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THE ANALYTIC CHARACTER OF
THE BIRKHOFF INTERPOLATION POLYNOMIALS

G. G. LORENTZ

1. Introduction. Let E be an m X (n 4+ 1) regular interpolation
matrix with elements e; ; = (E); which are zero or one, with # + 1 ones.
Then for each f € C"[a, b] and each set of knots X: a £ %1 < ... < %p
< b, there is a unique interpolation polynomial P(f, E, X; t) of degree
=< n which satisfies

(1) PO = fO), e =1

A recent paper [1] discussed the continuity of P, as a function of
X1, ..., X, (with coalescences allowed). We would like to study in this
note the analytic character of P as a function of real or complex knots
X:%x1,...,%n Thisis easy for the Lagrange or the Hermite interpolation.
In this case P is a polynomial in x, . . ., %, if fis a polynomial, and an
entire function in x, . . . , x,, if f is entire. This follows, for example, from
the Hermite formula, which represents P by means of a contour integral.
No formula of this type is known to exist in the general case of Birkhoff,
non-Hermite interpolation.

We shall assume that the reader is acquainted with the terminology and
the fundamental results of Birkhoff interpolation (see [5], [3], [4]).

For a set of functions G = {go, . . ., g} we have the determinant

D(E, X; G) = det [go® (x4), ..., &®(x:); €0 = 1];

its rows are labeled by # + 1 pairs ¢, £ with e;; = 1, and ordered lexico-
graphically. In particular, for the system

( x xs—l xn}
Gs_{l’ll""’(s— 1)!’f""’n!
we have the determinant D,(E, X) = D(E, X; Gy)

—k s—1—k n—k

Dy(EX) = det Zsr, o e T 0

e = 1,

(terms containing 7! with » < 0 are to be replaced by zero). We write
D(E, X) for the determinant with G = {1, x/1!, ..., x*/=n!}. The poly-
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nomial P given by (1) has the representation

(2) P(f,E, X;t) = )Z:t D(EXG)

D(E X

It follows from this that if f is a fixed polynomial (of an arbitrary
degree), then P is a rational function of X, and if f is an entire function,
then P is meromorphic. We would like to improve these statements. It is
essential to assume here that the function f remains fixed. For example,
if f is a linear function with values ¢;, ¢, at x1, x2, then P = ¢il1 + coly,
where [;, I, are the fundamental Lagrange functions. Here P is only
rational, and f depends on xi, x». We prove:

THEOREM 1. In order that P should be a polynomial (or an entire function)
in X whenever f 1is a polynomial (or an entire function), it is necessary and
sufficient that the canonical decomposition of E should consist only of Hermite
and of two-row matrices.

In other words, P has this property if and only if the matrix E is com-
plex regular. This follows from a theorem of Lorentz and Riemen-
schneider [6], which is a natural generalization of D. Ferguson’s theorem

(2].

2. Proof of the theorem. The sufficiency of the conditions is easy to
establish. From [7] it follows that the determinants D = D(E, X) and
D, = D(E, X; G,) are divisible by (x; — x;)*i1, 4,7 = 1,...,m, 1 # j,
if a;; is the collision number of rows ¢ and j. In the case when f is entire,
the latter statement means that D, is a product of (x; — x;)** with an
entire function of X. The polynomial D (E, X) is divisible by the product

IT = H1§i<jém(xi — X)),

On the other hand, it is known ([3], [5]) that the degree of D(E, X) in
one of the variables x; is at most §;, which is the collision number of row
1in E with the rest of the matrix E. Under the assumptions of Theorem 1
(see [6]), 6, = D_,<ix;;. This shows that D = Const I1. Therefore, the
denominator in (2) cancels out.

The necessity requires a careful treatment of determinants D(E, X; G)
and of their derivatives. For the minors of D = D(E, X; G) we use the
notation

D(E, X; G)ipy,s-

This is the signed subdeterminant of D corresponding to its row, label-
led (¢, k) (withe;; = 1), and thecolumns,s =0, ..., n.
For the derivatives of D we have the following (see [5], [7]). The
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simplest formula is

L p(E,X;6) = ¥ UuDEX;G),
i 1

i k=

(3a)
where U, is the operation of differentiation of the row of D which cor-
responds to e; , = 1. A shift A of row 7 in E moves a one, ¢;; = 1 of this

row to the next position (z, & + 1). This shift is permissible if ¢; x41 = 0.
As a variation of (3a) we have

() -2 D = ¥ D(AEX;6).
X Iy

For higher derivatives we shall use

(4) di;D = >, D(A*E, X;G),
X Ax
d*'D
(6) o= 2 2 UuD(AEX;G)
i A% (A*E); k=1

where A* are multiple shifts of row 7 of G of order 7, that is, products of »
permissible simple shifts. After these preparations we can state and prove

LEmMMA 2. Let x4, . . . , x, be fixed. If for each polynomial f, all determinants
D, = D(E, X; G,) satisfy

d'D,
(6) dxl;——(), S-—-O,...,n,

then

41

d
(7) dxlr+l -D(Ey X) = 0.

Proof of lemma. From (6) and (3), expanding the determinants with
respect to their column s,

_ 4D,
- dx{

= Z Z D(A*Eer Gs)(i,k),sf(k) (xz)

Ax (A*E)q,k=1

0

= >, D(A*E, X;G,)
Ax

= Z f(k)(xi) Z D(A*E,X, Gs)(’l,k),s-

(7,k) (A*E) i, k=1

The minor in the last line does not contain f and is identical with
D(A*E, X)(i5,s For a polynomial f of sufficiently high degree, the values
F™® (x;) can be prescribed arbitrarily, hence we get from this

(8) >, D(A*E,X)ums=0, i=1,...,mks=0,...,n

(A*E) i, k=1
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For the derivative (7), we use (5):
d*'D
(9) o TFL = Z
dxy B (A*E)L, g=1
For a fixed s with (A*E),, = 1 and fixed A* we expand the last

determinant with respect to the row which contained the old one,
(A*E)1. This gives, with 8; = x/*=*~1/(k — s — 1)},

D(A/ A*E, X).

D(AJA*E, X) = D BiD(A*E, X) 1,9 s
k=0

Rearranging the sum (9) we have

d?’+1

a1 ZZBkZD(A*E X)aor =0

y=0 k=

by (8). This proves the lemma.

To prove the necessity of the condition of Theorem 1, we assume that it
is not satisfied. By the theorem mentioned above, E is complex singular.

There exist then distinct complex %y, . . . , x,, for which D(E, X) = 0. Let
X* = (x, x5, ..., %,) with variable x, and let  be the multiplicity of the
zero x = x; of the polynomial D(x) = : D(E, X*). If one of the deter-
minants D,(x) = : D(E, X*; G,) has a zero x = x; of order < 7 for some

polynomial f, then it follows from (2) that P is not an entire function.
If these zeros are always of order = 7, then by the lemma, DU+ (x,) = 0,
a contradiction. This completes the proof.
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