
SOME ALGEBRAIC STRUCTURE IN THE DUAL OF A 
COMPACT GROUP 

RICHARD ILTIS 

Throughout this paper, G will denote a compact (Hausdorff) topological 
group with identity e. When G is abelian, there is no difficulty in relating the 
group multiplication in G to the multiplication in the dual of G since characters 
are homomorphisms with respect to pointwise multiplication and pointwise 
multiplication of characters yields another character. However, in the non-
abelian case, there are two multiplications associated with the dual of G: (1) 
representations are homomorphisms with respect to composition multiplication, 
and (2) the tensor product of representations yields another representation. 
This investigation has its beginnings in an attempt to relate the group multi­
plication in G to the tensor multiplication in the dual of G. After some basic 
relations are obtained, we show that several known results for locally compact 
abelian groups which relate algebraic properties of the dual to topological-
algebraic properties of the group have analogues that hold for compact groups# 

This paper is derived from a thesis written at the University of Oregon. I 
wish to thank my adviser, Professor Paul Civin, and Professor Kenneth Ross 
for their encouragement and guidance. Furthermore, I would like to express 
my indebtedness to Professors Hewitt and Ross for allowing me to read 
portions of their forthcoming book on abstract harmonic analysis. 

1. Preliminaries. Our aim in this section is to introduce a dual object 
G* for G and to endow G" with an algebraic structure. The ideas and results 
presented in this section are known; a more complete description of G" and 
proofs of the results can be found in (7 and 8, or 15). 

By a representation U of G we mean a strongly continuous homomorphism 
of G into the unitary operators on some Hilbert space; write U(x) for the value 
of U at x £ G. Let fyïF (G) and °U J iG) denote the finite-dimensional and 
the irreducible representations of G, respectively. Recall that %\$'(G) C 
tyt&'iG). Given U, V £ ^ ^ " ( G ) , then new representations belonging to 
°tt3f{G) can be formed: (1) the direct sum U © V, (2) the tensor product 
U ® V, and (3) a conjugate U' which is defined in terms of U and an adjoint 
operation on the representation space of U. 

For U, V G %&~(G) we write U~ V if U and V are unitarily equivalent. 
Let G^ denote % J (G) modulo the equivalence relation ~. If 7 G G", write 
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Uy or Vy for a representative of 7, Jty for the representation space of Uy 

(assume that there is only one Hilbert space of each finite dimension), and Iy 

for the identity operator on Jrff7. Let the trivial representation and its equiv­
alence class be denoted by 1. 

We now give G" an algebraic structure which makes G" a hypergroup (1); 
see Helgason (5, §2). If 7 G G", set 7' = {V G <%J(G): V~ (Uy)'}; then 
yf G G" and yf is called the conjugate of 7. If 7, 5 6 C \ then [A ® £/5 G 
^^(G) and, hence, there is a unique (modulo^) decomposition, £/7 ® C/5 = 
miVal ® m2V

a2 © . . . © mPVap, where each mf is a positive integer and each 
«i G GA. Define the X-multiplication of 7 and ô by 7 X 8 = {«i, a2, . . . , aP}. 
For 7 G G" and T, A subsets of G", we define F', 7 X T and T X A in the 
obvious manner. Then X-multiplication is commutative and associative, 
1 X 7 = 7, and U 7 X 7' for all 7 G G". In the abelian case, X-multiplica­
tion and conjugation reduce to pointwise multiplication and inversion. 

2. Algebraic structure of C \ In this section we prove some elementary 
results, which will be used later, on the algebraic structure of G". We begin by 
introducing some notation. 

Discussion 2.1. If T C GA and T is closed under conjugation and X-multi­
plication, we write Y ^ G~; such a set is called a normal subhypergroup by 
Helgason (5, § 2). For F C G A let (Y) denote the smallest subset of G* contain­
ing T that is closed under conjugation and X-multiplication. Similarly, for 
B C G let (B) denote the smallest closed normal subgroup of G containing B. 
Note that if Y ^ GA, then Y = Y' and Y X r = F. 

PROPOSITION 2.2. Let Yx ^ cT and Y2 S G~; then {Y1VJ r2> = r x X r2 . 

Pr(?o/. Since 1 G Ti PiT2, we have that r x \J Y2 C Ti X r2 . Hence 
(Ti W T2) C (Ti X T2). Clearly, I \ X T2 C (Ti U r2) , so that (Tx X r2> = 
(Ti W r2) . Hence, it suffices to show that (Fi X r2) = I \ X Y2. 

(a) Let 7 Ç Y1 X T2; then there are 0̂  G r* (i = 1, 2) such that 
[7*i ® f/-2 = U* ® V, where F G ^^{G). I t can be verified that U'1' ® 
t /^ '^ / î/7' e 7 ' . Hence, 7' G 0-/ X <r2' C I \ X r2 . Therefore, I \ X T2 is 
closed under conjugation. 

(b) Let 7, ô G Tx X F2; then there are 0 ,̂ r^ G T^ (i = 1, 2) such that 
Uffl ® E/"« = U 0 F and I7T1 ® Z7T2 = C/5 0 W, where F, PF G ^ ^ ( G ) . I t 
can be verified that (Uffl ® Z7rl) ® (Ua2 ® UT2) ~ (Uy ® £/5) © F, where 
F G Qt&'iG). Hence 7 X ô C (eri X n ) X (<72 X r2) C Ti X r2 . Therefore, 
Fi X T2 is closed under X-multiplication. 

I t follows that ({71, 72}) = (71) X (72) for 71, 72 G G". 

COROLLARY 2.3. Let Yx and T2 be finite sets with Yi ^ G" and Y2 :§ G"; /few 
( r i U r2) is finite. 

Proof. Since Ti and F2 are finite and X-multiplication is finite-valued, 
Ti X T2 is finite. 
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A member b of a locally compact topological group B is called compact if 
the smallest closed subgroup of B containing b is compact. When B is abelian, 
the set of compact elements of B is a closed subgroup; see (7, §§ (9.9), (9.10), 
and (9.26)). Motivated by the fact that X-multiplication is commutative, we 
are led to the following definition. 

Definition 2.4. Let y G G"; then y is called compact or torsion if there is a 
finite set T such that y G T ^ G*. Let Cm(GA) denote the set of compact 
elements of G*. 

PROPOSITION 2.5. The compact elements of GA are closed under conjugation 
and X-multiplication; that is, Cm(G!A) ^ G*. 

Proof. Let 7 6 Cm(G~); then there is a finite set T such that 7 G T S G". 
Thus, 7' 6 Tr = T; therefore, 7' G Cm(GA). Let 7* 6 Cm(GA) (i = 1, 2); 
then there are finite sets Tt such that yt G I \ rg G" (i = 1, 2). Thus, 
7i X 72 C (Ti W T2) which is finite by Corollary 2.3; therefore, 71 X 72 C 
Cm(GA). 

For locally compact abelian groups, the concept of annihilator as introduced 
by Pontrjagin is a useful tool in relating structure on the dual group to struc­
ture on the group. Helgason (5, § 2) has given an analogue of annihilator for 
compact groups and has obtained some basic properties which we include 
below. Other concepts of a duality between closed (normal) subgroups and 
certain representation-associated sets have been studied; see, for example, van 
Kampen (11), Nakayama (16), and Hochschild and Mostow (9). Propositions 
2.7, 2.8, and 2.10 are closely related to van Kampen's results. 

Definition 2.6. Let B C G and Y C G\ Set 

A(G, r ) = [x G G: Wix) = Iy for all 7 G T} 
and 

K{G\B) = {7 G GA: lP(x) = Iy for all x G B}. 

We call A(G, T) the annihilator of V in G and call A(G", 5 ) the annihilator of 
B in G". 

PROPOSITION 2.7. (i) Let V C GA; /few A(G, r ) w a c/ased normal subgroup 
ofG. 

(ii) Le/ B CG; then A(G~, 5 ) ^ GA. 
(iii) Let Yx C r 2 C G"; /few 

{e} = A(G, GA) C A(G, T2) C A(G, r 0 C A(G, {1}) = G. 

(iv) Le/ Bx C B2 C G; /few 

{1} = A(G~, G) C A(G~, B2) C A(GA, BO C A ( C \ {e}) = G\ 
(v) Le/ r C G~; /few A(G, T) = A(G, ( r ) ) . 

(vi) Let B CG; then A(GA, B) = A ( C \ <B». 
(vii) Le/ r g G~; /few r = A(G", A(G, V)). 

(viii) Le/ B be a closed normal subgroup of G; then B = A(G, A(G/S, B)). 
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Proof. These statements are proved in (5, § 2; 8) ; only statements (vii) and 
(viii) require more than a routine verification. 

As in the abelian case, {G/H)" can be identified with A(G", H), where H is 
a closed normal subgroup of G; see (7, § (23.25)). 

PROPOSITION 2.8. Let H be a closed normal subgroup of G; then there is a one-
to-one mapping T of A{G", H) onto {G/H)" which preserves conjugation and 
X-multiplication. Moreover, for each y G A(G", H) there are representatives Uy 

and W*™ such that Uy(x) = W^y){xH) for all x G G. 

Proof. For each U G °lt^(G) such that U is constant on the cosets of H, 
let 7ro(f7) be the representation of G/H given by iro{U)(xH) — U(x) for all 
x G G. If 7 G A(G", H), then Uy is constant on the cosets of H; thus, let w(y) 
be the equivalence class in {G/HY that contains iro{Uy). It is routine to verify 
that 7ro{Uy) G °ttJ{G/H) (so that w is well-defined), that 7r is a one-to-one 
mapping of A(GA, if) onto {G/H)", and that 7r preserves the algebraic 
operations. 

The next two propositions are analogues of known results for locally compact 
abelian groups; see (7, § (23.29)). 

PROPOSITION 2.9. Let H be a closed normal subgroup of G; then the following 
statements are equivalent: 

(i) A(G", H) is finite-, 
(ii) H is open ; 

(iii) \{H) > 0, where X is a Haar measure on G. 

Proof, (i) <=> (ii). By (7, § (5.21)), H is open if and only if G/H is discrete. 
Since G is compact, G/H is compact; so that G/H is discrete if and only if 
G/H is finite. We also know that G/H is finite if and only if {G/H)" is finite. 
By Proposition 2.8, there is one-to-one correspondence between {G/H)" and 
A(<7\ H) ; thus, {G/H)" is finite if and only if A{G", H) is finite. 

(ii) <=» (iii). This equivalence is well known; see (7, §§ (20.17), (20.2), and 
(5.5)). 

PROPOSITION 2.10. (i) Let Tx S G" and T2 ^ G"; then A{G, T{) H A (G, 
r2) = A(G, ri x r2). 

(ii) Let Hi and H2 be closed normal subgroups of G; then Hi P\ H2 = {e} if 
and only if A{G", Hi) X A(G~, H2) = G". 

Proof, (i) Let x G A(G, I \ ) Pi A(G, r 2 ) and y G Ti X T2; then Uy(x) is a 
direct summand of an identity operator and, thus is itself an identity 
operator. Therefore, x G A (G, Ti X r 2 ) which shows that A(G, rx) Pi A(G, 
T2) C A(G, Ti X T2). Since 1 G I \ , we have that r ^ C T i X T2 {i = 1, 2); 

thus, A(G, ri x r2) c A(G, ro n A(G, r2). 
(ii) By part (i) and Proposition 2.7 we have that 
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A(G, A(GA, Hi) X A(GA, ff2)) = A(G, A(GA, HO) n A(G, A(GA, H2)) 
= Hxr\ H2. 

Proposition 2.2 shows that A(GA, Hx) X A(GA, H2) g G~; hence, Hxr\H2 = 
{e} if and only if A(G\ Hx) X A(GA, ff2) = GA by Proposition 2.7. 

An interesting result, which is a generalization of a theorem of Burnside (2, 
p. 299) follows from the previous proposition. 

PROPOSITION 2.11. Let V e °1/^{G) and set Y = {y 6 G": W is a direct 
summand of V) ; then V is one-to-one if and only if (Y) = G". 

Proof. Since V Ç <^"~(G), we have that 

V = miUJl © m2U
y2 © . . . 0 mpU

yv} 

where the mt are positive integers and the yt are distinct members of G"; then 
P = {71, 72, • • • , yp\. Note that Ker(F) = D {Ker([/70: 1 £ i £ p] and 
Ker (CA) = A(G, {y}) for 7 G G\ Hence 

Ker(F) = H{A(G, {yt}): 1 ^ i S p} = A(G, <7l) X (72) X . . . X <7P» 

by Proposition 2.10. Thus, Proposition 2.2 shows that Ker(F) = A(G, (T)). 
Therefore, V is one-to-one if and only if (Y) = GA by Proposition 2.7. 

The previous result shows that V is faithful if and only if the tensor powers 
of V and V exhaust G". 

One might ask, hoping that complete analogues of all locally compact 
abelian results for annihilators were true, if H* can be identified with GVA(G", 
H) for H a closed subgroup of G ; see (7, § (24.11)). However, it is not clear how 
to define GVA(G", H) since there is no "nice" concept of coset in G" as shown 
by the following proposition. A partial result in this direction, Proposition 2.13, 
suffices for this paper. 

PROPOSITION 2.12. Let 7, 8 Ç GA and Y ^ GA; then the following two state­
ments are equivalent: 

(i) 7 x r = à x r; 
(ii) y e ÔX Y andô e yXY. 

The following statement implies the preceding two statements: 
(iii) 7 X 8f C T. 

Statement (i) does not imply statement (iii). 

Proof, (i) => (ii) Since T ^ G", we have U T; thus, (ii) clearly follows 
from (i). 

(ii) => (i) Since 7 € 5 X r and r ^ GA, we have that 7 X r C à X r 
X r = 8 X T. Similarly, 8 G 7 X r implies that 5 X r C 7 X r . Therefore, 

7 x r = s x r. 
(iii) =» (ii) Since 7 X ô' C T, we have that y X 8' X 8 C T X 8 = 8 X Y. 

Hence, y £ 8X Y since 1 Ç Ô' X 5. Since 7 X ô' C r and Y S G", we have 
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that 7' X y X Ô' C y' X T = (y X T)'. Hence ^ (T X r ) ' since 1 G 
7 X 7 ; therefore ô £ 7 X T. 

(i) =|=* (iii) Let G be the symmetric group on three letters; then G" consists 
of two 1-dimensional classes, 1 and 13, and one 2-dimensional class, 7; see (4, 
p. 225). Let r = {1,0}, then T ^ G"; clearly, 7 X r = 7 X I\ Using characters, 
it can be shown that 7 £ 7 X 7'. However, 7 (? T; therefore 7 X 7' (Z T. 

PROPOSITION 2.13. Let H be a closed normal subgroup of G. Define a function 
<t> from G* to the family of finite subsets of H" by 0(7) = {p G H*: Up is a direct 
summand of Uy\H} for all y £ G". 

(i) If T is a finite subset of G", then # ( r ) is a finite subset of H*. 
(ii) if r ^ GA, / /^ «(r) ^ i r . 

(iii) Le/ 7 G G"; /feew ^(7) = {1} if and only if y G A (G", i f ) . 
(iv) if 7 G Cm(GA), *fcew 0(7) C Cm (if"). 

3. Relations between the algebraic structure of G" and the topo­
logical algebraic structure of G. This section contains the principal 
results of the paper. 

Discussion 3.1. Let Cp(G) denote the component of the identity in G; then 
Cp(G) is a closed normal subgroup of G (7, § (7.1)) and G/Cp(G) is totally 
disconnected (7, § (7.3)). A topological space Y is called O-dimensional if the 
clopen sets form a basis for the topology of F. In a locally compact, Hausdorff 
space, totally disconnected and O-dimensional are equivalent (7, § (3.5)). 

A useful fact concerning G* in the abelian case is: if z is a complex number 
with \z\ = 1 and 0 < \z — 1| < 1, then there is a positive integer n such that 
\zn — 1| > 1. A non-abelian analogue of this fact is given by the following 
technical proposition which is used to prove Theorem 3.3. 

PROPOSITION 3.2. Let U G ^^~ (G) ; let B be a subgroup of G and suppose 
that there is a b £ B with 0 < || U(b) •— I\\ < 1, where I is the identity operator 
on the representation space ffl of U and 11 • 11 denotes the operator norm. Then 
there is a V £ %#~(G) and a b' £ B such that V~ U and \\V(bf) - I\\ > 1. 

Proof. Let n be the dimension of ffl and let & be an orthonormal basis for 
Jf7. By matrix theory (4, p. 255), there is a unitary operator T on j f s u c h that 
T~1Uib)T is diagonal when considered as a matrix relative to # . Set V(x) = 
T~1U(x)T for all x € G, then V £ %^{G) and V~ U. Relative to <f we 
have that V(b) = diag(i>i, v2, . . . , vn), where each \vt\ = 1 since Vib) is 
unitary. For each positive integer m set Am = V(bm) — I = V(b)m — I. Then 
Am is normal and, relative to (f, we have that Am = diag(^iw — 1, v2

m — 1, 
. . . , vn

m — 1). Since the bounded linear operators o n j f form a G*-algebra 
(15, p. 309), we have that \\Am\\ is the spectral radius (Am) = sup{\Vim — 1|: 
1 S i S »}. Note that p i | | = | |7(6) - J| | = ||I7(6) - J||. Since 0 < \\U(b) 
- I\\ < 1, there is a j G {1, 2, . . . , n] such that 0 < \vj - 1| < 1. This 
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inequality and the fact that \vj\ = 1 imply that there is a positive integer k 
such that \vjk — 1| > 1. Therefore, ||^4*|| > 1 and we let V = bk. 

Theorem 3.3 and its corollary are analogues of known results for locally 
compact abelian groups; see (7, §§ (24.17) and (24.18)). 

THEOREM 3.3. (i) Cm(GA) = A((T, Cp(G)). 
(ii) Cp(G) = A(G,Cm(GA)). 

Proof, (i) (a) First, assume that G is 0-dimensional. Let y £ G" and set 
N = {x <E G: || CA(x) - Iy\\ < 1} ; note that N does not depend on the 
representative Uy but only on y. Since N is a neighbourhood of the identity e, 
there is an open normal subgroup H contained in N (7, § (7.7)). Suppose that 
there is an hf 6 H such that Uy(h') 7e- Iy\ then Proposition 3.2 implies that 
there is a Vy and an ft" g H such that \\Vy(h") - Iy\\ > 1. This is a contra­
diction to H C N\ therefore, Uy(h) = Iy for all h £ H. Hence, 7 6 A(GA, H) 
which is finite since H is open (Proposition 2.9). Thus, A(GA, H) g GA 

implies that 7 Ç Cm(GA). Therefore, G" = Cm(GA). 
(b) Second, assume that G is connected. Suppose that there is a 

7 £ Cm (GA) such that 7 7̂  1 ; then there is a finite set T such that 7 G T ^ GA. 
Propositions 2.7 and 2.9 show that the proper subgroup A(G, T) is open which 
is a contradiction to G being connected. Therefore, Cm(GA) = {1}. 

(c) Now consider the general case. Since G/Cp(G) is a 0-dimensional 
compact group, part (a) shows that [G/Cp(G)]A = Cm([G/Cp(G)]"). By 
Proposition 2.8, [G/Cp(G)]A can be identified with A(GA, Cp(G)) so that 
A(GA,Cp(G)) C Cm(GA ) .Supposethat thereisa7 6 Cm(GA)\A(GA, Cp(G)). 
Define a function <j> from G" into the family of finite subsets of Cp(G)A as in 
Proposition 2.13. Then {1} 9e <t>(y) C Cm(Cp(G)") which, in view of part (b), 
is a contradiction to the compact group Cp(G) being connected. Therefore 

A(GA, Cp(G)) = Cm(GA). 

(ii) Statement (ii) is obtained from statement (i) by taking annihilators 
in G. 

COROLLARY 3.4. (i) G is connected if and only if Cm(GA) = {1}. 
(ii) G is {^-dimensional if and only if Cm(GA) = G". 

We now proceed to give a relationship between X-multiplication in G^ and 
the group multiplication in G. It will be shown that for 7 Ç G", the tensor 
powers of Uy and Uy' yield no new irreducible representations after a finite 
power if and only if Uy(x) has finite order in the group of unitary operators on 
J^ 7 for each x G G. Thus, in a certain sense, periodic with respect to X-
multiplication is equivalent to periodic with respect to composition. 

Definition 3.5. Let 7 £ G"; then 7 is called finite {infinite) if £A(G) is a 
finite (infinite) group. For a topological space F, let co(F) denote the least 
cardinal number of a basis for F. For a set 5, let card (5) denote the cardinal 
number of S. 
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The following theorem is borrowed from (8) ; the heart of its proof is con­
tained in (10). 

THEOREM 3.6. If G is infinite, then card(G") = co(G). 

Discussion 3.7. Let y Ç GA and set Ky = {x G G: Uy(x) = Iy). Since ^y is 
finite-dimensional and Uy is strongly continuous, we know that Uy is continu­
ous. Then G being compact implies that Uy is an open mapping and G/Ky is 
homeomorphic and isomorphic to Uy(G) (7, § (5.39) (j)). 

THEOREM 3.8. Let y Ç GA. 

(i) 7/ 7 is finite, then card ((7)) is finite. 
(ii) If y is infinite, then card ((7)) = Ko-

Proof. From Discussion 3.7, we know that œ(G/Ky) = o)(Uy(G)) and 7 is 
finite if and only if G/Ky is a finite group. By Proposition 2.7, we have that 
<7> = A(G-\ A(G, { 7 }) )=A(G^ , Ky). Thus, card«7» = card ( ( G / i ^ n 
since there is a one-to-one correspondence between A ( C \ i£7) and (G/Ky)* 
(Proposition 2.8). (i) Since G/Ky is finite only if (G/KyY is finite, we have 
that card ((7)) is finite if 7 is finite, (ii) If 7 is infinite, then G/Ky is an infinite 
group and œ(G/Ky) = card((G/Ky)*) by Theorem 3.6. Therefore, card((7)) = 
a>(Uy(G)) = Ko. 

THEOREM 3.9. Let 7G GA; then the following statements are equivalent: 
(i) 7 w ym^te ; 
(ii) 7 € Cm(GA); 

(iii) There is a positive integer m such that Uy(xm) = Uy(x)m = Iy for all 
x e G. 

Proof, (i) is equivalent to (ii) by Theorem 3.8. (i) =» (iii) Let m = 
card(C/7(G)) which is finite. The order of each element in Uy(G) divides m, 
hence Uy(x)m = Iy for all x 6 G. 

(iii) => (i) By hypothesis, Uy(G) is a periodic subgroup of the group of 
unitary operators onj^y with bounded order; a theorem of Burnside (2, p. 493) 
states that Uy(G) is finite. 

COROLLARY 3.10. Let y Ç Cm (G"); then (y) is the smallest subset of G" 
containing y that is closed under X-multiplication. 

Proof. Since 7 Ç Cm(G"), there is a positive integer m such that Uy(xm) = 
77 for all x € G. Hence 

J*G trace [A(xw) dX(z) = X(G) d i m e n s i o n ^ ^ 0, 

where X is a Haar measure on G. Then (17, proof of Lemma 8) there is a positive 
integer k such that JG[trace [/7(x)]fc d\(x) j£ 0. Therefore (see 8), Uy' is a 
direct summand of the k — 1 tensor power of t/7. 

The following theorem is a generalization of a known result (7, §§ (24.25) 
and (24.26)) in the abelian case. 
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THEOREM 3.11. (i) y is infinite for all y 6 G*\{1} if and only if G is con­
nected. 

(ii) y is finite for all y G GA if and only if G is 0-dimensional. 

Proof. Combine Theorem 3.9 and Corollary 3.4. 

The previous theorem can be proved without resorting to the concepts of 
compact element and annihilator, as shown below. 

PROPOSITION 3.12. The following statements are equivalent: 
(i) y is finite for all y Ç GA; 

(ii) G is 0-dimensional. 

Proof, (i) ==» (ii) This proof was suggested by Professor Kenneth Ross. Let 
a e G\{e} ; then there is a y 6 GA such that Uy(a) ^ Iy (7, § (22.12)). Hence, 
there are £, 77 G tfy such that (Uy(a)£, TJ) ^ (£, rç). Set/(#) = <tA(*)£, 77) for all 
x G G; t hen / is continuous,/(a) ?̂  /(e) and by hypothesis,/(G) is finite. Thus 
there is a clopen set containing e that does not contain a. Therefore G is totally 
disconnected (13, p. 55). 

(ii) => (i) This (more difficult to prove) half of the proposition is stated and 
proved in (8). 

PROPOSITION 3.13. The following statements are equivalent: 
(i) 7 is infinite for all y Ç G"\{1} ; 

(ii) G is connected. 

Proof, (i) =» (ii) Suppose that G is not connected; then G/Cp(G) is non-
trivial; thus, there is a U G <&J(G/Cp(G)) such that U s* 1 (7, § (22.12)). 
Proposition 3.12 implies that £7(G/Cp(G)) is finite since G/Cp(G) is 0-
dimensional. Set V = U o <j>, where <j> is the natural homomorphism of G onto 
G/Cp(G); then it is easily checked that V Ç °tiJ{G). Also, we have that 
V 9^ 1 and V(G) = U(G/Cp(G)) which is a contradiction to our hypothesis. 
Therefore, G is connected. 

(ii) => (i) Let y Ç GA\{1}. Since Uy is continuous, Uy{G) is connected; and 
since 7 ^ 1 , Uy{G) is not a point. Hence, Uy(G) is infinite since the only 
connected finite sets in a Hausdorff space are points. 

4. Applications. In this section we apply our principal results to obtain 
some information about the structure of G. These analogues stem from known 
results in the abelian case; see (7 or 18). 

Rider (17, p. 980) defines T ^ G" to be ordered if there is an 0 C r such 
that il is closed under X-multiplication, Œ Pi & = {1} and fi U Œ' = T; see 
also (18, §8.1.1). 

PROPOSITION 4.1. If G" is ordered, then G is connected. 

Proof. It is easily seen that GA is ordered only if each T ^ G" is ordered. 
Corollary 3.10 shows that if 7 G Cm(GA)\{l}, then (7) is not ordered. There­
fore, Cm(GA) = {1} and G is connected by Corollary 3.4. 
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We suspect that the converse of the preceding proposition is also true as in 
the abelian case (18, § 8.1.2). 

PROPOSITION 4.2. Let S = {a £ G: (a) = G} ; then 

S = n{G\Ky: y e GA\{1}} = K & W(a) * Iy for all y G G"\{1}}. 

Proof. Let a G G and note that A ( C \ {a}) = A ( C \ (a)). Hence, (a) = G if 
and only if A(GA,{a}) = {1}. 

For a locally compact abelian group, S is not empty if and only if G is 
monothetic (7, § (25.11)). It would be interesting to know if the structure 
theorems (7, §§ (25.14), (25.15), (25.16), and (25.17)) for compact monothetic 
groups have non-abelian analogues when monothetic is defined as: S is not 
empty. 

The following result and its proof are transcribed from the abelian case 
(7, §(25.27)(a)). 

COROLLARY 4.3. Suppose that G is connected and has a countable base for its 
topology. Let S — {a £ G: (a) = G) ; then S is measurable and \(S) = 1, where 
X is the normalized Haar measure on G. 

Proof. Theorem 3.6 shows that card(G") = No since G is infinite and has a 
countable base for its topology. Write G" = {1, 71, 72, • • .} ; then Theorem 3.11 
implies that each yn is infinité since G is connected, and hence (Discussion 3.7) 
each G/Kyn is infinite. Therefore, X(Kyn) = 0 for each n and, therefore 
Mn{G\Kyn: 1 ^n < «}) = 1. 

THEOREM 4.4. Suppose that there is a positive integer M such that ny, the 
dimension of Jt?yj is S M for all y G G"] then the following statements are 
equivalent: 

(i) G is of bounded order] 
(ii) G" is of bounded order] that is, there is a positive integer N such that 

card«7» ^ Nfor ally £ G\ 

Proof, (i) => (ii) Let m be the least common multiple of the orders of 
elements in G. Let 7 G G"; then Uy(x)m = Uy(xm) = Uy(e) = Iy for all x £ G. 
Hence, Uy(G) is a periodic group with bounded order m\ furthermore, Uy(G) 
is an irreducible group of linear operators on Jj?y. By the proof of a theorem of 
Burnside in the book by Curtis and Reiner (4, p. 251) we have that 
ca rd (^ (G) ) ^ mny S mM. Since Uy(G) is finite, card (Uy(G)) = card (G/Ky) 
^ card ((G/Ky)") = card (A (GA, KT)) = card ((7)); see the proof of Theorem 
3.8. Therefore, card ((7)) ^ mM. 

(ii) => (i) Let 7 £ G"; then Uy(G) is a finite group by Theorem 3.8. Hence, 
we have that 

card(Uy(G)) = card(G/i£7) = Z{nP
2: p G (G/KyY) = 

Y,{np2: p e A(G~, Ky)} = £{»p2 : p G (7)} ^ M2card ((7)) ^ AfW. 
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Thus, the set of integers {card ( Uy (G) ) : y Ç GA} is bounded by M2N; let m be 
the least common multiple of these integers. Then Uy{xm) = Uy(x)m = Iy for 
all 7 G G" and all x G G. Therefore, xm = e for all x G G since G" separates the 
points of G (7, § (22.12)). 

Groups satisfying the hypothesis of the previous theorem are called groups 
with representations of bounded degree. Kaplansky (12) has given necessary 
and sufficient conditions in terms of G or the group algebra of G that G be a 
group with representations of bounded degree. He has also shown that if G is 
a finite group extension of an abelian group, then G is a group with representa­
tions of bounded degree. 

The following theorem is true for locally compact abelian groups (7, 
§ (24.21)). For a compact abelian group B there is a stronger theorem (7, 
§ (25.9)) which shows that B is of bounded order if B is periodic. I t would be 
interesting to know if this result is true for an arbitrary compact group. 

THEOREM 4.5. If G is periodic, then G is ^-dimensional. 

Proof. By Theorem 3.11, it suffices to show that y is finite for each y G G". 
Thus, let 7 G G"; then Uy(G) is a compact (and hence closed) periodic sub­
group of the group of unitary operators onJ^ 7 since Uy is a continuous homo-
morphism. Hence, Uy{G) is a Lie group since it is a closed subgroup of the Lie 
group of unitary operators on$?y (3, p. 135). Suppose that the dimension of 
Uy(G) is not zero, then there is a non-trivial homomorphism 6 of the additive 
group of real numbers into G (6, p. 93) and a neighbourhood N of 0 such that 
6 is one-to-one on N (6, p. 32). This is a contradiction to Uy(G) being periodic; 
hence, Uy(G) must be 0-dimensional. But O-dimensional manifolds are discrete; 
therefore, Uy(G) is finite since it is also compact. 

The above argument shows that a periodic Lie group is discrete; the proof 
of this fact was suggested by colleagues at the University of Toronto. 

Discussion 4.6. For each positive integer k set G(*° = {xk: x G G\. Two 
extensions of the notion of divisible abelian group are plausible: (1) G is 
divisible if G(*° = G for all positive integers &, and (2) G is divisible if (G(*°) = G 
for all positive integers k. With the aid of a theorem of Mycielski, we shall 
show in the following theorem that these two concepts of divisibility coincide 
for compact groups. 

THEOREM 4.7. The following statements are equivalent: 
(i) G is connected) 

(ii) G(A:) = G for each positive integer k; 
(iii) (G(fc)) = G for each positive integer k. 

Proof, (i) <=> (ii) This equivalence has been proved by Mycielski (14). 
(i) <=> (iii) Theorem 3.9 shows that Cm (G") = U{A(G", G(A°): k isa positive 

integer}. Hence, G is connected if and only if U{A(G/V, G(fc)): k is a positive 
integer} = {1} by Corollary 3.4. Therefore, Proposition 2.7 implies that G is 
connected if and only if (G(A;)) = G for each positive integer k. 
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