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EMBEDDING CIRCLE-LIKE CONTINUA IN £3 

B. J. BALL AND R. B. SHER 

1. Introduction. A space X is locally planar if each point of X has a 
neighborhood which is embeddable in the plane. If X is a closed, locally planar 
subset of E3, we will say that X is locally tame if each point of X has a neighbor­
hood in X which lies on a tame disk in E3; if every cell-like subset of X has such 
a neighborhood, we say that X is strongly locally tame. 

Our principal result is that every circularly chainable continuum has a 
strongly locally tame embedding in E3. (It follows from the argument for 
Theorem 8 of [6] that every circularly chainable continuum is locally planar.) 

As an application, we show that for any pseudosolenoid X, the hyperspace 
C{X) of subcontinua of X has a particularly nice embedding in E4, and that 
(X) is embeddable in E3 if and only if X is embeddable in E2. 

2. Definitions and conventions. Much of our terminology is standard 
and will not be repeated here. We use the terms chainable and circularly 
chainable as synonymous with "snake-like" and ''circle-like" as defined in [6], 
and adopt the usual definitions and notations relating to upper semicontinuous 
decompositions. 

We use the term pseudosolenoid, suggested by C. E. Burgess (MR 41, 
#9213), for any hereditarily indecomposable, circularly chainable continuum 
which is not chainable; we do not require that a pseudosolenoid be non-planar. 
(It follows from [11], however, that the only planar pseudosolenoid is the 
pseudocircle.) 

A subset of En is said to be cellular in En if it is the intersection of a sequence 
{d} of n-cells in En with Ci+i C Int Ct for each i; a continuum is cell-like if it 
can be embedded in some En so as to be cellular there. A map is cell-like if the 
preimage of each point is cell-like, and a decomposition is cell-like if each of its 
elements is cell-like. Several useful characterizations and many of the basic 
properties of cell-like spaces and maps are given in [17]. 

If X is a closed subset of a metric space M and G0 is an upper semicontinuous 
decomposition of X, then the trivial extension of G0 (obtained by adding to G0 

all singletons in M — X ) is called the decomposition of M generated by G0. 
As in [1], a cell-like upper semicontinuous decomposition G of a metric space M 
is said to be simple if M/G ~ M, and a closed subset X of M is said to be 
simply embedded in M if every simple decomposition of X generates a simple 
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decomposition of M; if every cell-like upper semicontinuous decomposition of X 
generates a simple decomposition of M, then X is said to be strongly simply 
embedded in M. 

3. Preliminary remarks and examples. There are two commonly used 
definitions of "tame" for closed subsets X of E3: (1) if X is homeomorphic to 
a polyhedron, then X is tame if there is a homeomorphism h:Es -» E3 such 
that h(X) is a (geometric) polyhedron in E3, and (2) if X is a subset of a 
compact 2-manifold with boundary in E3, then X is tame if it lies on a tame 
2-manifold with boundary (see [10, pp. 266, 333]). If X is a closed subset of E3 

satisfying the hypothesis of (1) or (2) above, then X is locally tame if each 
point of X has a neighborhood in X whose closure is tame in the appropriate 
sense. 

Since every subset of a 2-manifold with boundary is locally planar, our 
definition of locally tame, as given in the introduction, is an extension of the 
second of the above definitions of "locally tame" (we do not propose a defini­
tion of "tame" applicable to all closed, locally planar subsets of E3). 

It follows from a result due to J. W. Cannon [10, Theorem 11.1.1] that if X 
is a closed, locally planar subset of E3 which is locally tame (in our sense), 
then every closed subset of X which lies on a compact 2-manifold with bound­
ary in E3 is tame. In particular, if X itself lies on a compact 2-manifold with 
boundary, then X is strongly locally tame, since every cell-like subset of a 
tame 2-manifold with boundary lies on a tame disk. It is shown below, how­
ever, that locally tame closed subsets of E3 need not in general be strongly 
locally tame. 

It follows from [1, Theorem 4.2] that every strongly locally tame closed 
subset of E3 is strongly simply embedded in E3. Although a locally tame 
subset of E3 need not be simply embedded (Example 3.2), it is true that for 
each compact locally tame set X there is a positive number e such that every 
cell-like upper semicontinuous e-decomposition of X generates a simple de­
composition of E3; it is only necessary to cover X with a finite number of open 
subsets of X each of which lies in a tame disk, choose e to be a Lebesgue num­
ber for this cover, and apply Theorem 4.2 of [1]. 

3.1 Example. A locally planar continuum in E3 which is locally tame but not 
strongly locally tame. Let Y denote the continuum obtained by modifying the 
construction of the arc of Example 1.1 of [12] by using, in place of the cylinder 
C, the set C defined by y + s2 ^ 2, — l ^ x ^ l , — 1 g 2 g 1 and, instead 
of the ellipsoid x2 + £y2 + 4s2 ^ 4, the solid K defined by x2 + 4;y2 ^ 4, 
— 1 ^ z S 1. The remainder of the construction is carried out exactly as in 
[12], with the additional stipulation that for each n, the homeomorphism fn of 
C onto Dn is required to preserve ^-coordinates. A comparison of Figures 1 
and 2 with the corresponding figures of [12] should make the construction 
apparent. 
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FIGURE 1 

FIGURE 2 

If p is a point of one of the limit intervals A, B of Figure 2, there is a small 
closed neighborhood of p in Y which consists of a sequence of tame arcs con­
verging nicely to an interval, and which may be taken into the xz-plane by a 
space homeomorphism. It follows that Y is locally tame. 

If a cell-like subset of E3 lies on a tame disk, it is cellular in E3 ; since Y is 
homeomorphic to a "double sin (1/x)" curve, it is cell-like, and since E3 — Y 
is homeomorphic to the complement of the arc of Example 1.1 of [12], Y is not 
cellular in E3. It follows that Y is not strongly locally tame. 

We note that Y is not strongly simply embedded in E3 since the cell-like 
decomposition of Y whose only element is Y itself does not generate a simple 
decomposition of E3. If Go is any simple decomposition of Y, however, then Go 
has only a countable number of nondegenerate elements, each of which is a 
tame arc, and it follows from [5, Theorem 3] that G0 generates a simple 
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decomposition of E3. Hence F is simply embedded in E3; using the continuum 
F, however, it is easy to construct a non-simply embedded example. 

3.2 Example. A locally planar continuum in E3 which is locally tame but not 
simply embedded. Let Ki, K2, . . . be a sequence of disjoint copies of the solid K 
used in the construction of F, each having its upper and lower bases on the 
planes z — 1 and z = — 1, respectively, such that {Kt} converges to a vertical 
interval Z. For each i, let Yt be a continuum constructed in Kt exactly as F 
was constructed in K, and let at be a horizontal interval on the x-axis irreduc­
ible from Kt to Ki+\. Let 

00 OO 

X = ZU U YtVJ U at. 
t=i i=i 

It is not difficult to see that X is locally tame, and it is clear that X/Y2 is 
homeomorphic to X. If G0 is the decomposition of X generated by { F2}, then 
Go is a simple decomposition of X which does not generate a simple decomposi­
tion of E3 (since F2 is not cellular), and hence X is not simply embedded in E3. 

Since X and F are embeddable in the plane, it is clear that these continua 
can be strongly simply embedded in E3 [1, Lemma 4.1]. It would be interesting 
to know whether every locally planar continuum which is embeddable in E3 

has a simple embedding, or a locally tame embedding. We do not know the 
answer even for locally planar tree-like continua. In the next section, however, 
it is shown that every circularly chainable continuum has a strongly locally 
tame (and therefore a strongly simple) embedding in E3. 

4. Embedding circle-like continua in E3. A solid torus is a homeomorphic 
image of B2 X S1. Whenever we speak of a solid torus T we shall always assume 
given a particular homeomorphism/^:52 X 5 1 - » T.The cor e oî T is h ({0} X S1) 
and a cross-section of T is a 2-cell of the form h(B2 X {p}) for some p £ S1. 
Notice that the core and cross-sections depend on the choice of h and that 
distinct cross-sections are disjoint. A section of T is a 3-cell of the form h (B2 X A) 
where A is an arc in S1. If p and q are the endpoints of A, then B2 X {p} and 
B2 X {q} are the ends of the section. A choice of n > 3 distinct points 
ai, a,2, . . . , an of S1 determines a collection Li, L2, . . . , Ln of sections of T 
whose union is T and such that if 1 ^ i < j"5* n, then LtC\ Lj is either 
empty or an end of each of Li and Lj. Such a choice is called a sectioning of T 
into Li, L2, . . . , Ln. We shall usually deal with sectioned solid tori and, when 
a sectioning of T into Li, L2, . . . , Ln has been given, we shall simply refer to 
Li, L2, . . . , Ln as "the sections" of T. Suppose T has been assigned a metric 
and that e is a positive number. Then a sectioning of T is said to be an e-section-
ing provided each of its sections has diameter less than e. Finally, an annular 
web of T is an annulus A in T such that if D = h(B2 X {p) ) is a cross-section 
of r , 4̂ C\ D is an arc spanning D and A((0, £)) G 4 H Z>. 
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The proof of the following fact is implicit in [6]. (In particular, see [6, 
Theorems 4 and 8 and the remarks in the first paragraph on p. 120].) 

4.1 THEOREM (Bing). / / X is a circularly chainable continuum, then there 
exists a homeomorphic image X' of X in E3 such that Xr = fyjLiTi where 

(1) if i = 1, 2, . . . , then Tt is a smooth solid torus whose interior contains 

(2) if i = 1, 2, . . . , then Tt has an ersectioning where lim^œ€ï = 0, and 
(3) if i = 1, 2, . . . and L is a section of Tt, then L P\ Ti+i is a union of 

sections of Ti+\. 

We now state the main result of this section. 

4.2 THEOREM. Every circularly chainable continuum can be embedded in E3 

as a strongly locally tame subset; in fact, any such continuum can be embedded 
so that every closed proper subset lies on a tame disk. 

Remarks. It is well-known that every chainable continuum is embeddable 
in E2, and hence it is sufficient to consider only those circularly chainable 
continua X which are not chainable; we shall construct, for each such con­
tinuum, a homeomorphic image X' of X in E3 as the intersection of a sequence 
of solid tori having properties (l)-(3) of Theorem 4.1. However, this in itself 
will not be enough to guarantee that the theorem is true. For example, the 
simple closed curve / of [4] is constructed as the intersection of such a sequence, 
yet no subcontinuum of / can be pushed into the x^-plane by a homeomor-
phism of E3 onto itself. Thus, we shall need to require much more of the 
sequence defining X'. We also note that Bing showed [6, Theorem 8] that there 
is a homeomorphic image of X lying in Z, where Z is the union of the x^-plane 
and the upper half of the xs-plane. But this is again insufficient to obtain the 
conclusion of Theorem 4.2 since there is, for example, a simple closed curve / 
which lies in Z and contains a wild arc. 

Proof of Theorem 4.2. Suppose X is a circularly chainable continuum which 
is not chainable and let ^ i , ^ 2 , . . . be a sequence of circular chains defining X 
whose meshes converge rapidly to 0 (see the proof of Theorem 4 of [6]). 
Let nt denote the number of links in ^ t. 

(1) The construction of 7\. Let J\ be a smooth simple closed curve in the 
x;y-plane which is the union of n\ arcs, pairwise disjoint except possibly for 
endpoints and each of diameter less than 1. To simplify the construction at 
later stages, we require that J\ contain a straight segment parallel to the 
x-axis. T\ is a small tubular neighborhood of J\, chosen so that there is a 
circular chain ^ 1 having n\ links, each of diameter less than 1, such that the 
union of the links of ̂ 1 is Int T\. The core of T\ is J\ and the cross-sections of 
T\ are circular disks lying in planes normal to J\. The intersection of 7\ with 
the :ry-plane is an annular web of 7\, which we denote by A\. We further 
suppose that T\ has a 1-sectioning and that some section, which we denote by 
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Ki, intersects J\ in a s t ra ight segment parallel to the x-axis and has the 
proper ty t h a t K\ C\ I n t 7 \ lies in a link of ^ ~ i . 

Remarks. T h e section Ki singled out in the above construction is the 
"crossing-section" of 7 \ . Each Tt we construct will have a smooth core Ju 

a smooth annular web Au and a crossing-section Kt such t h a t KtC\ At lies 
in the x^-plane and Kt C\ Jt is a s t ra ight segment parallel to the x-axis. Fur ther ­
more, we will have Kt Z) I n t Kt Z) Ki+i, mesh Kt —> 0, and X' — Kt C At. 

(2) The construction of T2. Let 7Y denote a small tubular neighborhood of 
Ji lying in In t 7 \ and having a J-sectioning such t h a t if L is a section of 7 \ , 
then L C\ T\ is a union of sections of TV'. A is the core of 7Y and the cross-
sections of T\ are the intersections of TV with the cross-sections of 7 \ . 
A i C\ T\ = A i is an annular web of 7Y. 

We will construct J2, a smooth simple closed curve c i r c l i n g ^ i jus t as ^ 2 

circles *$\. J2 will be the union of n2 arcs, pairwise disjoint except possibly for 
endpoints and each of diameter less than J. J2 will lie in In t 7Y and will pierce 
the ends of the sections of T\ normally. Also, J2 — K\ will lie in A\ . 

Establish polar coordinates (r, 0) in Ai so t h a t 1 ^ r ^ 3, 0 ^ 0 < 2?r, 
J i is the set {(r, 0)|r = 2}, and K1HA1' is the set 

{ (r, 0)|1 ^ r ^ 3, TT/4 ^ 0 ^ 3TT/4} . 

We can suppose t h a t for each k £ [1, 3], the simple closed curve {(r, 0)\r = k} 
intersects Ki in a segment parallel to the x-axis and t h a t for each k £ [?r/4, 
37r/4], the arc 0 = k intersects Ki in a segment perpendicular to the x-axis. 
W e begin the construction of J2 by construct ing the smooth arc J2 C\ A\ . 
J2C\ A\ circles ^ " 1 as ^ \ circles ^ 1 , and has its endpoints in In t K\. T h e 
construction of J2 will be completed by joining the endpoints of J2C\ Ai by 
an arc in TV ^ In t K\. J2 P\ A\ is constructed as the image of a smooth non-
singular pa th a'.[0, 1] —>^4/. 

W e construct the pa th so t h a t if 0 ^ 5 < t ^ 1, then r ( a ( s ) ) , the r-co-
ordinate of a(s), is not smaller than r(a(t)). W e also require t h a t 

r ( a (0 ) ) = r ( a ( l / 2 0 ) ) = 5/2, r ( a ( l / 1 0 ) ) < 5/2, r ( a ( 9 / 1 0 ) ) > 2, 

and r(a(19/20)) = r(a(l)) = 2. In addition, if 6{p) denotes the ^-coordinate 
of p, then da is increasing on [0, 1/10] and on [9/10, 1] with da (0) = 5ir/8, 
0 ( a ( l / l O ) ) = 3TT/4, 0 0 ( 9 / 1 0 ) ) = TT/4, and 6(a(I)) = 3TT/8 (See Figure 3) . 
W e then complete the construction of J2 by adding the arc B as shown in 
Figure 3. T h e interior of B lies above the x^-plane and the projection T of E 3 

onto the x^-plane carries B homeomorphically onto T(B). These special proper­
ties are possible to obtain since Ki P\ I n t TV lies in a link of J^~i. 

T2 will be a small tubular neighborhood of J2. J2 is the core of T2, and the 
cross-sections of T2 lie in planes normal to J2. We also choose T2 so t h a t if p is 
a point in the closure of T2 C\ A\ — K\ , then 2 < r-coordinate of p < 5 /2 . 
Also, there is a circular c h a i n ^ 2 having n2 links, each of diameter less than J, 
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r = 3" 

r = 2 

r = 1 

FIGURE 3 

and circling ^ i as 9% circles ^fi, such t ha t the union of the links of ^ 
In t T2. 

2 IS 

(3) 77&e construction of A2. We section T2 so t ha t the intersection of T2 with 
any section of TÎ is a union of sections of T2. This is possible since J2 pierces 
the ends of the sections of TV normally. Note t ha t this gives us a ^-sectioning 
of T2. We may suppose t h a t the sectioning is such tha t there are four adjacent 
sections K2, Mi, N, and M2 such t ha t 

K2nJ2= «([19/20, 39/40]) , MlC\J2= «( [39/40, 1]), NC\J2 = B, 

and M2C\J2= a( [0 , 1/20]). 
Now we are ready to define ^42. -42 is chosen so tha t 

A2 C\ ( T2 - Mi U N U M2) = Ai' C\(T2- Mi\J N\J M2). 

We may suppose t h a t K2 lies in a link of ^ 2 , so t ha t K2 becomes the crossing-
section of T2. Now, ^42 r\ (Mi \J N KJ M2) is constructed as in Figure 4. 

A 2 is twisted inside Mi and M2 and the par t of A 2 inside N is constructed so 
t h a t T carries A2C\ N homeomorphically into the x^-plane. T h e reason for 
twisting ^42 inside Mi and M2 will become clear in (4) below. 

(4) The homeomorphisms hL. Let L be a section of T2 which does not lie in K\. 
T h e n there is a homeomorphism hL of E 3 onto itself such t h a t hL is fixed outside 
TV, hL carries each cross-section of TÎ onto itself, and hL carries the closure 
oi A2 — L into Ai. T h e construction of hL is perhaps best indicated by Figures 
5-8. 

LKJ M2 separates T2 into two components, Ri and R2, one of which, say Ru 
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Ml 

FIGURE 4 

-KsikTi 

FIGURE 5 
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JfsMi 

FIGURE 6 

K. 

> l I I " ' " 
KtMi 

(c 

X X T 2 r i ( i \ 0 

* X X . T2Ti(ikT2) 

^ 1 1 

T2Ti(L) 

FIGURE 7 

fails to contain K2. We first move Ri "out from under 2$" by "untwisting" 
at M2 via a homeomorphism n of E3 onto itself fixed outside 7Y and carrying 
each cross-section of TV onto itself. In each cross-section Q of TV, R\ C\ Q is 
rotated by n about the point of A / P\ Q with r-coordinate 5/2 while R2C\ Q 
remains fixed, n carries ^42 C\ (Ri U lf2) into ^4/; See Figure 6; the homeo­
morphism TI introduces a half-twist in the part of A2 lying inside L, but this 
is not indicated in the figure. The next move is similar. Mi VJ T\(L) separates 
n ( r 2 ) into two components, Si and S2y one of which, say Si, fails to intersect 
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hL(M2) 

FIGURE 8 

K2. W e "untwist" a t Mi via a homoemorphism r2 which is fixed on S2 and 
carries T\(A2 — (L U N)) into ^ 4 / . r2 carries ^42 / ^ iV below the :ry-plane; 
see Figure 7. r2 introduces another half-twist in the pa r t of T\(A2) lying inside 
r i ( L ) , so t h a t T2TI(A2) has two half-twists inside r2n{L). There are now no 
twists in T2TI (4 2) outside T2TI (L), however, and hence we can press r2n (A2HiN) 
into the x^-plane via a homeomorphism r3 which is fixed outside TV, fixed on 
T2TI(T2 — N), and carries cross-sections of TV onto themselves; see Figure 8. 
Then hL = TZT2TI. W e note t h a t the image, under hL, of any section of T2 lies 
in a section of 7Y, and hence has diameter less than \. 

Remarks. H a d we begun with a <$-sectioning of 7Y we would have obtained 
a ô-sectioning of 2"2 so t h a t the image under hL of any section of T2 has d iameter 
less than è. This observation is needed for the construction of T3, T4, . . . . 
We also note t h a t any homeomorphism of E 3 onto itself which is fixed outside 
T2, and which carries each cross-section of T2 onto itself, also carries each 
section of 7 \ onto itself. 

(5) Completing the construction. W e continue the process begun above to 
construct solid tori 7 \ , T2j Ts, . . . such t h a t Tt D I n t Tt D Ti+i and 
X' = PlS=i ^ i ~ X. Each 2"̂  has an associated smooth annular web A t and 
a ( l / i ) -sec t ioning into Ku Lx\ L2\ . . . , Lmi*. If L is a section of Tu then 
L P\ r i + i is a union of sections of Ti+i. 

Hi ^ 1 and Lji+1 is a section of Ti+\ not lying in X ^ then there is a homeo­
morphism hji+1 of E 3 onto itself which is the ident i ty outside Tu which carries 
cross-sections of Tt onto themselves, and which carries the closure of 
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Ai+1 — L / + 1 into At. Using the remark at the end of (4), we may section 
Ti+i finely enough that if 2 ^ s ^ i and Js,js+u • • • ,J* are integers such that 
^ / > ^s+is+1> • • • » hn* a r e defined, then the image of every section of Ti+\ 
under the composition hjs

s hja +1
s+1 . . . h^1 hji+1 has diameter less than \/i + 1. 

We also note that if 1 ^ k ^ i, then the image of each section of Tk under this 
composition is the same as its image under hja

s hjs +1
S+1 . . . h^1. 

(6) The strong local lameness of X'. It will be shown that each closed proper 
subset of X' lies on a tame disk, and this will imply, in particular, that X' is 
strongly locally tame in E3. (If K is a cell-like subset of X', then K 9e X', 
since X' is not chainable, and hence some closed neighborhood of K in X' is a 
proper subset of X'.) 

Suppose F is a closed proper subset of X'. Then there exists an integer 
i ^ 2 such that not every section of Tt intersects F. If Kt fails to intersect F, 
then there exists a homeomorphism of E3 onto itself carrying A-,- — Ku and 
hence F, into the x^-plane. 

Otherwise, let LH
l be a section of 7\ which fails to intersect F. Let 

Lji1 D Lji+1
i+1 D . . . be sections. If r ^ i + 1, let fr denote the homeomor­

phism hji+1
i+1 hji+2

i+2 . . .hjr
T. Then the sequence { fT}?=i+1 converges to a 

homeomorphism / of E3 onto itself which carries X' — L^1 into At — Lu
l. 

But At — LH
l can be carried into the x^-plane by a homeomorphism of E3 

onto itself, and the proof is complete. 

5. An application to hyperspaces. For any continuum X, the hyperspace 
of subcontinua of X (with the Hausdorff metric) will be denoted by C{X). 
It has been shown recently that if X is a chainable continuum [13] or a circu­
larly chainable plane continuum [19], then C{X) is embeddable in E3. Earlier, 
Transue [22] had given a very nice, explicit embedding of C(X) into E3 when 
X is a pseudoarc (or any hereditarily indecomposable plane continuum which 
does not separate the plane). 

It follows from known results [20; 15] that C(X) is embeddable in E4 if X 
is any circularly chainable continuum. We show below that if X is a pseudo-
solenoid, Theorem 4.2 can be used to give an explicit embedding of C(X) in 
E4, completely analogous to Transue's embedding into E3 of the hyperspace of 
a pseudoarc. It is also shown that C(X) is not embeddable in E3 unless X is 
embeddable in E2. 

Let X be a pseudosolenoid and let n\C(X) —> [0, 1] be defined as in [23]. 
Since M (A) < fi(B) whenever A is a proper subset of B, it follows that 
ju({x}) = 0 for each x G X; clearly it may be assumed that ix(X) = 1. Since 
X is hereditarily indecomposable, if n(A) = ix(B) and A C\ B 9^ 0, then 
A = B; hence for each t G [0, 1), M - 1 ( 0 is a collection of disjoint proper sub­
continua of X which, as shown in [16], forms a continuous decomposition of X. 
(It is easy to show that /x_1(0, with the topology it inherits as a subspace of 
C(X), is homeomorphic to X/^r1^), with the decomposition topology.) 
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We regard E4 as E3 X E1, with E3 identified with E3 X {0}, and we denote 
the projection onto the second coordinate by X2. 

5.1. THEOREM. If X is a pseudosolenoid, there is an embedding <p:C(X) —* E4 

such that the diagram 

C(X) • E3 X E 1 

7T2 

is commutative. 

Proof. By Theorem 4.2 and Theorem 4.2 of [1], it may be assumed that X is 
strongly simply embedded in E3. Let 

F = {(pc,t) G E3 X E 1 !* £X,te [0,1]}, 

and let B be a (spherical) ball in E3 X {1} which contains X X {1). For each 
t G [0,1], let G i = {g X {t}\g G »-l(t)} and let Gx = {B}. Fort G [0, 1), G, is 
cell-like decomposition of XX {t} and hence, since X is strongly simply 
embedded in E3, Gt generates a simple decomposition of E3 X {t}. Let 
G = U {Gt\t G [0, 1])} ; it is clear that G is an upper semicontinuous decompo­
sition of F KJ B. Since for each t G [0, 1], Gt generates a simple decomposition 
of E3 X {t}, it follows from the Addendum to Corollary 4 of [21] that G 
generates a simple decomposition G of E4 and, in fact, there is a m a p / : E4 -» E4 

such that G = {f~l(p)\P £ E4} and such that for each t G E 1 , / (E3 X {t}) = 
E3 X {/}. 

Define <p'.C{X) -*>f{F\J B) by setting <p(X) = f(B)znd<p(g) = f(g X {t}) 
if ju(g) = t < 1. It follows exactly as in [22] that <p is a homeomorphism, and 
it is clear that the desired commutativity condition holds. 

It is shown in [19] that if X is a nonplanar solenoid, then C(X) is homeo-
morphic to K(X), the cone over X, and hence [2] C(X) is not embeddable in 
E3. We will show that the hyperspace of a nonplanar pseudosolenoid is also 
not embeddable in E3; the method of [19] does not apply here since if X is a 
pseudosolenoid, or any hereditarily indecomposable continuum, then C(X) 
and KÇX) are not homeomorphic. (Let X be a nondegenerate hereditarily 
indecomposable continuum and define -K\X X I -*> X by 7r(x, t) = x. HA is 
an arc in X X / , then ir(A) is a locally connected continuum in X and hence 
is a single point. Thus every arc in X X / lies in {̂>} X / for some p G X and 
it follows that every simple triod in K(X) has the vertex of K(X) as its 
emanation point. On the other hand, suppose go is a nondegenerate proper 
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subcontinuum of X and let Xi, x2 be points of different composants of g0. 

if A1 = {g e c(x)\Xl e g c £o}, A2 = {g e c{x)\%2 e g c go] and 
Az = {g G C(X)|g0 C g], then 4 i U 4 2 W 4 3 is a simple triod in C(X) with 
emanation point g0. Hence C(X) 9^ K(X).) 

The proof of the next lemma is a straightforward modification of the argu­
ment for Theorem 3 of [3]. 

5.2. LEMMA. If X is a circularly chainable continuum and G is a monotone 
upper semicontinuous decomposition of X, then X/G is circularly chainable. 

Proof. Let Y = X/G and \etP:X -» F be the projection map. Let p and p be 
metrics for X and F, respectively. We will show that for each e > 0, F can be 
covered by a circular e-chain of open subsets of F. 

Suppose e > 0 and let 8 be a positive number such that if A, B C X and 
p(A, B) < <5, then p(P(A), P(B)) < e/10. Let <g = [C(l), C(2), . . . C(ro)] 
be a circular chain of mesh < 8 covering X; it may be assumed that no element 
of G intersects every link of (tf. For every integer n, define C(n) to be C(i), 
where 1 ^ i ^ m and n = i (mod m), and for every pair (i,j) of integers with 
i ^ j and 7 — i < m, let & (i, j) denote the (linear) chain 

[C(«),C(* + 1 ) , . . . C ( ; ) ] . 

Let 1 = n\ < n2 < . . . < ttj = m be a sequence of integers such that for 
i = 1, 2, . . . j — 1, Wi+i is the largest integer n ^ m such that some element 
of G intersects every link of the chain *& (nu n). If j ^ 7, let k = 0 and let 
^ 0 = %k — ^> If j > 7, let & be a positive integer such that 
j - 6 ^ 4& + 1 ^ j - 3 and let ^ * = <£(nu+u nu+i), i = 0, 1, . . . k - 1, 
and ^ = fë(ti4k+i, m + w3). For 0 ^ i ^ k, let [/» denote the union of the 
links of °ll't and let Dt = {g £ G|g C Ui}. Then each D* is an open subset of 
F having diameter less than e, and [D0, #1 , . . . D J is a circular chain which 
covers F. 

The next lemma involves the notions of the shape of a compactum [7; 8] and 
of movable compacta [9]. Since we will not make explicit use of the definitions 
of these terms but will rely on cited theorems concerning them, the definitions 
will not be repeated here. 

5.3. LEMMA. If X is a nonplanar circularly chainable continuum and G is a 
cell-like upper semicontinuous decomposition of X, then X/G is a nonplanar 
circularly chainable continuum. 

Proof. It follows immediately from the statement and proof of Theorem 19 
of [18] that X has the shape of a nonplanar solenoid, and since movability is 
a shape invariant [9, Corollary 3.11] and nonplanar solenoids are not movable 
[9, p. 138], it follows that X is not movable. 

By Lemma 5.2, X/G is circularly chainable; hence dim (X/G) ^ 1 and it 
follows from Theorem 11 of [21] that X/G has the shape of X. Thus X/G is 
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not movable, and since every plane compac tum is movable [9, Corollary 5.5], 
it follows t h a t X/G is not embeddable in the plane. 

5.4. T H E O R E M . If X is a pseudosolenoid, then C(X) is embeddable in E 3 

if and only if X is embeddable in E2 . 

Proof. T h a t C(X) is embeddable in E 3 if X is embeddable in E 2 follows 
immediately from Theorem 1 of [19]. 

Suppose then t h a t X is a nonplanar pseudosolenoid. W e will show tha t C(X) 
cannot be embedded in E3 by an a rgument closely parallel to t h a t given in [2] 
to show t h a t the cone over a solenoid cannot be so embedded. 

Let ix\C(X) - » [0, 1] be the Whi tney function described earlier. For each 
p e X, there is a unique arc Ap from [p\ to X in C(X) [16]. Le t F = X X [0, 1] 
and for each p £ X, let Fp = {p} X [0, 1]. Let X denote the subset of &(X) 
consisting of the singleton subsets of X. 

W e note first t h a t 
(1) there is a m a p <p:F - » C(X) such t h a t for each p G X, <p(Fp) = Ap, and 

(2) for each t0 £ [0, 1], there is a retract ion rz0
:M-1([0> ^o]) -» M_1(^o). 

T o see t h a t (1) is true, it is sufficient to let <p(p, i) denote the unique subconti-
nuum g of X for which p Ç g and n(g) = L Condit ion (2) m a y be obtained by 
defining rt0(g), for g € M _ 1 ( [0> ^O]), to be the unique subcont inuum gf of X for 
which g d gr and /x(g') = /0. 

Now suppose h:C(X) —» E 3 is an embedding, and let 5 be a 2-sphere in E 3 

which separates the point h(X) from the closed set h(X). Since <p~1(h~1(S)) is 
a closed subset of F which separates X X {1} from X X {0} in F, it follows 
from the lemma proved in [2] t h a t <£>-1/£_1 (S) contains a cont inuum B which 
intersects each Fp, p G X. Then (f(B) = B' is a cont inuum in C(X) which 
intersects each AP1 p £ X. There is a t0 G [0, 1) such t h a t .£>' C M - 1 ( [ 0 > *O]); 
since B' intersects each Ap, the retract ion rt0 maps i ^ onto /x_1(/0). If G is the 
decomposition of X whose elements are the cont inua belonging to /x-1(£0), then 
the decomposition space X/G is homeomorphic to the subspace /x-1 (t0) of C(X) ; 
hence by L e m m a 5.3, /x -1(/0) is a nonplanar pseudosolenoid. Since /z-1(£0) is 
no t locally connected, it follows t h a t h(Br) ^ S. B u t this implies t h a t B' is 
homeomorphic to a plane cont inuum and therefore [14, Theorem 5] cannot be 
mapped onto JU - 1 (£ 0 ) . 
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