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Abstract

Many population biology, ecology, and evolution experiments rely on the accuracy of the classification of
individuals and the estimation of size population. The visual classification of vinegar flies, Drosophila
melanogaster (Diptera: Drosophilidae), morphs is a laborious task usually performed by bench workers.
Because of the size of the flies and the degree of precision needed to distinguish the morphological features
on which the classification is based, the work is performed using a dissecting microscope. Here, we describe
a method to automate the counting and identification of two types of vinegar flies, white and wild
individuals. Our method is based on the image-recognition artificial intelligence (AI) tool, FlydAI
(FlyDetector AlI), which proved to correctly classify the flies when high-quality images were used, with a
success rate of up to 100% in samples containing up to 200 individuals. This is a significant improvement
with respect to preexisting approaches in terms of accuracy and specificity of the morphs detected.
Although this tool is exclusively trained to routine lab tasks involving wild and white D. melanogaster, the
Al can be easily trained to recognise different vinegar fly mutants and other types of insects of similar size,
and its potential in other areas still needs to be explored.

Introduction

Around 4000 labs worldwide work on Drosophila melanogaster Meigen, 1830 (Diptera:
Drosophilidae), the vinegar fly; according to the Bloomington Drosophila Stock Center, BDSC, the
database of which includes more than 3900 research groups in 72 countries. Although the first
documented experimental use of Drosophila was by William Castle’s group at Harvard in 1901,
this species became a model insect after Thomas H. Morgan and collaborators laid the
foundations of the field of genetics in their famous Fly Room at the beginning of the twentieth
century (Morgan 1909). Since then, hundreds of mutations have been described in
D. melanogaster causing alterations in wings, abnormal body colour, odd-coloured eyes, and
strangely formed heads (Chadov et al. 2015). These mutations allow a direct association between
phenotypes and genotypes, making them easily scored markers for genetic mapping, population
biology, ecology, and evolution studies (Kohler 1994). Drosophila melanogaster enabled seminal
genetics discoveries, such as the nature of Mendelian factors, physical mapping, and the effect of
X-rays in chromosomal structure (Morgan 1909; Jennings 2011), and was used to test the genome
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sequencing shot-gun method 11 months before the publication of the human genome
(Kohler 1994; Adams et al. 2000; Rubin and Lewis 2000).

The vinegar fly is also the subject of a large number of experiments in a wide range of different
fields (Hales et al. 2015). It is a key model for regenerative biology and medicine. Well-established
protocols exist for its genetic modification, and many orthologous genes are available to study
mechanisms underlying human disease (Yamamoto et al. 2014), including cancer, cardiovascular
disease, and neurological diseases (Bellen et al. 2010; Pandey and Nichols 2011). Drosophila
melanogaster is also considered a model organism for developmental biology. Over the past four
decades, Drosophila has become a predominant model to understand how genes direct the
development of an embryo (Jennings 2011). Many driver lines from Drosophila are used to
provide spatiotemporally regulated genetic handles to almost every cell type (Chan et al. 2024).
The use of vinegar flies is also common in studies related to the influence of genetic and
environmental factors in behaviour, such as mating and courtship (Balaban-Feld and
Valone 2018), aggression (Baier et al. 2002), and learning and memory (Maggu et al. 2022).

For some analyses, only a simple count of total number of individuals is needed, whereas for
others, detailed counts (i.e., classifying different morphs) are required. Importantly, the efficient
estimation of the number and type of individuals is crucial in experiments that correlate certain
phenotypes with specific genotypes, as is the case for genetic mapping (Zhai et al. 2003) or in
functional ecology studies (Mendes et al. 2021). In other cases, a measure of the raw number of
individuals in a population is required, such as in fecundity experiments (Nouhaud et al. 2018).
The traditional manual process includes a short treatment of the flies with anaesthesia, after which
they are counted and identified by experienced technicians using dissecting microscopes. In some
other cases, it is important to track fly movement, as in some behavioural experiments (Nichols
et al. 2012).

Although the short lifecycle of Drosophila enables the possibility of performing experiments
with large numbers of individuals, some methodological bottlenecks remain. The reduced size of
the individuals (about 3 mm long) and their motility often hinder their management and
identification and make it difficult to track movement or to make observations of certain
behaviours (Macartney et al. 2022). Counting large populations of flies is a tedious and time-
consuming process. The total processing time varies and depends on the ability of a human
operator and the number of individuals required. The typology of some studies requires analyses
of high numbers of individuals. In these cases, automated phenotyping is a possible solution.
These methods use deep-learning models to automatically recognise and categorise elements
within images and consist of several steps: (1) data collection, typically a digital image;
(2) identification and classification of the objects in the image by the artificial neural networks;
(3) image pattern recognition, where a predefined class label is assigned to an image, or part of an
image, and tagging using object bounding boxes; and (4) segmentation, which is necessary for
counting and recognising individual objects (Uchida 2013). In Drosophila, examples include
(1) methods to efficiently count large number of individuals and (2) methods able to determine
the offspring size and gender ratio in fly populations. All of the methods use as inputs images of
anaesthetised flies or images of flies in sticky traps. Within the first category of examples, the most
significant tools are FlyCounter, a program coded in MATLAB (Yati and Dey 2011), and an
application for Android devices that is an adaptation of a preexisting app to count seeds (Karpova
et al. 2020). Other authors, using Image] (Nouhaud et al 2018; Ng'oma et al. 2020) and
proprietary software (Waithe et al. 2015), have developed methods to indirectly make estimations
of Drosophila population sizes based on the number of eggs laid. Within the second category of
examples, there is an application for cell phones, also named FlyCounter (Genaev et al. 2022), that
is based on a YOLOv4-tiny neural network algorithm and an image-based object detection
method that uses deep convolutional neural networks to identify D. suzukii individuals (Roosjen
et al. 2020). Aside from counting the number of flies, the latter two approaches can also
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Figure 1. Pipeline of the development and use of image-recognition Al: image capturing, dataset preparation, and Al
training and validation.

differentiate individual flies according to their sex. None of the methods developed to date has
been trained to differentiate Drosophila mutants.

Here, we present FlyDetector artificial intelligence (FlydAI), an image-recognition algorithm
based on TensorFlow, that can be used to count and classify large populations of wild-type and
white-mutant D. melanogaster. The FlydAI uses images containing different numbers of flies and
makes predictions on the total number and morphs of flies.

Materials and methods

The rationale behind the present experiment was to capture images containing two types of
D. melanogaster flies so that they subsequently can be processed using ad hoc-trained image-
recognition Al that automates the counting of individuals and the identification of the different
phenotypes. A process map is shown in Fig. 1.

The workflow of FlydAlI includes (1) an image in joint photographic experts group (jpeg)
format is taken as input; (2) images exceeding 1094 x 768 pixels are cropped into fragments;
(3) each fragment is processed individually, individuals are identified, classified by phenotype, and
recorded; (4) a summary of the numbers of individuals and phenotypes counted is generated as a
comma-separated values (csv) file; and (5) the original image is reconstructed using the
interpreted fragments (Fig. 2).

Image dataset preparation

Wild-type and white-mutant D. melanogaster flies were anaesthetised with ether for 45
seconds, placed onto blue, white, pink, yellow, brown, and gridded cards (see Supplementary
material 1) to maximise background subtraction (Uchida 2013), and photographed. The number
of individuals per image ranged randomly from 1 to 10. For replicates, individuals were randomly
replaced and repositioned to train the model to identify different flies in different positions. A total
of 350 flies were used. Images were captured with two different devices: a Canon EOS 70D camera
with a 100mm f/2.8L macro lens (Canon, Ota City, Tokyo, Japan) and a Bysameyee 8-SA-00
digital microscope (Bysameyee, South Korea). A dataset of 495 images in three categories (only
white mutants, only wild-type flies, and both white mutants and wild-type flies) was generated.

Development of Al for image recognition

FlydAI training was performed using TensorFlow, a free and open-source software library for
machine learning and artificial intelligence (https://www.tensorflow.org). After conducting an

https://doi.org/10.4039/tce.2024.36 Published online by Cambridge University Press


https://doi.org/10.4039/tce.2024.36
https://www.tensorflow.org
https://doi.org/10.4039/tce.2024.36

4 Gaélvez Salido et al.

Figure 2. Output of an image reconstructed by FlydAl. Each individual is identified by a red square; phenotypes and a value
of confidence (a cutoff value of 0.65 was considered) included in brackets are indicated inside.

average accuracy (mAP) test with COCO (Common Objects in Context, https://cocodataset.org/;
Lin et al. 2014) for five different architectures (for details, see Data availability), EfficientDet-Lite2
architecture (batch size =16 for training and 1 for validation; number of epochs =120) was
selected because of its more efficient performance in terms of training and inference times.

The size of the images was standardised, so that images exceeding 1094 x 768 pixels were
cropped into smaller fragments to meet this criterion. This facilitated the detection of small targets
and was the optimal image size with which TensorFlow architecture was trained. Reducing or
rescaling the image to suit the optimal size is not an option because doing so would reduce the
level of detail and information of the image, thereby dramatically decreasing the model’s
performance. When cropping images, flies that are positioned on a boundary between two
fragments may be misclassified or classified twice. To avoid these potential problems, we
recommend using a grid card (see Supplementary material 1) to place the anaesthetised individual
flies well within the squares.

Wild-type and white-mutant flies were manually identified in the images and labelled with
labellmg (https://github.com/tzutalin/labellmg). Images were randomly distributed for training
(440; 89%) and validation (55; 11%). For training, we aimed to increase the variability of the
dataset to help improve the ADs resistance to photographic artefacts. An additional set of images
therefore was generated with Roboflow (https://roboflow.com; Fig. 3), using as the source the
initial 440 images. The Roboflow software reconstructed 921 new pictures from the original
images by randomly combining their different parts, including specular images, and by adding 5%
artificial noise. As a result, a final dataset of 1361 images (440 original images + 921 Roboflow-
created images) was obtained and used for Al training. Reports for each validation were generated
and manually inspected.

Only the images that were neither labelled nor previously processed by the AI were used to test
the AL Sets of images with different fly densities, containing 25, 50, 100, and 200 wild-type and
white-mutant flies in different percentages, were reconstructed from the dataset. For that task,
different combinations of fragments containing up to 10 individuals were used. In addition, three
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Figure 3. Example of an image reconstructed by combining fragments and adding artificial noise generated by Roboflow.

sets of images used for testing were altered by adding 5, 15, and 30% noise with Photoshop
(Adobe, Inc., San Jose, California, United States of America; an example is shown in
Supplementary material 2) and then were used to test the Al as previously described. The whole
process, using different sets of images with the same densities (25, 50, 100, and 200) and the same
noise levels (0%, 5%, 15%, and 30%), was repeated 15 times. For each replicate, the combination of
fragments differed. The run time (for Google Colab (Mountain View, California, United States of
America) GPU: NVIDIA Tesla K80 (Austin, Texas, United States of America) was recorded.

Data availability

A GitHub repository was created to allocate the Python scripts written to automate the
process, the compiled programs, a step-by-step protocol, and the dataset used in this study:
https://aarongs1999.github.io/Drosophila_AI_Tensorflow/Drosophila_AI_Tensorflow.html. Users
can reproduce the analysis presented here using the sample dataset provided, run the model using
private images of white and wild Drosophila, or train the model using images with different
materials.

Human determination of number and phenotype of individuals

Four experienced geneticists were asked to estimate the number of wild-type and white-mutant
flies in digital images of different densities (25, 50, 100, and 200 flies). Each geneticist was given 15
images that were randomly selected from the dataset of high-quality images containing a mix of
wild and white flies. The geneticists did not see the images before the experiment and did not
know the number of individuals in each image in advance. The time to process each image - the
amount of time from when the digital image file in question was opened until the count was
finished - was recorded.

In addition, three experienced geneticists were asked to estimate the number of wild and white
flies in lab samples of different densities (approximately 25, 50, 100, and 200 flies) using dissecting
microscopes. Each geneticist was given 10 samples that contained a mix of wild and white flies.
The geneticists did not know the number of individual flies in each sample in advance. The time
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needed to process each sample - the amount of time from when the sample in question was
provided until the count was finished - was recorded.

Statistical processing of data

For each image, the success rate of the estimations of three parameters - total number of
individuals, number of wild individuals, and number of white individuals — was calculated as
follows:

Success rate = [(experimental value/real value) x 100]

Values greater than 100 indicate overestimation, and those less than 100 indicate underestimation.

Results

FlydAl: individual counts, phenotype identification, and processing time

Individual counts. When images with a degree of noise of up to 5% were input, in all tests
performed (densities 25, 50, 100, and 200) and for all 15 replicates, FlydAI estimated the correct
number of individuals with a success rate over 99.8%. For images with 15% noise, the efficiency
was better than 96%. In all of these cases, some flies remained not detected because the individuals
were out of focus or in positions that hampered their identification, even by a human operator. In
pictures with 30% artificial noise, FlydAI accurately estimated the number of individuals with an
efficiency of 75.2%. Across the entire dataset, the average percentage of successful estimates of
numbers of individual flies by the Al was 92.92% (Table 1).

Phenotype identification. Regarding phenotype identification, for images taken under controlled
conditions of focus and light, all individuals previously detected by the AI were assigned a correct
phenotype (wild or white) for all densities and in all replicates (Table 1). When images with 5%
artificial noise were used as the input, all individuals were assigned the correct phenotype, except
for one single wild fly that was phenotyped by the AI as a white fly. For images with 15% artificial
noise, 82.3% of white individuals were assigned the correct phenotype. Wild individuals were
overestimated by 15.6%, with some white individuals incorrectly assigned to the wild phenotype.
For images with 30% artificial noise, wild individuals were overestimated by 47.74%, with most
white individuals incorrectly assigned to the wild phenotype. In fact, using these images as the
source, FlydAI correctly phenotyped only 3.67% of white-mutant flies (Table 1).

Processing time. The overall mean average run time for FlydAI was 75.83 seconds per image and
did not differ significantly between the different replicates, regardless of the fly density or noise
level (Table 1). The execution time was directly related to the complexity of the TensorFlow
architecture. The architecture selected for the present study (EfficientDet-Lite2) proved to be
more efficient of the options tested.

Human workers: individual counts, phenotype identification, and processing time

Individual counts. Human workers were asked to identify the number of white and wild
individuals from both digital images and lab samples of different densities (25, 50, 100, and 200).
For digital images, the average percentage of successful estimations of individual fly numbers
overall was almost 100% (Table 2). For lab samples, the average percentage of successful
estimations of individual fly numbers overall was 99.6% (Table 3).
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Table 1. Success rate (SR) of estimation of number and phenotype of individuals by Al and run time for the different
densities and image sources

Fly density SR: count SR: ident. wild SR: ident. white Run time (seconds)
Noise 0%
D25 100 100 100 75,27
D50 99.87 100 100 79,6
D100 100 100 100 80,25
D200 99.7 100 100 80,14
Average 99.89 100 100 78,81
Noise 5%
D25 99.73 99.55 100.67 71.24
D50 99.87 100 100 77.01
D100 100 100 100 76.02
D200 99.77 100 100 75.28
Average 99.84 99.89 100.17 74.89
Noise 15%
D25 95.2 122.8 71.41 74.69
D50 94.53 128.3 68.07 74.29
D100 98.87 108.2 91.95 74.26
D200 98.47 101.46 97.5 75.49
Average 96.77 115.19 82.23 74.68
Noise 30%
D25 76.53 138.82 13.97 75.07
D50 61.73 130.04 0.51 74.56
D100 83.87 184.64 0 75.22
D200 78.63 137.47 0.19 74.96
Average 75.19 147.74 3.67 74.95
Overall
D25 92.86 115.29 71.51 74.07
D50 89 114.59 67.15 76.36
D100 95.68 123.21 72.99 76.44
D200 94.14 109.73 74.42 76.47
Average 92.92 115.7 71.52 75.83

Phenotype identification. The average percentages of correct phenotype identifications in digital

images and lab samples were equal, both being 99.6%.

Processing time. For both individual counts and phenotype identifications, the mean average
time required to complete each task increased with the density of flies. For digital images, the
mean average run time was 51.13, 67.45, 84.14, and 153.09 seconds per image for densities of 25,
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Table 2. Success rate (SR) of estimation of number and phenotype of individuals from digital images by human workers
and processing time

Fly density SR: count SR: ident. wild SR: ident. white Run time (seconds)
D25 100.36 99.34 101.61 51.13
D50 100.18 100 100.46 67.45
D100 100.07 100.6 95.59 84.14
D200 99.54 98.78 100.67 153.09
Average 100.04 99.68 99.58 88.95

Table 3. Success rate (SR) of estimation of number and phenotype of individuals from lab samples by human workers and
processing time

Fly density SR: count SR: ident. wild SR: ident. white Run time (seconds)
D25 99.1 101.1 97.04 49

D50 99.15 100.75 97.55 95.8

D100 97.6 92.3 102.9 197.33

D200 102.5 103.8 101.14 513.7
Average 99.6 99.5 99.65 214

50, 100, and 200, respectively. For lab samples, the mean average run time was 49, 95.8, 197.33,
and 513.7 seconds per image for densities 25, 50, 100, and 200, respectively. The overall average
processing time was 88.95 and 214 seconds per image for digital images and lab samples,
respectively (Tables 2 and 3).

Discussion
Using Al for counting and identifying Drosophila melanogaster individuals

FlydAI is an Al that automates the counting and identification of large populations of wild and
white morphs of D. melanogaster, minimising the labour of the manual procedure. Following the
approach presented here, we counted and identified wild and white morph flies in samples up to
200 individuals: 99.89% of individuals in the samples were counted, and all of them were assigned
the correct phenotype in 78.81 seconds of average run time. Based on these results, the use of
FlydAI potentially could help to reduce labour time for these routine tasks in a
D. melanogaster lab.

When input images are larger than 1094 x 768 pixels, FlydAI divides them in smaller
fragments, and these are processed separately by the Al processing a few individuals at a time. We
tested different combinations of fragments as inputs to reach the different densities. We found the
accuracy and the processing time were not significantly affected by sample size (see Table 1),
indicating that the number of flies to be counted and identified can be increased without hindering
these parameters. As mentioned in the section, Development of Al for image recognition, in this
paper, a fly that overlaps (is partially present) in two images as a result of the Al cropping process
can be misclassified or classified twice. The grid card provided (Supplementary material 1) allows
the user to place the anaesthetised flies within the squares to help make sure all of them are
classified correctly. The print-ready sample card can be easily transformed onto a sticky card to
facilitate the process of image capturing.
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Efficiency of human workers versus FlydAl

For experienced human workers, the rate of accurate estimation of number and phenotype of
individuals was almost 100% in all cases, although a slight tendency was observed when viewing
digital images to overestimate the number of individuals in samples of up to 100 individuals and to
underestimate this number in samples at a density of 200 individuals. When observing samples
under a microscope, workers showed an opposite tendency, undercounting flies at lower density
and overcounting flies at the highest density (200 flies). However, all counting errors by workers
were minor.

The preparation of the samples to be processed by both FlydAI and human operators does not
vary significantly: in both cases, it is necessary to anaesthetise the flies, place them on a solid
surface (cardboard grid or watch glass, depending on the case), and position them for observation
(with a DLSR camera or dissecting microscope, respectively). Apart from that, human processing
time at low or moderate densities was similar to FlydAI for digital images (Table 2) or even lower
for lab samples (Table 3). As the number of individuals per sample increased, the human
processing time dramatically increased, whereas the Al run time remained constant. On average, a
human worker was 14.75% slower than FlydAI when processing digital images and 64.6% slower
when processing lab samples. For the samples with higher densities used in this study (200 flies),
processing time was 513.7, 153.09, and 76 seconds per image for lab samples, digital images, and
Al, respectively. This suggests that a human worker would take twice as long as FlydAI would to
process a digital image. The time spent by a human operator to process a lab sample would be
almost seven times greater than the time spent by the AI (see Tables 1-3). It is reasonable to think
that, as we increase the number of samples processed throughout a workday, the efficiency of a
human worker would decline due to fatigue, whereas artificial intelligence will maintain steady
performance. This makes FlydAI an effective alternative to processing by bench workers.

Automated recognition methods

Most traditional manual methods to estimate size population of insects are trap-based (pitfall
traps, emergence traps, malaise traps, pan traps, light traps, etc.). In some other cases, insects
become fixed to a physical surface (i.e., on spot cards, sticky traps, and fly ribbons; Gerry 2020)
and then are counted by a human worker. In automated approaches, the surface bearing the
insects or insect marks is photographed, and an Al tool processes the data (Gerry et al. 2011; Ding
and Taylor 2016; Zhong et al. 2018; Zhu et al. 2018). These image-recognition methods are used
commonly to count flies (Gerry 2020), which may be difficult to identify and count when observed
alive due to their reduced size and their unpredictable, erratic motility. Those characteristics
complicate their identification, increase the likelihood that an individual fly is counted multiple
times, and make obtaining clear pictures of them in flight difficult. Even though video-monitoring
devices are normally intended to count bigger-sized animals (Pérez-Escudero et al. 2014; Bentley
et al. 2023), some early efforts have been used to detect insects in motion (Bjerge et al. 2021, 2023;
Kirkeby et al. 2021; Tannous et al. 2023; Roy et al. 2024).

For pest control, the introduction of electronic and automatic traps that combine hardware to
collect insects and software to send and process data offsite is increasingly common (Potamitis
et al. 2018; Preti et al. 2020; Pla et al. 2021; Diller et al. 2023). Some such tools have already been
commercialized: for example, Trapview (https://trapview.com/) developed a device that
automatically collects and sends data to be analysed by Al, and RapidFLY (https://rapidaim.io/)
provides a trap equipped with a sensor that is able to detect the presence of fruit flies.

In recent years, various Al have been developed and emerged. Some, such as Google’s Vertex
Al, have powerful image-recognition capabilities. However, they still all have drawbacks: they
operate under pay-as-you-go models with costs quickly escalating, they have limited
customisability, and they depend on computational resources or Internet availability.
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Ferreira Lima et al. (2020), Hoye et al. (2021), and Schneider et al. (2023) show that there are
many existing applications to automate the estimation of size population and the type of insects.
However, most methods cited by those authors discriminate among individuals belonging only to
different orders, genera, or, at best, species, and none of the tools has been trained to differentiate
Drosophila morphs. Although this limitation might be useful for pest control, it lacks sufficient
accuracy for laboratory work. The FlydAI on the other hand, accurately recognises and counts
D. melanogaster mutants using a digital image as source. Once the individuals are fixed onto a
surface, only a device able to capture macro images of a minimum of 1094 x 768 pixels is needed.

Criticisms

The high percentage of success of FlydAI determined in the present study may be argued as due
to the high-quality images used for the experiments. The images were taken under controlled light
and focus conditions, simulating a feasible lab situation. To test the AI usability and replicability
under different conditions, we altered a set of images. Adding noise to the images increases the
AT’s resilience to artefacts similar to those produced in poor-light conditions. Our aim was to train
a tool that can be used even when image-acquisition conditions are suboptimal - for example,
during field trips or in facilities where specialised equipment is unavailable. In our tests, FlydAI
success rate in assessing the correct number of flies was near 100% for all densities tested when
images had up to 15% artificial noise added. The success rate dropped to 75% when images with
30% noise were used. No significant differences in success rate were observed as the density of
individuals increased. Almost all of the flies detected in images with up to 5% noise were
phenotyped correctly. As the level of noise increased in the images, the AI tended to misidentify
white individuals, categorising them as wild-type flies: FlydAI overestimated wild-type flies by
15.2% and 47.74% for images with 15% and 30% noise, respectively; and it underestimated white
flies by 17.77% and 96.33% for images with 15% and 30% noise, respectively).

To prevent the model classifying only flies presented at the same scale and to increase the
efficiency of the Al different image sources (from a DLSR camera and a digital microscope, with
different levels of magnification and detail) were used for training. However, regardless of the
technical and environmental conditions in which our tests were conducted, it is highly unlikely
that in real Drosophila experiments, users will feed the AT model with images with the level of
artificial noise we added for the present study. Most commonly used devices that take photographs
are capable of producing high-quality images. In fact, more and more research demonstrates the
application of images taken with mobile phone cameras in diverse experimental contexts
(Ozcan 2014; Switz et al. 2014).

To further prove the efficiency of the FlydAI, we applied a test using a set of images
downloaded from the Internet. The lack of a sufficient number of images exclusively containing
wild and white D. melanogaster flies did not permit robust conclusions, but FlydAI detected both
phenotypes with the expected accuracy even when D. melanogaster drawings were used (see Data
availability).

Final remarks

The data presented here indicate that FlydAl is an accurate, fast, and reliable tool for automated
phenotyping of two different morphs of D. melanogaster (wild and white) and for counting large
number of individuals and that using FlydAI significantly reduces processing time for counting
and identification. In terms of efficiency and time employed, the tool surpassed the performance
of both other methods and experienced human operators. Thus, FlydAI is a viable alternative to
human workers in routine lab tasks, especially when the quality of the images is high or moderate
(up to 15% noise) and the number of individuals is high (200 or higher). The protocol we present
in this study could be used to benefit researchers in fields such as population biology, ecology, and
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evolution, where they must deal with a large number of individuals. The FlydAI is also
customisable for different phenotypes and species and requires a minimal supervision by
specialised operators. Programs, scripts, sample images, and the protocol have been made
available in a GitHub repository, and users can easily customise the methodology by training the
AT with their own images. A step-by-step protocol and the Al can be accessed via a Google Colab
virtual machine. Furthermore, FlydAI is affordable; TensorFlow Lite is specifically designed for
developing models on microcontrollers and other mobile and edge devices. This allows FlydAI to
be run using a 2.2-GHz processor, making possible the use of a low-cost Raspberry Pi (model 4b
8-Gb RAM) compact computer (Raspberry pi OS 11 64-bit; Raspberry Pi Foundation, Cambridge,
United Kingdom) to process the Al-generated files. This means that the methodology presented
here is portable and can be used outdoors or in facilities where no specialised instruments are
available.

Prospective work

The protocol provided in the present study (see Data availability) easily allows ad hoc training
of the Al for the recognition of not only other D. melanogaster mutants but can also be customised
to recognise a wide range of other animal species. Although FlydAI was designed exclusively to
facilitate routine lab tasks dealing with estimating the number of white and wild D. melanogaster
individuals, with the proper adjustments, it could be used in the field or in different types of
facilities to routinely record fly activity. The second section of the online protocol (see Data
availability) outlines how to train and use the model using other images of other materials or
insects.

The success of the proposed methodology relies on the availability of images containing a
representation of individuals in a population. The workflow suggests that multiple operators can
capture the images onsite, with subsequent data processing centralised offsite to reduce travel time
and expenses of specialised workers. One possible scenario would be for the digital images to be
processed by human workers. However, as shown in the present paper, FlydAI still is a more
efficient solution.

Supplementary material. The supplementary material for this article can be found at
https://doi.org/10.4039/tce.2024.36.
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