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THE ANALYTIC CHARACTER OF 
THE BIRKHOFF INTERPOLATION POLYNOMIALS 

G. G. LORENTZ 

1. Introduction. Let E be an m X (n + 1) regular interpolation 
matrix with elements eitk = (E)itk which are zero or one, with n + 1 ones. 
Then for each / £ Cw[a, b] and each set of knots X: a S %i < . • • < %m 
S b, there is a unique interpolation polynomial P(J, E, X; t) of degree 
^ n which satisfies 

(1) P<*>(*,) = /<*>(*,), eitk= 1. 

A recent paper [1] discussed the continuity of P , as a function of 
(with coalescences allowed). We would like to study in this 

note the analytic character of P as a function of real or complex knots 
X: xi, . . . , xm. This is easy for the Lagrange or the Hermite interpolation. 
In this case P is a polynomial if / is a polynomial, and an 
entire function in xu . . . , xm iff is entire. This follows, for example, from 
the Hermite formula, which represents P by means of a contour integral. 
No formula of this type is known to exist in the general case of Birkhoff, 
non-Hermite interpolation. 

We shall assume that the reader is acquainted with the terminology and 
the fundamental results of Birkhoff interpolation (see [5], [3], [4]). 

For a set of functions G = {go, . . . , gn\ we have the determinant 

D(E, X; G) = det [go(*>(*,), . . . , &.<*>(*<); **.* = 1]; 

its rows are labeled by n + 1 pairs i, k with eiiJc = 1, and ordered lexico­
graphically. In particular, for the system 

( s— 1 n\ 

Gs = j l , Y] , • • • , (s _ l){ , / , . . . , ^ j | 

we have the determinant D.;{E, X) = D(E, X; Gs) 
—Jc s—l—k n—k 

DS(E, X) = det - ^ y y , . . . , ( 5 _ \ _ky J" (*i). • • • , ( ^ _ k)l > 

eitk = 1 , 

(terms containing r\ with r < 0 are to be replaced by zero). We write 

D(E, X) for the determinant with G = {1, x /1! , . . . , xn/n\). The poly-
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nomial P given by (1) has the representation 

(2) P(f,E,X;t) = ^ X ) Ç o ± | ^ ( £ - ^ ; ^ ) -

It follows from this that if / is a fixed polynomial (of an arbitrary 
degree), then P is a rational function of X, and if / is an entire function, 
then P is meromorphic. We would like to improve these statements. It is 
essential to assume here that the function/ remains fixed. For example, 
if / is a linear function with values c1} c2 at xh x2, then P = Cih + c2h, 
where /i, h are the fundamental Lagrange functions. Here P is only 
rational, and / depends on xi, x2. We prove: 

THEOREM 1. In order that P should be a polynomial (or an entire function) 
in X whenever f is a polynomial (or an entire function), it is necessary and 
sufficient that the canonical decomposition ofE should consist only of H ermite 
and of two-row matrices. 

In other words, P has this property if and only if the matrix E is com­
plex regular. This follows from a theorem of Lorentz and Riemen-
schneider [6], which is a natural generalization of D. Ferguson's theorem 
[2]. 

2. Proof of the theorem. The sufficiency of the conditions is easy to 
establish. From [7] it follows that the determinants D = D(E, X) and 
Ds = D(E, X; Gs) are divisible by (xt — Xj)ai\ i, j = 1, . . . , m, i ^ j , 
if ctij is the collision number of rows i and j . In the case when / is entire, 
the latter statement means that Ds is a product of (xt — Xj)ai^ with an 
entire function of X. The polynomial D(E, X) is divisible by the product 

f i = Yll^i<jûm(Xi — Xj)aiK 

On the other hand, it is known ([3], [5]) that the degree of D(E, X) in 
one of the variables xt is at most 8t, which is the collision number of row 
i in E with the rest of the matrix E. Under the assumptions of Theorem 1 
(see [6]), 8i = ^ ^ 2 « o - This shows that D = Const I I . Therefore, the 
denominator in (2) cancels out. 

The necessity requires a careful treatment of determinants D(E, X; G) 
and of their derivatives. For the minors of D = D(E, X; G) we use the 
notation 

D(E,X-G)(i>khs. 

This is the signed subdeterminant of D corresponding to its row, label­
led (i, k) (with ei>k = 1), and the column s, s = 0, . . . , n. 

For the derivatives of D we have the following (see [5], [7]). The 
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simplest formula is 

(3a) ~rD(E,X;G) = £ UiJtD(E,X;G), 

where Uilk is the operation of differentiation of the row of D which cor­
responds to eitk = 1. A shift A of row i in E moves a one, eitk = 1 of this 
row to the next position (i, k + 1). This shift is permissible if eitk+i = 0. 
As a variation of (3a) we have 

(36) j^D= ZD(AE,X;G). 

For higher derivatives we shall use 

(4) ~-Tr>= Y,D(K*E,X;G), 
(IX i A* 

(5) j-£=T, Z Ui,kD(A*E,X;G) 
(IX i A* (A*E)i,k=l 

where A* are multiple shifts of row i of G of order r, that is, products of r 
permissible simple shifts. After these preparations we can state and prove 

LEMMA 2. Let xi,. . . , xn be fixed. If for each polynomial f, all determinants 
Ds = D(E,X\GS) satisfy 

then 

7H-1 
(7) te?*W,X) = 0. 

Proof of lemma. From (6) and (3), expanding the determinants with 
respect to their column s, 

0 = ~ s = 2 > ( A * E , X ; G S ) 
ax i A* 

= Z Z D(A*E,X;G.)ltM.,f<*\xi) 
A* (A*E)i,k=l 

= E/tt)(*<) E D(A*E,X;G.)itM„. 
(i,k) (A*E)i,k=l 

The minor in the last line does not contain / and is identical with 
D(A*E, X)(itk)tS. For a polynomial/of sufficiently high degree, the values 
f(k) (xt) can be prescribed arbitrarily, hence we get from this 

(8) £ D(A*E,X)iilk),8 = 0, i = l , . . . , m , £ , s = 0, . . . , « . 
(A*E)i,k=l 
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For the derivative (7), we use (5): 

(9) ÇSi-H E D(A;A*E,X). 
UXl A* (A*E)l>s = l 

For a fixed 5 with (A*E)i,s = 1 and fixed A*, we expand the last 
determinant with respect to the row which contained the old one, 
(A*E)i,s. This gives, with ft = xf-'^/ik - s - 1)!, 

D(A,'A*E,X) = e & 0 ( A * £ , X ) ( i , , ) l t . 

Rearranging the sum (9) we have 

= EEftE^(A*£J)a,su = o 

by (8). This proves the lemma. 

To prove the necessity of the condition of Theorem 1, we assume that it 
is not satisfied. By the theorem mentioned above, E is complex singular. 
There exist then distinct complex X\, . . . , Xm for which D(E,X) = 0. Let 
X* = (x, x2, . . . , xm) with variable x, and let r be the multiplicity of the 
zero x = xi of the polynomial D(x) = : D(E, X*). If one of the deter­
minants Ds(x) = : D(E, X*; G,) has a zero x = xi of order < r for some 
polynomial / , then it follows from (2) that P is not an entire function. 
If these zeros are always of order ^ r, then by the lemma, D(T+1) (xi) = 0, 
a contradiction. This completes the proof. 
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