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We study in detail the strong-field QED process of nonlinear Compton scattering
in short intense plane wave laser pulses of circular polarization. Our main focus is
placed on how the spectrum of the backscattered laser light depends on the shape
and duration of the initial short intense pulse. Although this pulse shape dependence
is very complicated and highly nonlinear, and has never been addressed explicitly,
our analysis reveals that all the dependence on the laser pulse shape is contained in
a class of three-parameter master integrals. Here we present completely analytical
expressions for the nonlinear Compton spectrum in terms of these master integrals.
Moreover, we analyse the universal behaviour of the shape of the spectrum for very
high harmonic lines.

1. Introduction
The nonlinear Compton scattering of high-intensity laser pulses off high-energy

electrons is one of the fundamental processes in strong-field QED. Its theoretical
description goes back to the 1960s where many strong-field QED processes had
been studied in a series of seminal papers (Brown & Kibble 1964; Goldman 1964;
Nikishov & Ritus 1964a,b, 1965). For instance, these authors predicted the emission
of high harmonics and a nonlinear intensity-dependent redshift of the emitted
radiation, which is proportional to a2

0, where a0 is the dimensionless normalized
laser amplitude that is related to the laser intensity (I) and wavelength (λ) via
a2

0 = 0.73× I (1018 W cm−2) λ2 (µm). In a classical picture, the generation of high
harmonics and the nonlinear redshift of the emitted radiation can be understood as
the influence of the laser’s magnetic field due to the v × B term in the classical
Lorentz force equation.

However, while most contemporary high-intensity laser facilities generate laser
pulses of femtosecond duration (Mourou, Tajima & Bulanov 2006; Korzhimanov
et al. 2011; Di Piazza et al. 2012), most of the early papers on nonlinear Compton
scattering did not consider the effect of the finite duration of the intense laser pulse.
For a realistic laser pulse with a finite duration, the laser intensity gradually increases
from zero to its maximum value. Consequently, the nonlinear redshift is not constant
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during the course of the laser pulse and the harmonic lines of the emitted radiation
are considerably broadened, with a large number of spectral lines for each harmonic
(Hartemann & Kerman 1996; Hartemann et al. 1996, 2010; Narozhnyi & Fofanov
1996; Boca & Florescu 2009; Mackenroth & Di Piazza 2011; Seipt & Kämpfer 2011;
Dinu 2013). In the classical picture this broadening is caused by a gradual slowdown
of the longitudinal electron motion as the laser intensity ramps up (Seipt et al. 2015).
The occurrence of the additional line structure can be interpreted as interference of
the radiation that is emitted during different times (Seipt & Kämpfer 2013b). The
broadening of the spectral lines is especially important with regard to the application
of nonlinear Compton scattering as an X- and gamma-ray radiation source (Jochmann
et al. 2013; Rykovanov et al. 2014; Sarri et al. 2014; Khrennikov et al. 2015; Seipt
et al. 2015).

For ultra-high laser intensities a0� 1 the formation time of the emitted photon is
much shorter than the laser period and the interference of radiation that is emitted
at different times during the course of the pulse is suppressed (Dinu et al. 2015).
In this regime, where the Compton emission becomes vital for the formation of
QED cascades, the spectrum can be effectively simulated using the photon emission
probabilities in a constant crossed field (Ritus 1985; Fedotov et al. 2010; King,
Elkina & Ruhl 2013; Harvey, Ilderton & King 2015; Narozhny & Fedotov 2015). We
therefore focus in this paper on the intermediate-intensity region a0 ∼ 1, where the
interference matters and a general relation between the shape and duration of the laser
pulse and the shape of the spectrum of the backscattered light is very complicated
and highly nonlinear. The shape of the harmonic lines is determined by an interplay
between the laser pulse duration, (i) spectral composition of the pulse and (ii) the
nonlinear ponderomotive broadening which depends on the laser intensity ramps.

In this paper we analytically analyse the nonlinear Compton scattering process in
a short intense plane wave laser pulse of circular polarization. Our analysis is based
on the framework of strong-field QED, where the electrons are described as Volkov
states, and we employ the slowly varying envelope approximation. For convenience,
the analysis is performed in the incident electron frame of reference. In particular,
we investigate how the duration and the shape of the short intense laser pulse affect
the spectrum of the emitted radiation. We derive a scale-invariant master integral
that contains all dependencies on the shape of the laser pulse, and we give explicit
analytical expressions for several specific laser pulse shapes. Our paper is organized
as follows: in § 2 we briefly outline the calculation of the transition amplitude and the
energy and angular-differential emission probability for nonlinear Compton scattering
using Volkov states in a pulsed laser field. The transition amplitude is analysed
further in § 3 where we extract the dependence on the duration and shape of the
laser pulse in the form of a master integral. Explicit analytic expressions for the
master integrals for different pulse shapes are given in § 3.4. Throughout the paper
we use units with h̄ = c = 1. Scalar products between four-vectors are denoted by
a · b≡ aµbµ = a0b0 − ab, and the Feynman slash notation is used for scalar products
between four-vectors and the Dirac matrices: �a≡ γ · a.

2. Theoretical background

The nonlinear Compton scattering process, i.e. the emission of a photon by
an electron under the action of an intense laser field, is conveniently described
theoretically in the Furry picture. The interaction of the electrons with the laser
pulse is treated non-perturbatively by using Volkov electron states Ψ as solutions of
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FIGURE 1. Feynman diagram for the emission of a photon with four-momentum k′
(wiggly line) by a laser-dressed Volkov electron with asymptotic four-momentum p
(double-line). After the photon emission the electron has the asymptotic four-momentum p′.
The double-lines indicate the non-perturbative interaction of the electron with the intense
short laser pulse.

the Dirac equation (i�∂ − e�A − m)Ψ = 0 in the plane wave background laser field A.
Here m and e = −|e| denote the mass and charge of the electron, respectively. By
employing these Volkov states, the strong-field S matrix in the Furry picture can be
represented by the Feynman diagram in figure 1. It is given by the expression

S =−ie
∫

d4x Ψ̄p′(x)γµAµ

k′(x)Ψp(x), (2.1)

where Aµ

k′(x) = (ε′∗)µeik′·x is the amplitude for the emission of a (non-laser) photon
with four-momentum k′ and polarization ε′, while p and p′ are the asymptotic four-
momenta of the electron before and after the photon emission.

In the following, we shall restrict our discussion to the case of a circularly polarized
laser pulse with the four-vector potential in the axial gauge (k · A= 0)

Aµ(φ)= A0g(φ)Re εµ+e−iφ. (2.2)

It depends only on the phase variable φ = k · x with the laser photon four-
momentum k = (ω, 0, 0, −ω), and with the normalized polarization four-vector
ε
µ
± = (0, 1, ±i, 0)/

√
2, with ε+ · ε− = −1. The dimensionless normalized laser

amplitude is given by a0 = |e|A0/m. The shape of the laser pulse is described by
an envelope function g(φ), that depends on φ only via the ratio φ/1φ with the
pulse duration 1φ. Moreover, we use symmetric pulse envelopes with g(φ)= g(−φ),
g(0) = 1 and g(±∞) = 0. For the following we shall assume that the laser pulse
consists of several optical cycles such that 1φ� 1 and we may employ the slowly
varying envelope approximation.

One can perform the spatial integrations in the S matrix most conveniently in light-
front coordinates, defined as x± = x0 ± x3 and x⊥ = (x1, x2), such that the laser phase
is proportional to φ=ωx+, and d4x= (2ω)−1 dφ dx−d2x⊥. After integrating over three
light-front coordinates, the S matrix can be represented in a form (Seipt & Kämpfer
2013a)

S =−ie(2π)3δl.f .(p− p′ − k′)M (s), (2.3)

with the light-front delta function δl.f .(p − p′ − k′) = (1/ω)δ2(p⊥ − p′⊥ − k′⊥)δ(p+ −
p′+ − k′+), enforcing the conservation of three momentum components, and the
transition amplitude

M =T0C0 +T+C+ +T−C− +T2C2. (2.4)
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Here, the quantities Tj denote the transition operators

T0 = ūp′�ε
′∗up,

T± = ma0

4
ūp′

(
�ε±�k�ε

′∗

(k · p′) +
�ε
′∗
�k�ε±

(k · p)
)

up,

T2 = m2a2
0(ε
′∗ · k)

4(k · p)(k · p′) ūp′�kup,


(2.5)

which are sensitive to the spin of the incident and final electrons (via the spinors up

and ūp′) and the polarization of the emitted photon. However, they are only weakly
dependent on the energy and momentum of the emitted photon. The dependence on
the dynamics of the scattering process is mainly contained in the so-called dynamic
integrals over the laser phase

C±1 =
∫ ∞
−∞

dφg(φ)e∓iφ exp
{

i`
[
φ + αg(φ) sin(φ + ϕ)+ β

∫ φ

0
dφ′g2(φ′)

]}
,

C2 =
∫ ∞
−∞

dφg2(φ) exp
{

i`
[
φ + αg(φ) sin(φ + ϕ)+ β

∫ φ

0
dφ′g2(φ′)

]}
.

 (2.6)

Here we employ the slowly varying envelope approximation for the laser pulse and
we use the definition ϕ = arctan k′y/k

′
x. The fourth dynamic integral C0 is represented

as a combination of the other three integrals, defined in (2.6), as

C0 =−α2 (e
−iϕC+ + eiϕC−)− βC2, (2.7)

by the requirement of the gauge invariance of the S matrix (Ilderton 2011; Seipt
2012).

Here we have defined ` as the amount of four-momentum that is absorbed from the
laser field

`≡ k′ · p
k · p′ =

p′− + k′− − p−

k−
, (2.8)

and provides a Lorentz-invariant way to parametrise the frequency of the emitted
photon

ω′(`)= `ω

1+ `ω
m
(1+ cos ϑ)

. (2.9)

For convenience, we move to the rest frame of the incident electron, where
p= (m, 0, 0, 0). Moreover, we defined the coefficients

α = a0√
2

sin ϑ, (2.10)

β = a2
0

4
(1+ cos ϑ). (2.11)
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Using the the transition amplitude (2.4), the angular- and energy-differential photon
emission probability is given by (Seipt & Kämpfer 2011; Seipt 2012)

dW
dω′ dΩ

= e2ω′|M |2
64π3(k · p)(k · p′) . (2.12)

In order to study how the differential emission probability depends on the laser pulse
parameters – the laser strength a0, pulse duration 1φ or the shape of the pulse
envelope g – it is required to evaluate the dynamic integrals Cj.

For many purposes it is sufficient to perform the integrations over the laser phase
numerically, as was done for instance in Mackenroth & Di Piazza (2011), Seipt &
Kämpfer (2011), Krajewska & Kamiński (2012) and Twardy, Krajewska & Kamiński
(2014). Another approach to calculate the spectrum (2.12) relies on a saddle point
analysis of the highly oscillating phase integrals in (2.6) (Narozhnyi & Fofanov
1996; Mackenroth, Di Piazza & Keitel 2010; Seipt & Kämpfer 2013b; Seipt et al.
2015, 2016). A third possibility to evaluate the dynamic integrals would be an
attempt to find analytic solutions. Such a completely analytical evaluation has been
done for instance in (Hartemann et al. 1996) for the on-axis radiation spectrum
using classical electrodynamics. This approach will be pursued in this paper for
arbitrary emission angles and general pulse shapes. In the following we will present
a completely analytical evaluation of the dynamic integrals to gain more insight into
the dependence of the spectrum of the backscattered light on the laser pulse duration
and envelope shape.

3. Analytic evaluation of the dynamic integrals
In this section we further analyse the properties of the spectrum of the emitted

radiation. We apply a detailed mathematical analysis to the transition amplitude M ,
and in particular the dynamic integrals Cj, from the previous section in order to extract
how they depend on the laser pulse duration and pulse shape. Here, we aim to provide
explicit analytic expressions for the dynamic integrals (2.6).

It is known from previous studies (Narozhnyi & Fofanov 1996; Seipt & Kämpfer
2013b; Seipt et al. 2015) that the oscillating term (∝α) in the exponent of the
dynamic integrals, (2.6), is responsible for the emission of high harmonics. The term
containing the integral over the squared pulse envelope (∝β) changes only slowly as
a function of φ. This so-called ponderomotive term is responsible for the broadening
of the harmonic lines and the spectral structures seen within each harmonic. In
the following, we first disentangle these two effects (§ 3.1) and later analyse the
ponderomotive broadening for each harmonic line (§§ 3.2 et seq.)

3.1. Expansion into harmonics
Let us first expand the dynamic integrals into a sum of partial terms which can be
interpreted as the emission of higher harmonics in analogy to the case of infinite plane
waves. Following Narozhnyi & Fofanov (1996) and Seipt & Kämpfer (2013b), we
define a generalized floating window Fourier series for a non-periodic function f (φ)

f (φ)=
∞∑

n=−∞
cn(φ)e−inφ, cn(φ)= 1

2π

∫ φ+π

φ−π

dφ′f (φ′)einφ′, (3.1a,b)

with Fourier coefficients cn(φ) that depend on the location of the window centre.
Applying this floating window Fourier series to the integrand of the dynamic integrals,
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and using the slowly varying envelope approximation (Narozhnyi & Fofanov 1996),
yields a generalized Jacobi–Anger type expansion

ei`αg(φ) sin (φ+ϕ) =
∑

n

(−1)nJn(`αg(φ))e−in(φ+ϕ), (3.2)

with the Bessel function of the first kind Jn(z) (Watson 1922). This expansion strongly
resembles the expansion into harmonics known from the well-studied case of infinite
plane waves (Berestetzki, Lifschitz & Pitajewski 1980), where g= 1. Note, however,
that here the argument of the Bessel functions depends on the laser phase φ via laser
pulse envelope g(φ).

Employing the above expansion we can cast the dynamic integrals into a form

C2(`)=
∑

n

(−1)ne−inϕC(n)
2 (`),

C±(`)=
∑

n

(−1)ne−i(n∓1)ϕC(n)
± (`),

 (3.3)

with

C(n)
2 (`)=

∫ ∞
−∞

dφg2(φ)Jn(`αg)ei(`−n)φ+i`β
∫

dφg2
,

C(n)
± (`)=

∫ ∞
−∞

dφg(φ)Jn∓1(`αg)ei(`−n)φ+i`β
∫

dφg2
.

 (3.4)

Note that for symmetric laser pulse envelopes, as we use in this paper, all the
coefficients C(n)

j (`) are purely real valued. Making use of the expansions (3.3), the
transition amplitude M can be written as a sum of partial amplitudes M (n) via
M =∑∞n=1 M (n), representing the emission of the nth harmonic. The shape of each
of the harmonic lines is determined by the integrals C(n)

j (`), which might be called
the partial dynamic integrals for the nth harmonic. Unfortunately, in these integrals,
the pulse envelope g appears as the argument of the Bessel function, preventing their
immediate analytic evaluation.

The parameter α that appears in the argument of the Bessel functions goes to zero
for on-axis radiation, ϑ = 0. Since the Bessel functions behave as Jn(z)≈ zn/2nn! for
small argument z this means that only the first harmonic n= 1 is emitted on axis for
a circularly polarized laser pulse, with the only contribution coming from C(1)

+ . The
result that no higher harmonics occur on axis is known from the case of infinitely
long plane waves as a ‘blind spot’ or ‘dead cone’ in the literature (see e.g. Harvey,
Heinzl & Ilderton (2009) and references therein).

3.2. Reduction to a master integral
The next important step is to extract the pulse shape function g from the argument of
the Bessel functions in the definition of the integrals C(n)

j . This will eventually allow
us to define a master integral that contains all of the dependences on the laser pulse
envelope. Such an extraction is achieved by applying the multiple argument expansion
for the Bessel functions (Watson 1922)

Jn(`αg(φ))= gn(φ)

∞∑
k=0

[1− g2(φ)]k Jn+k(`α)

k!
(
`α

2

)k

. (3.5)
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Thus, instead of having to deal with the pulse envelope g as an argument of the nth
Bessel function we now get a power series in (1− g2), with the coefficients containing
higher-order Bessel functions. We should note that the overlap of the functions gn and
some power of (1− g2)k rapidly becomes small for increasing n and k. The powers
of gn are localized at the origin φ= 0 more strongly for larger values of n, while the
powers of (1− g2) vanish at the origin. Their product in the expansion (3.5) samples
the edges of the laser pulse.

Employing the above expansions we obtain for the partial dynamic integrals for the
nth harmonic the series

C(n)
2 (`)=

∞∑
k=0

Jn+k(`α)

k!
(
`α

2

)k

Bk
n+2(`− n, `β), (3.6)

C(n)
± (`)=

∞∑
k=0

Jn+k∓1(`α)

k!
(
`α

2

)k

Bk
n+1∓1(`− n, `β), (3.7)

where we have defined the ponderomotive integrals

Bk
r(`− n, `β)=

∫ ∞
−∞

dφgr(φ)[1− g2(φ)]kei(`−n)φ+i`β
∫

dφg2
. (3.8)

They contain all dependences on the laser pulse shape and pulse duration and its
influence on the longitudinal electron motion and spectral broadening.

Before evaluating these ponderomotive integrals further, let us first discuss the limit
of infinite plane waves, g→ 1, where the laser intensity is switched on adiabatically
at past infinity and then stays constant. As a consequence there is no ponderomotive
broadening for infinite plane waves. Because of 1− g2 = 0 we find

Bk
r(`− n, `β)

g=1−→ δk0

∫
dφei(`−n)φ+i`βφ = 2πδk0δ(`− n+ `β). (3.9)

The delta function here restricts the generally continuous variable ` to discrete values
`n= n/(1+ β). Thus, the frequency of the emitted photon, (2.9), becomes discrete as
well:

ω′n ≡ω′(`n)= nω

1+ β + nω
m
(1+ cos ϑ)

= nω

1+
(

nω
m
+ a2

0

4

)
(1+ cos ϑ)

, (3.10)

with the well-known nonlinear intensity dependent redshift (Berestetzki et al. 1980),
but no spectral broadening. Equation (3.10) is usually interpreted as the absorption
of n laser photons and the emission of high harmonics. Moreover, in the expansion
(3.5), all terms with k> 0 vanish and we again obtain the well-known result that the
partial matrix element of the nth harmonic contains the Bessel functions Jn and Jn±1
(Berestetzki et al. 1980; Ritus 1985).

It is possible to find a recurrence relation for the ponderomotive integrals:

Bk
r = Bk−1

r − Bk−1
r+2. (3.11)

Subsequent application of this relation helps to reduce the order of the upper index
to zero:

Bk
r =

k∑
ν=0

(−1)ν
(

k
ν

)
B0

r+2ν . (3.12)

https://doi.org/10.1017/S002237781600026X Published online by Cambridge University Press

https://doi.org/10.1017/S002237781600026X


8 D. Seipt, V. Kharin, S. Rykovanov, A. Surzhykov and S. Fritzsche

Thus, we have to calculate only those ponderomotive integrals with upper index k= 0.
Let us now rescale the integration variable in (3.8) as φ → t = φ/1φ, in order to
define the three-parameter master integrals as

Br(ξ , η)≡ B0
r (`− n, `β)

1φ
, (3.13)

as a function of the rescaled variables

ξ = (`− n)1φ, (3.14)
η= `β1φ, (3.15)

and for positive integer values of r. Note that the variable ξ depends on the harmonic
number n. An explicit relation between the physically accessible variables (ω′, ϑ) and
the abstract variables (ξ , η) is given at the end of this subsection in (3.19)–(3.22). The
master integrals explicitly read

Br(ξ , η)≡
∫ ∞
−∞

dtgr(t)eiξ t+iη
∫

dtg2(t). (3.16)

It only depends on the shape of the laser pulse and is completely independent of
the pulse duration. Note that the master integrals are real valued functions for all
symmetric laser pulse shapes.

From stationary phase arguments one can deduce that the master integrals are
essentially different from zero only in the regions bounded by the η-axis and the line
η=−ξ . In this region the master integrals are oscillating function for all values of r.
This region is visualized as a grey shaded area in figure 2. Outside of this region it
rapidly approaches zero.

Before we continue our discussion of the properties of the master integrals and their
pulse shape dependence, let us first represent the partial transition amplitudes M (n) in
terms of the Br(ξ , η) by putting together all the expansions:

M (n) = 1φ(−1)ne−inϕ
∞∑

k=0

k∑
ν=0

(−1)ν

k!
(

k
ν

)(
`α

2

)k

×
{

eiϕJn+k−1(`α)

[
T+ − αe−iφ

2
T0

]
Bn+2ν(ξ , η)

+ eiϕJn+k+1(`α)

[
T− − αe+iφ

2
T0

]
Bn+2+2ν(ξ , η)

+ Jn+k(`α)[T2 − βT0]Bn+2+2ν(ξ , η)

}
. (3.17)

To obtain the spectrum of nonlinear Compton scattering we have to plug this transition
amplitude into (2.12).

For the sake of completeness let us now briefly discuss the partial transition
amplitudes in the limit of infinite plane wave laser fields, g = 1. In this case the
master integrals turn into Br(ξ , η)→ 2πδ(ξ + η), i.e. they are localized along the
diagonal η =−ξ . Moreover, the summation over ν yields just a Kronecker delta δk0
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FIGURE 2. Illustration of how to cut the ξ–η plane in order to obtain the shape of the
spectral lines as a function of ` for fixed scattering angle ϑ .

such that only the k = 0 term survives in the sum over k. Therefore we obtain for
the transition amplitude for infinite plane waves

M (n) = 2πδ(`− n+ `β)1φ(−1)ne−inϕ

{
eiϕJn−1(`nα)

[
T+ − αe−iφ

2
T0

]
+ eiϕJn+1(`nα)

[
T− − αe+iφ

2
T0

]
+ Jn(`nα)[T2 − βT0]

}
, (3.18)

with the argument of the Bessel functions now being `nα = nα/(1 + β), which
reproduces the well-known textbook result (Berestetzki et al. 1980). The direct
comparison between (3.17) and (3.18) impressively demonstrates how much more
complex and intricate the case of the pulsed laser fields is, as compared to infinite
plane waves. The master integrals Br(ξ , η), which become trivial in the case of
infinite plane waves, cause the increased complexity of the transition amplitude for
pulsed plane wave laser fields. They can be considered as a fingerprint of the laser
pulse shape.

Let us now return to our discussion of the properties of the master integrals (3.8)
by first discussing how the rescaled arguments ξ and η relate to the frequency ω′ and
scattering angle ϑ of the emitted photon. In order to obtain the shape of the frequency
spectrum as a function of ` (or the photon frequency ω′ by means of (2.9)), one has
to cut the functions Br(ξ , η) along the straight line η= βξ + nβ1φ in the ξ–η plane,
depicted as a red diagonal line in figure 2. This line intersects the ξ–axis at ξ =−n1φ,
the slope is just β (i.e. it depends on the laser intensity), and the intersection with the
η-axis is at η= βn1φ. Note that the dependence on the scattering angle ϑ is entirely
contained in the parameter β, see (2.11).

It is important to note which values of ` lie inside the grey shaded area where the
master integrals are non-zero: they are exactly those values between the redshifted and
unshifted nth harmonic lines in the infinite plane wave: n/(1+β)6 `6 n, see figure 2.
Moreover, we see that the diagonal η=−ξ represents the redshifted harmonics in the
infinite monochromatic plane wave. That means, the region close to the diagonal line
η=−ξ is formed close to the centre of the laser pulse where the intensity is largest.
In the region close to the η-axis the master integrals is formed at the very edges of
the laser pulse where the intensity is very low.
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(a) (b) (c)

FIGURE 3. Numerical evaluation of the master integral B1(ξ , η) for different pulse shapes:
a Gaussian g(t)= e−t2/2 (a), an exponential g= e−|t| (b), and a supergaussian g= e−t4/2 (c).

(a) (b) (c)

FIGURE 4. Numerical evaluation of the master integral (3.16) for a Gaussian pulse
envelope g= e−t2/2 in the ξ–η plane for increasing values of r from (a–c).

Numerical evaluations of the master integral B1(ξ , η) are depicted in figure 3 for
three different pulse envelopes. We see that each pulse shape generates a distinct
pattern of oscillations in the triangular region bounded by the η-axis and the diagonal
η = −ξ . For a Gaussian pulse envelope g(t) = e−t2/2 numerical evaluations of the
master integrals are depicted in figure 4 for different values of r. One can see that
the larger the value of r the stronger the function is localized close to the line
η = −ξ (i.e. the nonlinear Compton edge in the limit of infinite plane waves). By
recalling how we need to cut the ξ–η plane to obtain the frequency spectrum we
easily deduce that for longer pulses or higher harmonics the spectral lines contain
more oscillations. This observation is in line with results using the saddle point
method (Seipt & Kämpfer 2013b).

Before we conclude this paragraph, let us explicitly state how the rather abstract
variables ξ and η are related to the physically observable photon frequency ω′ and
scattering angle ϑ . Those expressions explicitly read

ω′(ξ , η)= ξ + n1φ

1φ + 4ω
ma2

0
η

, (3.19)

ϑ(ξ, η)= arccos
(

4
a2

0

η

ξ + n1φ
− 1
)
. (3.20)

By inspecting figure 2 together (2.11) we find that for any harmonic n and
any value of r, the physically relevant part of the master integral is located in a
triangular region with the corner points (ξ , η) = (0, 0), (0, n1φa2

0/2) and (ξ0, −ξ0)
with ξ0 = n1φa2

0/(2 + a2
0). That means for different n, pulse duration 1φ and a0
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(a) (b) (c)

FIGURE 5. Transformation of the triangular regions in the ξ–η plane to the variables ω′
and ϑ . The solid, dashed and dash-dotted curves correspond to each other.

different parts of the ξ–η plane describe the spectrum of backscattered photons. The
boundaries of these triangular regions are marked in figure 5(a) for two different
sets of parameters. When these areas are transformed to ω′ and ϑ we obtain the
distributions in figure 5(b) and (c), respectively. They strongly resemble the spectral
line shapes in the incident electron rest frame found previously, e.g. in (Seipt &
Kämpfer 2013b).

For the sake of completeness, we also provide here the corresponding transformation
relations in the laboratory frame where the electron counterpropagates the laser pulse
with a Lorentz factor γ :

ω′lab(ξ , η)=
ωγ 2(1+ v)2(ξ + n1φ)

1+ v
1− v + v 4

a2
0

η

ξ + n1φ

(
1φ + 4

a2
0

ωγ (1+ v)η
m

) , (3.21)

ϑlab(ξ , η)= arccos


4
a2

0

η

ξ + n1φ
− 1+ v

1− v + v 4
a2

0

η

ξ + n1φ

 , (3.22)

where v = √1− 1/γ 2. The differential on-axis photon emission probability in the
laboratory frame, plotted in figure 6 for an initial electron energy of 51 MeV (γ =
100), shows perfect agreement between a direct numerical evaluation of the dynamic
integrals and the calculation of the master integrals and then transforming from the
abstract ξ–η plane to the photon frequency ω′ and ϑ = 0.

3.3. Universal behaviour of high-order harmonics
Let us now draw some conclusions about the shape of very high-order harmonics. One
can notice that for large values of r, the powers of gr(t) become strongly localized
around t ≈ 0. Thus, the main contribution to the master integral, (3.16), is provided
by the region of g(t) around the maximum at t = 0. For sufficiently smooth pulse
envelopes†g(t) a Taylor expansion around the point t= 0 reads

gr(t)≈
(

1− |g′′(0)| t
2

2

)r

. (3.23)

†This means the first derivative of the pulse envelope at t= 0 has to exist. Due to the symmetry of the
pulse envelope it is then equal to zero: g′(0)= 0.
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FIGURE 6. Differential on-axis photon emission probability in the laboratory frame for
a0 = 1.5, 1φ = 25, a Gaussian pulse shape and γ = 100. The direct numerical evaluation
of the dynamic integrals (blue solid) coincides perfectly with the evaluations of the master
integrals (red dashed).

Defining τ 2 = 1/|g′′(0)| and employing the known limit (1+ x/r)r
r→∞→ ex, we find

gr(t)≈ e−(rt2)/(2τ 2). (3.24)

which is of Gaussian shape and does not depend on any details of the primary pulse
shape, except for the curvature at the maximum, i.e. the second derivative g′′(0) at
t = 0. Note that if one is concerned about laser pulses with a flat top envelope (in
the sense that g′′(0)= 0), the Taylor series in (3.23) can be extended further, and will
eventually lead to a supergaussian shape of gr(t).

The conclusion is that for sufficiently high harmonic order the master integral is
approximately given by

Br(ξ , η)≈
∫ ∞
−∞

dt e−(r/2)(t/τ)
2+iξ t+iη

∫
dtg2(t). (3.25)

Because for large values of r the main contributions to this integral come from a
narrow region around t= 0, we can approximate

∫
dtg2(t) polynomially around t= 0

up to the third order. This allows us to give an analytic expression for the master
integrals Br for large values of r→∞ as

Br(ξ , η)≈ 2πτ 2/3

η1/3
exp

(
− r

2η
(ξ + η)+ r3

12(τη)2

)
Ai
(

r2

4(τη)4/3
− τ

2/3

η1/3
(ξ + η)

)
(3.26)

in terms of the Airy function Ai (Erdélyi et al. 1953). The central conclusion here
is that for very large values of r the shape of the harmonic lines approximate the
shape of the harmonics for a Gaussian laser pulse with temporal duration τ/

√
r =

1/
√

r|g′′(0)|. The only specific input from the original pulse shape g that affects the
shape of the high harmonic spectral lines is the curvature of the pulse envelope at the
maximum.

3.4. Explicit closed form analytic results for the master integrals
We finally provide explicit closed form analytic expressions for the master integrals
Br(ξ , η) for several different laser pulse shapes g.
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3.4.1. Hyperbolic secant pulse shape
For a hyperbolic secant pulse, g(t) = 1/ cosh(t), we have

∫
g2dt = tanh t, and the

master integral

Br(ξ , η)=
∫ ∞
−∞

dt
eiξ t+iη tanh t

coshr t
(3.27)

can be evaluated by transforming the integration variable according to z=1/(2et cosh t),
yielding

Br(ξ , η)= 2r−1e−iη
∫ 1

0
dzz((r+iξ)/2)−1(1− z)((r−iξ)/2)−1e2iηz. (3.28)

This integral can be evaluated as

Br(ξ , η)= 2r−1e−iη

Γ (r)
Γ

(
r+ iξ

2

)
Γ

(
r− iξ

2

)
1F1

(
r+ iξ

2
, r, 2iη

)
, (3.29)

with the Gamma function Γ (z) and the confluent hyperbolic function 1F1(a, b; z)
(Erdélyi et al. 1953). An equivalent representation of (3.29) can be given in terms
of the generalized Laguerre functions Lλν(z) (Erdélyi et al. 1953) as

Br(ξ , η)= 2r−1e−iηπ

sin
(π

2
(r+ iξ)

)Lr−1
−(r+iξ)/2(2iη). (3.30)

3.4.2. Exponential pulse shape
For a pulse shape of the form g(t)= e−|t| the master integral takes the form

Br(ξ , η)=
∫ ∞

0
dte−(r−iξ)teiηe−t sinh t + c.c. (3.31)

After a substitution z= ((iη)/2)e−2t we obtain

Br(ξ , η)= e(iη)/2

2

(
2
iη

)(r−iξ)/2 ∫ (iη)/2

0
dzz(r−iξ)/2−1e−z + c.c., (3.32)

which can be expressed as

Br(ξ , η)= eiη/2

2

(
2
iη

)(r−iξ)/2

γ

(
r− iξ

2
,

iη
2

)
+ c.c., (3.33)

with the lower incomplete gamma function γ (a, z) (Erdélyi et al. 1953),

3.4.3. Staircase pulse shapes
Let us assume the pulse envelope is staircase, defined as g(t) = ∑N

k=1 νkχIk(t)
for t > 0, with νk being the height of the kth step (as measured from the ground
level) and the characteristic function χIk(t)= 1 if t ∈ Ik = [(k − 1)/N, k/N), and zero
otherwise. (For t< 0 the envelope is fully defined by the symmetry g(−t)= g(t).) For
the moment we assume that the step height increases uniformly, νk = (N − k+ 1)/N,
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but a generalization to arbitrary steps is obvious. A compelling feature of the staircase
pulse is the possibility to approximate many different smooth pulse shapes in the
limit of infinite steps N →∞, just by adjusting the step heights. For instance, the
uniform staircase discussed here would converge to a smooth triangle pulse.

By splitting the t-integration range into the intervals Ik where g is constant we
evaluate the master integral as

Br(ξ , η)=
N∑

k=1

2(νk)
r
sin

ξ + ην2
k

2
ξ + ην2

k

2

cos
(
ηΦk + 2k− 1

N
ξ + ην2

k

2

)
, (3.34)

with

Φk = 1
N

k∑
κ=1

ν2
κ −

k
N
ν2

k . (3.35)

For N = 1 we recover the well-known result of a sinc profile for the box pulse
which is aligned along the η = −ξ diagonal, i.e. it corresponds to the usual infinite
plane wave redshift. While the bandwidth of the laser pulse translates to the Compton
scattered light, we see no indication of the ponderomotive broadening due to a gradual
ramp up of the laser intensity. How this ponderomotive broadening effect develops
can be seen quite instructively when going to a pulse with more than one step. For
N steps we observe a total of N strips in the η–ξ plane that are centred along the
lines η = −ξ/ν2

k . On each of the steps the radiation is emitted with their respective
redshift, determined by the square of the kth step height as ` = n/(1 + βν2

k ). With
increasing N these strips eventually are overlapping, reproducing the typical picture
from the smooth pulses discussed before. Thus, the staircase pulse model discussed
here helps to investigate the transition from the case of a constant amplitude laser
pulse to the case of smooth pulses where the ponderomotive broadening sets in and
strongly influences the nonlinear Compton spectrum.

4. Conclusions
In summary, we provided in this paper a comprehensive and completely analytical

evaluation of the nonlinear Compton transition amplitude. It was found that the
dependence on the shape of the strong laser pulse can be traced back to a class
of three-parameter master integrals. In addition, all the dependence on the pulse
duration can be conveniently scaled out from the master integral. For certain shapes
of the laser pulse envelope we provided explicit analytical expressions for the master
integrals. In addition, for very high harmonics we find a universal behaviour of the
shape of the harmonic lines.

In this paper we studied only the case of circularly polarized laser light. The
laser polarization affects the form of the Jacobi–Anger type expansion (3.2) and the
subsequent extraction of the laser pulse envelope from the argument of the Bessel
functions via (3.5). In the case of an elliptic or linear laser polarization we would
encounter generalized two-argument Bessel functions (Korsch, Klumpp & Witthaut
2006; Seipt 2012). But eventually the laser pulse shape dependence is described by
exactly the same master integrals (3.8) as for circular laser polarization discussed in
this paper.

https://doi.org/10.1017/S002237781600026X Published online by Cambridge University Press

https://doi.org/10.1017/S002237781600026X


Analytical results for nonlinear Compton scattering 15

We would like to stress that the analytical structure of the strong field S matrix is
similar also for other first-order strong-field QED processes such as Breit–Wheeler
pair production, or pair annihilation. Thus, our analytic results could be easily
translated to these processes too.
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