemma, existence conditions in Sobolev spaces are established. The differ­
entiability results however are not sufficient to justify the derivation of the 
necessary conditions of this paper. 

An analysis of the elliptic variational problem in a generalized sense is given 
in our paper Critical points on closed elliptic affine subspaces to appear in Proc. 
Amer. Math. Soc. In this paper an extension of the Lagrange multiplyer 
method, based on Banach's closed ranged theorem, is derived and then is used 
to get necessary conditions which are equivalent to the elliptic boundary value 
problem if the differentiability conditions of this paper are satisfied. The paper 
also contains existence results. 
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Notation. Rv is the ^-dimensional Euclidian space. G is an open domain in 
Rv with boundary dG. dG G Ck denotes that G is &-times continuously differ-
entiable. (See, e.g., [12].) If dG G C1 thenn is the outward unit normal to dG. 
If A C Rv then nbh. A is an open set in Rv that contains A. The usual multi-
index notation is used. (See, e.g., [11].) Multi-indices are denoted by a, fi, y 
and ô. Diu(x) — du(x) / dxi. Dku{x) = dku{x)/dxk. Dku(x) denotes the &'th 
order partial derivatives of u. (d/dn)ju(x) denotes the j ' t h normal derivative 
of u. Ck(G) is the collection of all &-times continuously differentiate functions 
defined on G. Ck(G) consists of all elements of Ck(G) whose derivatives of order 
less than or equal to k can be extended as continuous functions in G. 

2. Preliminary theorems. In this section some results that are needed in 
the sequel are stated. Proofs of the new material are given in the appendix. 
The Lemmas 1, 2, 3 and 4 are technical in nature. 

LEMMA 2.1. Let G be a bounded domain in Rv with dG G Ck+h, k ^ 0, h è 0, 
and let £2 be an open domain in Rv that contains G. Then to every set of functions 
gj{x) G Ck+h~j(dG), 0 ^ j S k, there exists at least one function w G Ck+h(iï) 
that satisfies (d/dn)jw = gj(x), x G dG, 0 ^ j ^ k. 

LEMMA 2.2. Assume that: 
(1) G is bounded domain in Rv with dG G Ck; 
(2) w G Ck(G); 
(3) (d/dn)jw = 0, x G dG, 0 ^ j g k - 1. 

Then Daw = 0, x G dG, 0 S \a\ ^ k - 1, and Daw = na(d/dn)kw, x G dG, 
\a\ = k. 

The proofs can be found in [12] and in [6] respectively. 

LEMMA 2.3. Let G, dG, 12 and the functions gjy 0 ^ j ^ k, be as in Lemma 2.1 
and let Bjy 0 ^ j ^ k be a system of differential expressions defined near dG, 
given by 

Bj= E WW* b? € C"+"-y(nbh. dG),with 

£ na(x)è/(x) ^ 0 , x G dG. 
i « l = y 

r&eft //z£re exw/5 a£ /eas/ one function w G C*+A(Œ) that satisfies BjW{x) = 
gj(x),x G dG, 0 rg j ^ * . 

An analogous Lemma, without precise differentiability results, was proved, 
in [3]. This proof depends on a transformation of the system Nfv(x) — gj(x), 
x G dG, 0 ^ j ^ k, into a system that acts directly on the normal derivatives 
of w. A simple proof depending only on Lemmas 1 and 2 is given in the 
appendix. 
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LEMMA 2.4. Let an integral I be given by 

/

• m 

£ ba(x)Daq(x)dS 
ÔG \a\=0 

and assume that G is a bounded domain in Rv with dG G Cr+1, r §: m, Jfta/ 
ba G Clal(nbh. dG) and that a G C™(nbh. dG). 77mz Jfeere a w / Kwmr differential 
expressions Mf 

(2.2) M / = ' i f m / V ) ^ , m/* G C<+ '+l/3Ma|(nbh. dG), 
I0|=O 

such that 

dG j=0 \a\ = j 

A proof is given in the appendix. 

In J. L. Lions - E . Magenes [9] a very general Green's formula for elliptic 
differential expression is given. The equation (2.4) below corresponds to the 
case where one of the systems of boundary operators are the normal derivatives. 
The Green's identity that is given below is more general than the corresponding 
special form in [9] because it is not restricted to elliptic equations and because 
it gives explicit information about the leading part of the boundary operators, 
equation (2.5). This is of vital importance for the derivation of the forth 
equation in (4.12). 

It follows immediately that the boundary is non-characteristic in points that 
have a neighbourhood where L is elliptic. 

THEOREM 2.1. GREEN'S IDENTITY. Assume that: 
(1) G is a bounded domain in Rv with dG G Cm+\ t ^ 0; 
( 2 ) « G Cm(G)1v G (yifl),; 

(3) L = X) <*«(*) Da with aa G Cial+S(G), 5 ^ max. (0, / + 1). 

Then Green's Identity can be written as (2, 4) with (2, 5) 

(uLv - vL*u)dV = I X (djv/dni)Njmr"^,udS9 
G J dG j=Q 

M ^ r a — 1— j 

Moreover, 

(2.5) £ p?na= ( - I)"*-1" ' £ aati
a, x € dG. 

\a\=m— 1— j \a\=m 
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A proof based on Lemma 2.4. is given in the appendix. L* is the formal 
adjoint of L. 

3. The variational adjoint. Let a functional / on Cl(G) into R be given by 

j(u) = I F(x,u(x),Du(x), . . . ,Dlu(x))dV 
J G 

where F is continuous with respect to all its variables. 
The class of admissible functions U consists of all solutions of a given differ­

ential equation of order m, m ^ l,Lu(x) = /(x),xGG, where L = J2\a\^m^a(x)Da, 
that are of class C\G). With norm 

I M I z = X SUP \Dau(x)\, 
\a\<il x€G 

Cl(G) is a Banach space. U is considered as an affine subspace of this Banach 
space. As usual the class of admissible variations Uo is defined by Uo = 
{bu : bu = u\ — U2, u\ G U, u<i G U}. It is observed that ou G Z70 implies that 
Low = 0 and that Uo is a linear subspace of the Banach space Cl(G). 

A relative extremum of J at u G £7 within £7 is defined with respect to the 
norm || ||z. If J has a (Frechet) derivative at u G f/ denoted by J ' (^) then 
Jf (u)bu, ou G Z7o, is called the first variation of J at u with respect to ôw. This 
quantity is written as bJ(u; ou). 

LEMMA 3.1. If F is continuously differentiable with respect to all its arguments, 
u G U and ou G Uo then 

(3.1) bJ(u;bu) = I X) ( ^ ) ( a ^ / a ( D a M ) ) ^ . 
•^ G |a |=0 

Moreover, if J has a relative extremum within U for some u G U then bJ(u; ou) = 
0, for all du G U0. 

The proof follows immediately from application of the mean value theorem 
to F. Details can be found in [6]. 

LEMMA 4.2. If F is (/ + 1)-times continuously differentiable, u G C2l(G), 
ou G Cl(G), and bG G C1, ^ew bJ(u; bu) can be put in the form 

(3.2) bJ(u;bu)= I bu[F],udV+ I f ) (Dabu)QaudS 
J G J ÔG \a\=0 

(3.3) m . = L (-l) la |2>"(aF/d(Z?-«)) 

(3-4) e "",«*§- , . , . ( - 1 ) i« + ^ + Ti ! n Z ? ôip^^y 
| 7 | = 1 

This is well-known. |\F],M is the Euler-expression for / . The differential 
expressions Qa appear in the transversality conditions of the classical calculus 
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of variations problem. The proof depends on integration by parts. Details can 
be found in [6], 

THEOREM 3.1. Suppose 
(i) F is (/ + 1)-times continuously differ entiable, u G C2l(G), du G Cm(G), 

ÔG G Cm. 
(ii) L8u(x) = 0, x G G. 

(iii) aa G Ci«i(G),0 ^ | a | ^ m . 
(iv) There exists a function v G Cm(G) that satisfies L*v = [F],M, x £ G. Then 

bJ(u\ ou) can be written as 

(3.5) 8J(u;tu)= I ^ Ê (dsàu/dnj) \ £ Mâ
a(Qf*u) 

J dG V ; = 0 M a | = y 

(For the definitions of Jkf/* and NJ"-1-' see (2.2) and Theorem 2.1. 
respectively.) 

Proof. Under the above conditions one obtains from Green's Identity (2.4) 

I du [F] iUd V = I (<5z/L*z; - vLdu)d V 
J G J G 

m—I 

£ - (d'iu/dn^N^'vdS. 
5 G j=0 

Substitution of the result into (3.2) and application of Lemma 2.4 to the 
boundary integral in (3.2) completes the proof. 

- l 

Definition. Suppose (i) F is (I + 1)-times continuously differentiate, 
aa G C'a'(G) for 0 ^ |a| ^ ra, and dG G C*. 

(ii) Lw(aO = f(x)tx e G\u £ C2l(G). 
(iii) There exists a function v G Cm(G) that satisfies 

(3.6) L*v(x) = [F],u,x G G, and 

.„ Nr1-'* = S! W W , 0 ̂  j ^ / - 1 

N?-1-'* = 0, / ^ J ^ m - 1, x G dG. 

Then that function z; is called a variational adjoint of w with respect to J and L. 
(If m = I, the last set of equations is vacuous.) 

If the conditions (i), (ii) of the above definition are satisfied and if u has a 
variational adjoint with respect to J and L then 8J(u; ou) = 0 for all 
du G UQ C\ Cl(G). In general, with some additional conditions, the converse 
is also true. For strongly elliptic equations with uniquely solvable Dirichlet 
problem, / ^ \ m, and for uniformly parabolic equations, / ^ \m, this was 
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shown in [6]. In section 4 of this paper the converse is proved for general 
strongly elliptic equations, / ^ m. 

THEOREM 3.2. Let v be a variational adjoint of u and let dGf denote the non-
characteristic part of dG. Then the variational adjoint boundary conditions (3.7), 
for x Ç dG'', are equivalent with 

i-i 

(3.8) NT1'** = Z MfiQfu), 0 ^ j ^ l - 2 . 
\cc\=j 

(3.9) (d/dn)m-lv = £ (-l)m-\n&atYlna(dF/dDau). 
|a|=Z,|/3|=m 

(3.10) (d/dn)™ - 1 -^ = 0, / ^ j ^ m - 1 (vacuous if I = m). 

Proof. Let I < m. From Theorem 2.1 one obtains Nm^v — pm-\V = 
2i«i=m aan

az> so that Nm_i°v = 0, x f dG', implies that y = 0, x 6 dG', and 
conversely. 

If / < m — 1, then y = 0, x G dG', hence by Theorem 2.1 and Lemma 2.2 

Nm-*v = £ pm-2aDav = - £ aana(di '/dn). 
| a | ^ l |a|=m 

Hence, under the present conditions, Nm-îlv = 0, x £ dGr implies (dv/dn) = 0, 

Repeating this process one obtains the equivalence on dGf of the last set of 
equations of (3.7) to (3.10). (If I = m, the above part of the proof should be 
omitted.) 

It remains to be shown that the equation 

NTiv = Z Ml-1
a(Qau), x e dG', 

\a\=l-l 

can be written as (3.9) if (3.10) is satisfied. If the last is true then using 
Theorem 2.1 and Lemma 2.2 one obtains as before 

(3.11) NTiv= (-l)m~l Z aan
a(d/dn)m-lv. 

|a|=W 

As in the proof of Theorem 1 of this section one obtains from Lemma 2.4 that 

f Z (Daq)(Qau)dS = f £ (d/dn)jq f ) M?(Q?u)dS 
«/ dG |a |=0 ^ dG j=0 \<*\=j 

where q can be chosen freely in Cl~l (nbh. dG). Letting (d/dn)jq = 0, 0 ^ j ^ 
/ — 2, x £ dG, one obtains from varying (d/dn)*_1g that 
(3.12) £ na(Qau) = £ M/,(ea

M) 
| a | = Z - l | a | = Z - l 

and from substitution of (3.4), 

(3.13) £ n a ( Q ^ ) = Z na(dF/d(Dau)). 
| a | = ï — 1 |as|= 2 

From (3.11), (3.12) and (3.13) one gets the desired equation. 
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4. Necessary conditions for the elliptic variational problem. In this 
section L is a uniformly strongly elliptic differential expression of order m 
defined on an open bounded domain G in Rv. So 

(4.1) L = X aa(x)Da
t x G G, 

with uniformly bounded principal coefficients and 

( - i r / 2 x; aa(x)? * c\z\, 
\a\<Zm 

for some positive constant c and arbitrary ^-vector £. 
First a well-known existence and regularity theorem for the classical Dirichlet 

problem will be stated (see e.g. [11] and Lemma 2.1). I t will be used in the 
derivation of Theorem 2, the main result of this paper. 

THEOREM 4.1. Let the following conditions be satisfied for integers p and t} 

p ^ 0,t = p + [v/2] + 1. 
(i) G is a bounded domain in Rv with dG G Cm+t. 

in) L is uniformly strongly elliptic in G, with aa G Ct(G)J 0 rg H ^ m/2; 
aa G C^+t-m/2(G)m/2 S \a\ S m. 

( i i i ) /G C\G). 
(iv) gj G Cm+t~j(dG), 0 ^ j ^ m/2 - 1. 

I7zm the Fredholm alternative holds for the classical Dirichlet problem 

/ 4 2 x Lu(x) =f(x), x G G, 
1 ; (d/dn)ju(x) = gj(x), x G dG,0 ^j ^ m/2 - 1, 

w&iZe airy solution is of class Cm+P(G). 

FREDHOLM ALTERNATIVE. Let N(L) and N(L*) denote the null space of L 
and L*, respectively. Then iV(L) and N(L*) are subspaces of L2(G) of the 
same finite dimension. If this dimension is zero, then the Dirichlet problem is 
uniquely solvable, independent of the particular choice of the functions/ and 
gj. If the dimension of the null spaces is positive then the Dirichlet problem 

Lu(x) = f(x), x G G 
1 } dju/dnj = 0, 0 ^ j ^ m/2 - 1, x G dG, 

is solvable if and only if/ is orthogonal in L2(G) to N(L*). 

THEOREM 4.2. Let k be a positive integer and suppose that 
(i) G is bounded in Rv with dG G Cm+^/2^+1+k; 

(ii) L is uniformly strongly elliptic with aa G C*+["/21+1+|aI (G), 0 ^ |a| ^ 
m/2, and, aa G C*+f' /21+1+2|a |-ro/2(G), m/2 + 1 ^ |a| ^ m; 

( i i i ) /G C * + ^ + 1 ( G ) ; 
(iv) F is I + [P /2] + 1 ^mes continuously differentiable with respect to all its 

arguments; 
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(v) U is the collection of all solutions of Lu = f. Then U C Cm+k{G) and if 
there exists a u G U such that bJ(u; du) = 0 for all du G Uo (Uo is the class of 
admissible variations corresponding to U), then to that function u there exists a 
variational adjoint with respect to L and J. Conversely, if there exists a variational 
adjoint to some u G U then 8J(u; 8u) = 0 for all ou G Uo. 

Proof. In consequence of the Fredholm alternative two cases are to be 
considered. They are treated separately. 

I. N(L) and N(L*) both consist of the trivial solution only. 
Let v G Cm(G) be a solution of 

±J*v(x) = [F],u,x G G 

(4.4) N™'1'^ = 0, m - 1 ^ j ^ max. (/, m/2), x G dG, 
i-i 

N™-l~jv = £ Ms
a(Qau), l - l ^ j ^ m/2, x G dG. 

\a\ = j 

(If / ^ m/2, the last condition is vacuous). That such a function v exists 
follows directly from Lemma (2.3) and Theorem 1 of this section. TheiV/*~ w ' s , 
given in (2.4) satisfy the conditions of the Lemma because of property (2.5) 
together with the uniform strong ellipticity condition on L (dG is non-
characteristic for all iVi

m_1~y,s). 
With this function v one obtains from Theorem 3.1 

r TO/2-1 / z-i \ 

(4.5) bJ(u; bu) = \ £ (d/dn)jbu i £ M3
a(Qau) - N3

m~X~JA dS. 

(If j ^ / then Mj
a(Qau) must be omitted.) For any choice of sufficiently 

differentiable functions gj the system 

Lbu(x) = 0, x G G, 
{ } (d/dn)jbu(x) = gj(x), x e dG 

has a solution which is an element of Uo. As bJ(u; ou) = 0, ou G Uo, one 
obtains from varying the normal derivatives in (4.5) 

m—1-3 

(4.7) 
Njm-v = 0, m/2 - 1 ^ j ^ h x G dG, 

i-i 

(If / ^ m/2, the first set of equations is vacuous.) As v satisfies both (4.4) and 
(4.7) it is a variational adjoint. 

II. Dim. N(L) and Dim. N(L*) are positive. 
Again, first it will be shown that there exists a function v G Cm(G) that 

satisfies (4.4). In view of Theorem 1 this is true if and only if 

(4.8) (bu, [F]tU - L*w) = 0, Ou G N(L) 

Here w G Cm+[y/2]+1(G) is any function that satisfies the boundary conditions 
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of (4.4), w = 0 if I ^ m/2. Now it will be shown that 

(4.9) (du, [F]>u - L*w) = bJ(w, du), du G N(L). 

If / ^ m/2, this follows immediately from (3.2). If I > m/2 and du G N(L) 
one has 

(to*, [F]fl4 - L*w) = (ôw, [F],w) + (wLô^ - ôwL*w) = 

• m—l—jt I £ 
•^ dG j=m/ 

(Su, [F]..) + f E ((d/dnYôu) S if/(Qa
M) dS = 

•^ 3 « ?=ra/2 I a 1 = 7 

(Su,[F],u)+ X, «d/dnyôu)Njm-L-3wdS = 
dG j=m/2 

dG j=m/2 |a|=j 

(Su,[F],u)+ I E (Da5u)QaudS 
J dG | a | = r a / 2 

and again (4.9) follows from (3.2). As N(L) C U0 and ô/(w; ôw) = 0, ou G C/0, 
one obtains (4.8) from (4.9). 

Let v' be one of the functions that satisfy (4.4). With this function 
ôJ(u; du) can be written again as in (4.5). This expression must vanish for all 
bu G Uo. The normal derivatives of ou can not be chosen freely. Using Green's 
Identity one gets that 

/

' ra/2-1 

6 G j=0 
(4.10) 2J {{d/dn)35u)Np- 3*dS, for all z € N(L*). 

J 8 G j=0 

must be satisfied. Therefore 

z-i 
(4.11) X Mja(Qau) - Np-x-jvf = N™~l~jz', w / 2 - U j è 0, 

where z' G N(L*). (If j ^ / then ^Mf^u) must be omitted.) From (4.4) and 
(4.11) it follows that v = v' + z' is a variational adjoint of ^ with respect to 
L and J. 

In both cases the converse follows directly from Theorem 1 of the previous 
section. This completes the proof. 

COROLLARY. If the conditions (i)-(v) of Theorem 2 are satisfied and if J has a 
relative extremum within Ufor some u G U then there exists a function v G C^iG) 
such that 

Lu(x) = f(x), x G G, 

L*v(x) = [F],u, x G G, 

(d/dn)3v(x) = 0, x G dG, 0 S j â m - I - 1, 

( 4 ' 1 2 ) {3/3nT~lv(x)= £ ( - 1 ) - ' - ^ - - ^ - , x e d G , 
\a\=l,\(3\=m \A a?) 0\L> U) 

l-l 

N^-'vfr) = £ M3
a(Qau), I - 2 ^ j ^ 0. 
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The above set of equations is called the variational boundary value problem. 
The first set of boundary conditions is vacuous if / = m. If / = 1 the last 
equation is vacuous. In this case the boundary value problem takes a much 
simpler form as no complicated computations for the functions Mj* and Q" 
need to be carried out. 

5. The elliptic boundary and interior control problem. As in the 
previous sections a functional J is given by 

J(w) = J F(x, w(x), Dw(x), . . . , Dlw(x)dV, 
J G 

where F is continuous with respect to all its arguments and a differential expres­
sion L is given by 

L = ^ aa(x)Da, x G G, m ^ /. 
\a\<^m 

Throughout this section it is assumed that L is uniformly strongly elliptic and 
that the Dirichlet problem is uniquely solvable. (N(L) = {0}.) 

The interior control set P and the boundary control sets Qjy 0 ^ j ^ m/2 — 1, 
are given linear function spaces defined on G and dG respectively. The class of 
admissible functions W is the set of all solutions of 

r Lw(x) = f(x, p(x)), p G P,x G G, 
{D- } (d/dnyw(x) = gj(x, q,(x)), qj G QJt 0 g j g « / 2 - l , * 6 dG, 

which are of class Cl(G). The functions / and gjy 0 ^ j ^ m/2 — 1, are given 
fixed functions defined on (G X R) and (dG X R), respectively. The functions 
p and Qj can be chosen freely in P and Qjy 0 ^ j rg m/2 — 1, respectively. 
The class of admissable variations 5 W and a relative extremum are defined as 
in section 3. In this section 8J(u; ou) will not simply be J'(u)bu but J' (u)h\U 
where h\U is the principal part of du which will be given a precise meaning in 
the sequel (du = h\U + ô2u and see (5.3), (5.4)). 

THEOREM 5.1. Let the following conditions be satisfied. 
(i) F is continuously differentiate. 

(ii) aa G 0 / 2 J + 2 (G) , 0 S \a\ ^ m/2, 
aa G G^^/2]+2~m/2(G), m/2 < \a\ ^ m. 

(iii) The functions f, gj and their first and second derivatives with respect to 
their second variable are of class C^W+l(G X R) and C^/2^+2+m-j(dG X R), 
0 ^ j ^ m/2 — 1, respectively. 

(iv) P C C["/2]+2(G); Qj C C[ i ; /2]+2+w-'(dG), 0 ^ j ^ m/2 - 1. 
Then 

(5.2) ôJ(w,8w) = I ]T (D%w)(dF/dDaw)dV, 
J G \a\=0 
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where b\W is a solution of 

JLôw = ôp(df/dp) 
{0-6) \(d/dn)%w = àgAdgj/dqj), 0 S j ^ m/2 - 1, 

equals zero for all bw £ bW if J has a relative extremum within W at w G W. 

Proof. The existence and regularity requirements are based on Theorem 4.1. 
They will not be mentioned explicitely. 

The function bw is the solution of 

Lbw = /(*, p + sp) - f(x, p) 
(d/dnYbw = gj(x, gj + bqj) - gj(x, qj), 0 ^ j ^ m/2 - 1, 

so that bw = b\W + b2w, where biw is given above and b2w is the solution of 

Lb2w = (bp)2d2f/dp2 

(d/dti)%w = (og^Wgj/dqf, 0 ^ j ^ m/2 - 1. 

(An overbar indicates that the function must be evaluated for intermediate 
values; e.g., d2f/dp2 = d2f(x, p(x) + 6{x)bp{x))/dp2, 0 < d(x) < 1, x £ G.) 
As unique solvability of the Dirichlet problem is assumed the following 
Schauder estimate for b2w is valid. (See e.g. [2, Theorem 7.3. and Remark 2].) 

( TO/2-1 ) 

\\b2w\\rn+pSK\\\bp\d*J/dp2)\\+ g I\k?{à%/dg?\U_;j 

(p c (0, 1) is the exponent of Holder continuity), so that 

(5.4) lim ~ \\b2w(x; abp, a<5g)||m+p = 0. 
a->o a 

Applying the mean value theorem to the integrand of AJ(w; bw), AJ = 
J(w + bw) — J(w), one obtains 

(5.5) AJ(w, bw) = bJ(w, bw) + R(w, bw), with, 

rrp. R(w,bw) = f E {(Dab2w)(dF/dDaw) 

+ (Dab1w)(dF/dDaw - dF/dDaw)}dV. 

From (5.3), (5.4) and dF/dDaw, evaluated for dw(x, abp, abq) -> dF/dDaw, 
uniformly on G, as a —» 0 it follows that 

(5.7) lim - R(w; bw(x, abp, abq)) = 0. 
a^o a 

From (6.3) and (6.4) it follows that 

(5.8) lim | \bw(x, abp, abq) j 11 — 0. 

If / has a relative extremum at w then AJ(w, bw) must be either non-positive 
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or else non-negative for all 8w G 8w with \\8w\\i S 8, for some positive 8. As 
AJ(w, 8w(x, a8p, adg)) = a{8J(w, 8w(x; dp, 8g)) + (l/a)R(w, 8w(x; a8p, aôg)) 
and (5.7), (5.8) this can only be true if 8J(w; 8w) = 0, 8w G 8W. 

THEOREM 5.2. Let k be a non-negative integer, k = [v/2] + 1 + max. (1, k), 
\j = [v/2] + 1 + m + max. (1, k) — j and let the following conditions be 
satisfied. 

(i) G is bounded in Rv with dG G Cm^v'^+l. 
(ii) L is uniformly strongly elliptic, N(L*) = {0}, 

aa G C['/2]+1+m"<1'i«i>(G), 0 ^ H g m/2, o«d 
a« G C^ /2^1+2l«l-m/2(G), m/2 < \a\ £ m. 

(iii) 77&e functions f, g,,, awd /te'r y£rs/ /wo derivatives with respect to their 
second variable are of class Ck(G X R) and C^^dG X R), 0 ^ j ^ m/2 — 1, 
restée toe/;y. 

(iv) P C C*(G) aw^ & C Cxi(dG), 0 £j £m/2 - 1. 
(v) F is (/ + [V/2] + 1)-times continuously differentiable. 

(vi) The function v G Cm(G) w the solution of 

(5.9) L M x ) = [F]tW,x G G, 
Z - l 

N^-'v = E M3
a(Qaw), m/2 £j £1-1 

N™'1-^ = 0, max. (/, m/2) £j£m-l9x e dG. 

Then 8J(w, bw), given in (5.2), (5.3), can be written as 

8J(w,8w)= I 8p(v(df/dp))dV 
J G 

/

• min(Z,m/2)-l / l-l \ 

E htidg/àq,) 1 E W W - Nr^'v) dS 
dG i=0 M«| = i / 

/
' TO/2-1 

E Biiidg/dqJNr^'v dS. 
dG j=l 

(If / ^ m/2 then the second set of equations in (5.9) is vacuous. If I ^ m/2 
then the last integral of (5.10) must be omitted. For the definitions of Mf and 
Nj

m-1-J see (2.2) and (2.4) respectively.) 
The proof of the above theorem is analogous to that of Lemma 3.2 and 

Theorem 4.1. The existence and regularity properties are derived from Theorem 
4.1. 
Necessary conditions for the existence of an optimal solution of the boundary 
and interior control problem follow directly from the Theorems 5.1 and 5.2. 
The most interesting conditions are given in the next theorem. 

THEOREM 5.3. If 

(i) the conditions of Theorem 5.2 are satisfied, 
(ii) Cœ(G) C P and Cœ(dG) C Qj, 0 £ j £ m/2 - 1, 

(iii) J has a relative extremum within W at w G W, 
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then the solution of (5.9) also satisfies 

,- m W/dp)v = 0, x 6 G, (dgj/dqj) \ E M?(Qaw) - NT^} = 0, 
(0.11; \\a\ = j J 

x e dG,0 ^j S min (/, m/2) - 1, (dgj/dqj) {NP"1"^} = 0, 

x £ dG,l Sj ^ m/2 - 1. 

(7/ / ^ m/2 2Â£w /fee Za5/ se/ 0/ equations is vacuous.) 

Definition. Let the conditions of Theorem 5.3 be satisfied. Then (5.1), (5.9) 
and (5.11) together constitute the control boundary value problem. 

Remark 1. If df(x, p(x))/dp ^ 0 , x G G , and dgj(x, qj(x))/dqj 9^ 0, 0 S j S 
m/2 — 1, x G dG, then the control boundary value problem reduces to the 
Euler equation with transversality conditions for / . 

Remark 2. If/ = f(x) and dgj(x, qj(x))/dq3- 9^ 0, 0 S j S m/2 — 1, x G ^G, 
then the control boundary value problem reduces to the variational boundary 
value problem. 

6. Appendix. The appendix contains the proofs of the results stated in 
section 2. The following additional notation is used. If a is a multi-index then 
perm a is an |a|-vector the components of which take values in {1, 2, . . . *>} 
such that i G {1, 2, . . . v) occurs at times (e.g., let a = (2, 1) then perm 
« G {1, 1, 2), (1, 2, 1), (2, 1, 1)}). In the proof of Lemma 2.4 summation 
indices at and fit are used. If repeated in the same term they run independently 
from 1 to v, primed indices run from 1 to v — 1. 

Proof of Lemma 2.3. Using Lemma 2.1, functions wjy 0 S j ^ k, each of 
class Ck+h(£l), can be chosen, that satisfy 

WQ(X) = go(x)/b0(x), x G dG, 

and for / = 1, / = 2, . . . , / = k, respectively 

(d/dn)jwl = 0, 0 S j S I - 1, x G dG, 

(d/dn)lwl = \Zfbr\-1\gl-Bl[
iZ) u>i)}, x G dG. 

Using Lemma 2 one obtains 

Dawl(x) = 0, 0 g \a\ S I - 1, x G dG 

£ J W I ( * ) = gi(*0 - ^ 1 E ^zC*0 I , * 6 dG 
\ i=0 / 

so that w = J^i^k Wk satisfies B3w(x) = gj(x), x G dG, 0 :g j ^ k. 

Proof of Lemma 2.4. Let m ^ 1. Since dG is compact in Rv and at least, of 
class C2 there exists a small enough open strip about dG in which new co­
ordinates can be introduced as follows. Let {Oh} be an open covering of dG 
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such that corresponding to each h a mapping Th of an open set Ph Q Rv onto 
0hj which is one to one and together with its inverse of class Cr can be defined 
by: 

Xt(t) = tt + tvnt(t'), i = 1, —, j — 1 

(6.1) Xi(t) = h-i + tvtiiit'), i=j+l, - , „ 

Xj(t) =fh(t') + *,»,(*'), 

where/*(xr — >Xj-vXj+v — >xv) = xjy x G 0h P\ dG, tv = =bdist. (x, dG), 
+ or — as x G G or x G G; /' = (/r — '/„_i). 

Let { 3^} be a partition of unity subordinate to {0h} and put 

r m 
(6.2) /» = I n **(*) Z 6"l,-,"'(*) 2>ai • • • A ^ x ) dS 

J Oh dG i=0 

with &«!•-•«* = (û;!/|a|!)èa, a r - «n = perm, a and £>ai = d/dxaiJ so that 

Going over to /-coordinates one gets 

(6.3) /

m 

Qh J=o 

with Qh = {t e R". t e Ph A t, = 0}; DPl = d/dtfil; qh(t) = q(Th(t)), t G P», 
and 

a/1 •-•*(/) = E /,(/)^(r,(0)eai'-^ai'-'am'-^(r,(0)^(0. 

In the last formula /» is an extension into CT(Ph) of (1 + (dfh/dh)2 + . . . + 
(d/a/d/„-i)2)* and the functions j?«i.-.«*.0i.-.0y £ Cr+'-*(PA) are the transfor­
mation coefficients of the derivatives of q. One observes that the Bjf1'-'?' have 
compact support in Ph and are symmetric in fiv — >i3j. Thus after rearrange­
ment of the summation the integrand of (6.3) takes the form 

m m—j I • ! ? \ 

2^ I z, J ^ ^ " Pew • • • DPj+k'q_h' 

and after integration by parts it is 

m m—j / i I »\ 

Z (aWaOE (-DM T - 7 ) ^ ^ . . . ^ ^ ^ ' - ^ ' - ^ ' . 
From (dqn/dtv) = (dxaJdtv)Dalq = naiDaiq(x), x G 0/,, it follows that 

(djqh(t)/dtv
j) = (d/dn)jq(x),x G 0», so that in ^-coordinates 

Œ.4) h= \ E ((d/dn)'q)EJhdS, where 
J OhC\dG j=0 

m—j k 

EA*) = I Z (-DM I j (Mrr'ix))-1 

k=0 1=0 \ K I 

X sh
fii+1'---fii**'"n'~-'" (x)Dyi . ..DyiBh"-''''i+l'--J'i+k'. 
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The îunctionsSrPi+1,,^,Pi+k',yl'~'yl € Cr+l~k{pn) are transformation coefficients, 
Dyi = d/dxyi. 

Summing again over h one obtains 

f6.6) Z (3/dnYqY, EjhdS. 
dG 7=0 h 

Finally, from (6, 5) and the information below (6, 3) it follows that 

m \a\—j 

(6.7) £ Ejh = E Z mf(x)D0b(x),withmf 6 C ' + ^ M a , ( n b h . dG). 
h \a\ = j |/3|=0 

Remark. The expression Mj are independent of m and of the coordinate 
transformations used in the sense that if 

f* m' f* m m 

I'= T,b'a{x)Daq'{x)dS= £ (d/dn)iq'Z M';b'adS, 
J dG | a | = 0 «^âG j=0 a = ; 

and correspondingly for I", then ikT/* = M"f, \a\ ^ min (m', m") in some 
neighbourhood of dG. For choose (d/dn) Y = (d/dn) iqff = 0, i ^ J, (d/dn) Y 
= (d/dn) Y ' = f> ^ = ^ / /3 = 0, /3 ^ a and fc* = 5. Then from varying r one 
obtains M'fs = M"fs independent of the particular choice of s so that 
M'r = M"?. 

Proof of Theorem 2.1. For two functions u and v both of class Cm(i2) and 
a domain G (Z Rp with dG Ç C1, Green's identity is 

/

/* m—1 m— |a|—1 

(uLv - vL*u)dV = E E DauD%PalidS, 
G J dG | a | = 0 |j8| = 0 

where the functions P"^ are given by 

, f a fc-o ( _ 1 ) I |«| J l a + ^ + T + S l ! ^ " ^ ^ 1 1 -

This result depends only on integration by parts. The computations can be 
found in [6]. The first part of Theorem 2.1 follows immediately from ((5.8) and 
Lemma 2.4. To prove (2.5) choose any integer j in [0, m — 1] and let dkv/dnk = 
0, 0 â k ^ j - 1, x G dG, and dku/dnk = 0, 0 g & g m - 2 - j , x t dG, so 
that for x G dG;Dav = 0, 0 ^ |a| ^ j - 1 ; i>y = n a ( â V ^ ) , M = j;Dau = 
0,0 ^ |a| ^m - j - 2\Dau = n ^ d ' ^ - V d n ^ ' - 1 ) , |a| = m - j - 1 (Lemma 
2.2). Substitution of these results into (6.8) and (2.4), respectively yields 

/ . da |a|=m-/-i l/S|=j |j|=i I a -+- p -f- 6\\ 

X aa+li+sn
a+?+sdS = f {a/dn)1v{d/dn)mr-l-lu £ n'p'dS. 

J dG \a\=m-j-l 

As the above normal derivatives of w and z; can be chosen freely one obtains 
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an identity that after rearrangement of the summation takes the form (2.5). 
This completes the proof. 
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