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ON AUGMENTED SCHOTTKY SPACES AND
AUTOMORPHIC FORMS, II
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0. Introduction

This is the second half of the paper entitled “On augmented Schottky
spaces and automorphic forms”. In the first half, we introduced new coordi-
nates to the Schottky space, and defined the augmented Schottky space
@;*(Z’) by using the new coordinates. Furthermore we considered relations
between the augmented Schottky space and Riemann surfaces with or with-
out nodes.

In [2], Bers attached to each point ¢ of ©}\Z a basis of regular g-
differentials on the Riemann surface S(zr), which depends holomorphically
on r, where &} is the augmented Schottky space in the sense of Bers and
Z is a ‘‘small” set. Here we will establish the same results as in [2] for
the case of the augmented Schottky space &*(3) defined in the first half
[4]; Theorem 2 is the main theorem.

In §1, we will state some notations and quote a known proposition
needed later. In §2, we will construct four kinds of Poincaré series and
in § 3, we will consider their properties. In §4, we will consider continuity
of the functions constructed in § 2. Proposition 6 is decomposed into Pro-
positions 7 and 8 which will be proved in the next section, § 5. The tech-
nique of the proofs of Propositions 7 and 8 plays an important role in the
proofs of the later propositions. In §6, we will again consider continuity
of the functions. We summarize from Proposition 5 through Proposition
12 in Proposition 13. Proposition 14 says that the functions constructed
in §2 are holomorphic on the fiber spaces over the augmented Schottky
spaces (see [5] for the definition of the fiber space). In §7, we will consider
four propositions which guarantee that (29—1)(g—1) linear combinations
of the functions form a basis of regular g-differentials on the Riemann
surfaces S(r) for each e &¥(I)\Z, where Z is a “small” set. In §8, we
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will state three main theorems. We will use the same notations and termi-
nologies as in Sato [4] and [5].

This paper was written while the author stays at the State University
of New York at Stony Brook. He wishes to express his deepest gratitude
to Professors 1. Kra, B. Maskit and P. Matelski for many advices and
suggestions.

§1. Definitions and Preliminary

DErFINITION. A holomorphic g-differential (g > 0; an integer) on a com-
pact Riemann surface without nodes is a holomorphic form of type (q, 0).
In other word, it is locally represented as F = f(2)dz? where z is a local
parameter and f is a holomorphic function.

Let peS. Let z be a local parameter with 2z = 0 at p defined on D
(pe D C S). Then a holomorphic g-differential on D\{p} is written as F
= 3+~ . a,2"dz? in a neighborhood of p. The coefficient a_, is called the
residue of F at p.

DerINITION. A regular g-differential on a stable compact Riemann sur-
face S with nodes (for the definition see Bers [2], p. 344) is a holomorphic
g-differential on each part of S satisfying the following properties:

(i) It has poles of order at most g at the punctures corresponding
to nodes.

(ii) Let a_, and a*, be the residues at two punctures joining the
nodes. Then a_, = a*, if q is even and a_, = — a*, if ¢ is odd.

Let S be a compact Riemann surface of genus g with or without nodes.
Let d = d(q, £) be a number of linearly independent regular g-differentials
on S. Then by the Riemann-Roch theorem,

_{q ifg=1
Tleg—-ne—-1  ifg>1"

Let G be a Kleinian group and let 2(G) be the region of discontinuity
of G. Let 2/(G) be a subset of 2(G) with the following properties: (i)
7(Q2(@) = 2(G) for all y € G and (ii) 2(G)\2(G) is a discrete set.

DeriNiTION. Let ¢(2), z€ 2(G), be a holomorphic function with
#(A2)A'(2)* = ¢(2) for all Ae G. Then ¢(2) is called a holomorphic form
of weight (— 2¢) on £(G). For simplicity it is called a holomorphic g-form.

This form induces a holomorphic g-differential on each part of S(G)
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= Q(G)/G. Let G, be a subgroup of G. Let 7y, 75,7 --- be a complete
list of the right coset representatives of G modulo G, as G = Gy, + Gy,
+ Gy, + ---. Let @(2) be a holomorphic function with @(;(2))7'(2)* = @(2)
for all y e G, Set ¢(2) = 270 D(7.())ra(z)?. If the series converges uni-
formly on any compact subset, then ¢ is a holomorphic g-form for G.

ProprositioN 1 (Bers [2]). Let 4 be a domain in C and let I' be a
properly discontinuous group of holomorphic self-mappings of 4:

A3C = (Cl, tc ,CT)HT(C) = (rl(C)’ ° ;TT(C))GA .
Let I'y be a subgroup and let yy, 11,72 -+ be a complete list of the right
coset representatives of I' modulo I'). Let q = 1 be an integer. Let p(0),
€ e 4, be a positive continuous function such that p(y(©))|jac, ©)| = p©), re T,

where jac, (§) = a(¢', - - -, o, - -, 8. Let O), {ed, be a holomorphic
function such that O(y({))jac, ) = &), re I, and

[ o@r-i00lav, < + e,
4/To
where dV, = dé&'dy' --- d&'dy” (7 =0 + v —17’). Set

90 = 3 0@ jac, @7, Ced.

Then

(1) this series converges absolutely and uniformly on any compact
subset of 4,

(ii) ¢ is holomorphic in 4,

(i) ¢G(©Q)jac, () = ¢©) for all yel', and

@ [, e01g@iavi= ] oer-ri0@lav;.

§2. Construction of Poincaré theta series

From now on, we fix integers g > 2 and ¢ > 2. We fix a compact
Riemann surface S of genus g and a standard system of loops 3 = {«,, - - -,
®g; T1s * ' T2g-af O S (see [4] for the definition). For the definitions of
fiber spaces &@;“(Z’) and Schottky groups G.(c), see [5]. Here we shall
define four kinds of functions of 3g-2 variables.

2-1. Let (r, 2) e §,57'8,(2). Set Sy(z) = 2(G(N\G,(2) (s =0,1, ---,
2g —3). There are two kinds of distinguished points on S,(z). One is the
following: To every ic I, there correspond distinguished points p,(r) and

https://doi.org/10.1017/50027763000020110 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020110

82 HIROKI SATO

4t) e S(z) (see [4], p. 172 and [5], p. 74). We call them the distinguished
points of the first kind. We denote by I, the totality of i such that p,(z),
4z) e gs(T)-

The other is the right and the left distinguished points p;(z) and p;(r)
€ S(z) corresponding to every jeJ (see [4], p. 172). We call them the dis-
tinguished points of the second kind. We denote by J, the totality of j
such that either p;j(z) or pj(r) belongs to S,(x).

Let A, (z,2), -+, A, . (z, 2) be generators of G(z). We take defining
curves C, (7), Ci:(z), - - -, C, ;. (z), Ci . (z) of Gy(z). Let w,(r) be the standard
fundamental domain for G,(zr) bounded by them. Let Ps,n(0) and g, ,(z) be
the repelling and the attracting fixed points of A, ,(zr,2) (h =1,2, .-, g,).
We denote by P, (z) the set of these points.

Let I, = {lo g0t - * s Logerish Lsgert << o * < lIsgr, For simplicity we
write P, ,,..(c) and §,,,..(c) instead of p,(r) and q,(z), respectively, for i =
Usgyene L€t D g .n(r) and g, 4, . .(z) be the lifts of p, ,,..(v) and G, ,,..(z) to
w,(7), respectively. We also call them the distinguished points of the first
kind. We denote by P, . (r) the set of these points.

Let J, = {jo - s Jombs Jsn < -+« <Jsn. For simplicity we write pz.(c)
instead of pj (). Let p:.(r) be the lifts of py.(z) to w(z). We also call
them the distinguished points of the second kind. We denote by P, (z) the
set of these points. We put P(z) = P, (t)UP, (z)U P, «(z).

2-2. Now we will construct four kinds of functions. We define
@, ,(z, 2) by setting

[ Pu®= a0 )

L 0.2 = e e )

for (r,2) e F0€,(2)(s=0,1,---,26—3; h=1,2,---, g, + k). In particu-
lar, if p, ,(z) = 0 and g, ,(z) = co, then we define @, ,(z, 2) = 1/z%. We denote
by IN,(z) the set of all linear combinations of @, ,(r,2) (h=1,2, ---, g, + k).
For h=1,2,.--,g, let (A}M(r) be the group generated by A, ,(z, 2), that
is, G, () = (A, x(z,2)>. For h=g,+1,---,8 + k, put G, ,(r) ={1}. Let
Yo T1» 72> * - - be a complete list of the right coset representatives of G2
modulo és,h(r). We set

bl 2) = 33 0,u(e, 1D

2
(2) (z,2) € §."B,(3)
(S=O,1,2, ,2g_ 37h= 1’27 "'9gs+ks)'
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2-3. We denote by M,(z) the space of all the meromorphic functions
in z having the following properties:
(i) They have poles of order at most ¢ — 1 at

( 3) ps,l(f), q.v,l(f)’ ] px,gs+k;(T)’ Qx,gﬁks(r) )
p;,l(‘[)a ot "p;,ns(f) ’

where p; () represents either p;}.(r) or p;.(r) whose projection belongs to
S,(2).

(i1) They have no other singularities.

(ii1) If co does (resp. does not) appear among the points (3), then they
have zero of order at least g + 1 (resp. 29) at oo.

We denote by II, the space of polynomials of degree at most n. If «
does not appear among the points (3), an element of M (z) is represented
by

(4) 6,..(z, 2) = (@) :
{z — P (ONz — ¢,4(D) - - - (2 — Pl (O}
with zell, _,, where e, ={2(g, + k) + n, — 2}qg — {2(g, + k) + n,} + 1.
Therefore dim M (z) = e,. In the case where the sequence of points (3)
contains oo, 0, (z, 2) is similarly defined and we also obtain dim M (z) = e,.
We set
08,1:(7'-9 Z) = Z @s,n(ry T(z))r/(z)q
(5) 7€6s(e)
(z, 2) € F, 077G (2), $=0,1,2,---,2¢ — 3.

2-4. Here we define 7', ,(z,2)(s=0,1,2,---,2¢—3;k=1,2,---,n)in
the case where the sequence (3) does not contain co. We set, if g, + &, > 1,

6 ws \Ts = ! ;
() 52 (2 — Pl — Pui(0) (2 — g (7))
if g, + &k =0,

w __ 1
s,l(T3 Z) -
(2 — Pea(0)(z — PLa() (2 — pislr))
w‘s,z(T >Z) = L
(2 — pi ()2 — Pa(0))" (2 — pa(7))
ws,k(T, Z) = L

(z — PL(D)(z — Pia()*(z — Pia(0))
(k=3,4,---,n,).
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They are similarly defined in the case where the sequence (3) contains
oco. The detail is left for the reader.

We denote by L,(z) the set of all the linear combinations of elements
U, (r,2) (k=1,2,---,n,) and elements of M,(z) which do not belong to
M(z). We set

(7) b= T U@,
(e T8 20,1, 283,
E=1,200+,m4

2-5. In order to introduce the fourth functions we need some prepa-
ration. We denote by GI*7 the abstract free group generated by A,, 4,, -- -,
A,, For ¢/ ¢@I7'(3) with I' < I and J’ C J, we let G,(/) be the group
generated by A, (7, 2), ---, A,.(/,2). Denote by 7., the canonical iso-
morphism of G/ onto és(r’) defined by the correspondence A, — A, (7, 2).
We note that G,(<’) is a Schottky group and a subgroup of G,(/). The
image of y € G/ under the isomorphsm 7., will be denoted by z— y(</, 2).
Assume o & 2/(G,(z)). Let &7 denote the set of all sequences ¢ of 2g — 1
distinct elements 7y, - - -, 750-; of GI*Y with the property: The attracting
fixed points a,(z'), - - -, Gy (z)) of 1,(c/, 2), - + -, 124_4(¢/, 2) are distinct for one
(and hence for all) ' ¢ &;7(2). For TG,()T-* with Te Méb such that
oo € QTG ()T, let 7 denote the set of all sequences ¢ of 2g distinct
elements 7,, - -+, 1o, of GI*’ with the same property as above.

Now we define the functions ¥, (z,2) as follows. Let e %77 and
(z,2) € FBL'(Z). If oo & 2(G,(c), then we set

1
ws o\ =
(8) 45 2) (2 — a(D)(z — ax(2))- - (2 — a5y _1(2))
and
(9) Violt,2) = 20 U, .(z, (@) (2" .

reGs(r)
If oo € 2/(G(7)), then we set

_ 1
T (F— a@)e — a0) (2 — ()

P, .(z, 2) is defined by (9).

(8Y v,.(z,2)

2-6. Let re @;“(Z'), ze 2/(G,(r)) and we 2(G(z)). Suppose that there
exists Te Mob such that G(z) = TG,(:)T-'. Then we call G,(c) being
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equivalent to G,(r). Let ¢, be an automorphic form of weight (— 2g) on
Q’(és(z-)) for G,(c). We define &, by setting ¢, (w) = ¢ (T (w))T-"(w)". Then
$.(w) is an automorphic form of weight (— 2¢) on 2/(G,(z)) for G.c). We
say ¢, being equivalent to ¢,.

We easily see the following: If @, , e N/(z), then @(z, w) defined by
O(z,w) = D, ,(z, T (w))T"(w)* belongs to N,(zr). Furthermore ¢(r, w) =
&, 1(t, T (w))T-"(w)?, namely ¢(z, w) is equivalent to ¢, ,(z, 2), where ¢(z, w)
is the Poincaré theta series of @(z, w) for G‘t(r). For 0, ., ¥, and v,
the same holds.

So far we defined ¢, ,(z, 2), 6, .(z, 2), ¥,..(z, 2), and 4, (z, 2) for (r,2) e
%3@;*(2). Now we extend them to (z, 2) in the union > %3’ %,@;“(Z’).

For this purpose, let r ¢ §7'&,(Y) and ze 2(Gz)). If the cells ¢, and
o, belong to the same part [s,] (i.e., k(s) = k(t), see Remark in [5], p. 75),
then there exists T'e Mob such that G(c) = TG,(0)T-" (see [5], p. 75). In
this case, we put ¢, ,(z, 2) = ¢, .(c, T-'(2)) T-"(2) for z ¢ (G(c). If s and
t do not have the above relation, then put ¢, ,(r,2) = 0 for ze (G (o).

We extend the functions 4, .(z, 2) and +, ,(z, 2) in completely the same
way.

Next, with respect to every jecJ, we introduce the function ,(z, 2)
defined on) %® %,@;k (2). For red"CS,(2) and z¢ Q(ét(r)), we put ¥ ,(z, 2)
=0 if j&d, and V¥,{(c,2) = ¥,.(z,2) if jed, = {ji1 - s Jint and j = j.
(remark: j e J, if and only if either p;(c) or p;(zr) belongs to S, ; for the
notation k(t), see [5], p. 74).

§3. Properties of functions @, ,(r, 2), 0, .(z, 2), ¥, (r,2) and ¥, (7, 2)

3-1. We fix a compact Riemann surface S of genus g and a standard
system of loops X = {ay, -+, ;571 ++ s regsyon S. Let I ={i, ---,i} and
J={j, -, jn;- We will consider the following deformation

limz, = ¢,

p— oo

where 7,€67/S,(Y) and 7,€ §"*S,(2) with L=J U {{} {12, ---,2g — 3}.
By the dividing loops 7, - - -, 7,,, S is divided into m + 1 parts [a,] = [o,(])],
o, =lo, ()], -+, [0,,] =[0,(J)]. Since ! is not contained in J, 7, lies
on [o,(J)] for some re{0,j, ---,j,}- Then y, divides [s,(J)] into two parts
[6,(L)] and [6(L)]. Corresponding to z,, there are m + 1 Schottky groups
(including the trivial group) G(z,), G,(z), - - -, G,.(z,) and m + 1 Riemann
surfaces Sy(z,), S;(z,), - -+, S, (z,). Similarly corresponding to z,, there are
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m + 2 Schottky groups G.(z,), G/(z,) and G,(z,) (jy € J U {O\{r}) and m + 2
Riemann surfaces S,(z,), S/(z,) and S;(z0) (j. €J U {ON\{r).

We use the same notations and terminologies as in §2-1. We remark
that G,(c) = G,e) (ueJUIONTD, Gie) = Gile) and Giled) = Giteo.
Furthermore G, (z,) = G,(z,) (j, € J U {0}) and Gy(z,) = T,G,(z,)T;* for some
T e Méb; remember that r is determined by 7. C lo(J)]. Let G,(ro) =
(A5, 2)y -y A g (70, 2)), and Gi(ry) = (Afi(ze, 2), - - -, Alg (70, 2). We set
Gi(r) = (A, (T 2), -y A, (0, 2)), GHE) = CALA(z,, 2), -+, Afy (1, 2)) and
Gi(z) = T7GHe)T, = CAii(r, 2), -+, A,y (5., 2)), Where

Al,t(fm 2) = TflAzlfi(T», Z)T» ¢C=12--- gz) .

Let r, =y, 8y -+, i) and ., =1, =7(1, 3y, - -+, 1,»). We take standard
fundamental domains w,(z,), ®,(r)), ®,(z.)*, 0(z))* for G,(z,), G.(z;), G.(z,), and
Gi(z,), respectively. We remark that the distinguished points p;(r;) and
pi(zy) are in o,(z;) and w,(z)*, respectively, and that for every large v,
pi(zy) € .(z,) and p;(z,) € w,(z,)*. We choose small circles ¢, (resp. ¢f) with
center at p;(z,) (resp. p;(z,)) in w.(z,) (resp. w,(z,)*). It is possible to choose,
for every large v, all the defining curves of él(r,) (resp. é;“(rv) = T,é,(r,)f’;l)
to be contained in the interior to c, (resp. ¢f) and all the defining curves
of é,(z'y) (resp. G#(z) to lie to the exterior to c, (resp. ¢f) (see the proof
of Proposition 5 in [4], pp. 169-170).

We take a small disk D, (resp. D) inside of ,(z;) N 2/(G,(z,) (resp.
wz)* N 2(G,(z)) and to the exterior to ¢, (resp. ¢f). We denote by d,
(resp. d¥) the center of D, (resp. D) and set d*(z,) = T.(d,) and d(c,) =
T;d,).

We obtain a new group from G,(z,) by the following normalization:
@) p7(z)=0(2) d, = o0, and (3) pV(A, iy, +++, 8,0, - -+, 0) (z,) = 1, where
P&, 4, -, 00,0, -++,0) (r,) means an attracting or a repelling fixed
point p(1,%,, - -+, L4, 0, - - -, 0)(z,) (see ([4], p. 165) if (1, i, - - -, .y, O, <+ -, 0)

- A,

is the terminal cell in [o,(J)], and the right distinguished point p*(1,i,, - - -,
iy, 0, - -+, 0)(z,) with respect to the boundary loop r(1,i,, ---,i,0,---,0)
N—_———— N———

of [o,(N)] if 6, iy -+, 100, 0, -+, 0) & [0,(J)]. We denote again by Gi(r,)
m

the new group.

Next we obtain a new group él(rp) by the following normalization:
@ P, iy -y Gy 0, -+, 0(7,) =0 (2) di(z,) = o0, and (3) p;(z) =1. We
denote again by é,(ru) the new group. By the similar normalizations to
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the above, we obtain new groups from O,(ry) and é;“(ry), which we denote
again by ér(r") and éz"(ry), respectively.

3-2. By the above normalizations, the T,¢ Mob with Gl(z-y) =
T,é,(ry)T;l, has the following properties: 7,(0) = 1, T,(1) = 0, and T'(d.(z,)
= oo. Set d,z,) =d,. Then we have

w = T[2) = az=1) and z=T;Y(w) = dw -1 .
g — d,, w — d”
We note that
7 dp(l - d,) =y d,(]_ _ du)
T — ¥\ 7Y d T = GG
v(z) (z — dy)2 an v (w) (w — dy)z

Furthermore T () = d, and lim,_. d, = 1.

We consider p, .(z.), q¢,.(z.), h=1,2, .-, g, (resp. pf,(z,) and gf.(z,),
h=12-.-,8), the repelling and the attracting fixed points of A, ,(z,, 2)
(resp. Af,(z,, 2)); P.x(z,) and q, ,(z,) (resp. pf.(z,) and gf,.(z,)), the distinguished
points of the first kind to the exterior to ¢, in w,(r,) (resp. ¢f in w/(r,)*)
for h=g,+1,---,8. +k (resp. h=g, 4+ 1, -, 8 + k); Dl z), k=1,
2, ---,n, (resp. pi¥(z), k=1,2, ---,n), the distinguished points of the
second kind to the exterior to ¢, in w,(z,) (resp. ¢f in w,(z,)¥). We set p, ,(z,)
= T5(ptu(e)) for h=1,2, -+, g, + k, and pl,(r) = T-(pl4(z) for & = 1,
2, ---,n. We note that p, ,(z,), ¢;.(z,) and p],(z,) are all in the interior
to the circle c,.

We denote by 13,',(@) (resp. 131,,(@)) the set of all the points p, .(z.),
@ra(z) (resp. piu(e), quale) for h=1,2, .-, g, (resp. h=1,2,---,8); by
B, (z)) (esp. P, .(c.)) the set of all the points p,,(z.), q,.(z) (xesp. P,.u(e),
Ga(e) for h=g +1,--, 8 +k (esp. &+ 1, -+, 8 + k); by P (z)
(resp. P, «(z,)) the set of all the points p/ .(z,) (vesp. p;(z,) for B =1,2, ---,
n, (resp. k=1,2, ---,n). We set P.c) = 137,1(13) U Ism(fy) U 13,,3(7,) and
pz(ﬁ) = ﬁz,l(fu) U ﬁz,z(fu) U ﬁl,s(ﬁ)- For pe Pl(fu), we denote by p*e PL*(Tu)
= T.P(z,)T;* the image of p under the mapping 7..

It is not difficult to see that lim,_. p¥.(z,) # oo, lim,_, gf.(z,) = o (B
=12 ---,8 + k&), lim,_., p;?;c(fu) oo (k=12 ---,n), lim, . pr,h(Tu) =1,
lim,..q,.(c)%x1(h=1,2,---,8, +k)and lim,..p/ «(z) 1 (k=1,2,-- -, n,).

Take arbitrary u elements

afe), - - -, a,(e) € Pz,
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for every v, where each ayz,) is one of p, ,(z,), ¢,,.(z,), P, .(z,) selected inde-
pendently of v (namely, the choice of p, q, p’ and the suffices h, k are the
same for all v). In the same sense, we take arbitrary v elements

b(z,), ---, by(z,) e Pz, .

We denote by aj(z,) and b}(z,) the images of a(r,) and b,(z,) under the
mapping T, respectively. We treat the following function:

2,2 =1/(f] ¢~ aE) [ ¢ - b))

withm, + -+~ +m,+n,+ -+ +n,=2¢,0<m<q,0<n,<q, my, n
€ Z (the set of integers) ¢ = 1,2, ---,u;j=1,2,---,v). Then we have
the following:

(i) f0sm=<qg—-10E=1,2,---,w), 0, £q—-1(=12,---,v),
then e M/(z,),

(ii) if two of az,) (or byz,)), say a,z,) and a,(z,) (resp. b,(zr,) and
by(z,), are the fixed points of A, ,(¢,,2), h=1,2, --., g, (resp. A,,(z,,2), h
=1,2 -.-,8) or the distinguished points of the first kind p, ,(z,, 2) and
q,.(z,, 2), and m, = m, = q (resp. n, = n, = q), then e N,(z,), and

(iii) if only one m,, say m,, or n,, say n, is equal to g and a,(z,) €
P, (z,) or b,(r,)eﬁ,,z(ry), or if one m,, say m,, and one n,, say n,, are equal
to ¢ and a,(z,) € P, (r,) and b,(z,) € P, (z,), then 5 ¢ L,(z,).

3-3. We define 5*(w) by setting 5%(w) = (T (w))T-"(w)*. Then we
have

E*w) = ie1 (aﬂﬂ) —d)" ﬂ‘,;l (b}k(fu) —d)m .
il — d) [[ia w — af @)™ [[7- (w — bf ()™

where af(z,) and b¥(zr,) are the images of a,(r,) and b,(r,) under the mapping
T, Setting

2w =1/(11 @ — ety [1 @ — bre))

j:

we have
&) = 2@)[] @) — dy [l ¢1) — dyi@s - dy).

Since af(z) — d, = d(d, — Df(afz) — d) (=12, -, 1),
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g 5 (1 —_— d,,)m“""*m“'q(-— 1)m1+"'+7"u
E*(w) = E(w) oy
[15-: (b¥(z,) — d )™ .
ti(afz) — d)™
Since lim,...(a(c) —d) =0 (=1,2,---,u) and lim,_. (b¥(c) — d,) = o
(=12, -- ,v), we have the following:

Lemma 1. (1) Ifm, + --- +m, > q, then E*(zy, w) = lim,_., B*(z,, w)
=0,

(i) if m + - +m, <q, then ¥z, w) = oo, and

@i) if m+---+m,=n+ .-+ +n, =q, then

E¥(z0, 10) = (— 1) (e, w) 13m0 = 11
FHe ) = = D 0 e ey — D

Ifm +.---+m,=n+--- +n,=q, wedefine Z(z,, 2) as lim, .., 5(z,, 2).
We have

H(zy2) =1 / ((z — 1 n (2 — ai(fo))mi)

-1/ ((z —yfia- ai(fo))mi> 4o

We remember that z = 1 is p;(z,). The residue of Z(z,, 2) at this point is
equal to

Res &(z,, ) = 1 / (n 1 — afe)™) .

On the other hand,

% —(_ 1) =1 (b;"{(fo) — 1)
0 w) = (= D D o0 0 — bre) T (ade) — D

= (=1 /(@ = [T @ - age)™) + -+

Observe that w = 1 is p;(r,). Hence we have the following:

LEMMmA 2.

Res &(z,, 2) = (— 1)? Res &*(zy, 2) .«
z=pl+(ro) z=p; (7g)

3-4. We will introduce g-differentials on S(z) (see [5], p. 4) corre-
sponding to functions ¢, ,, 0, 5, and ¥, on T FSH2).
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If t€0"'&,(2) and J = {j,, - - -, Jn}, then we have
S(x) = Syz) + S;,(x) + - -+ + S, (@) .

On taking s, with k(s) =j, for i =1, 2, - - -, m (see Remark [5], p. 75), we
have

8@ =8 + 8., + -+ + 8.0,

where S,(r) = 2(G(2))/G.(2).

We denote by f an arbitrary one of §,,, 6,.,, ¥, and ¥, ,. Let x, be
the projection of 2(G,(r)) onto S,(r). We define a g-differential f(z, £)d¢
on S,(r) by setting

[, m (@2 = f(z, 2) .

We have to show that the g-differential f(r, £)dz? on S(c) is well-defined.
In fact, if k(s) = k(t) = j, we have to show that the g-differentials on S’s(t)
and S,(r) express the same one on S,(z).

If s and ¢ are as above, then there exists T e M6b with G,(r) =
TG,(z)T-'. Then f(r, w) = f(z, T-(W))T-"(w)* for we 2’ (G(z)). Set w =
T() (ze 2 (G,(2), L = r,(2) and o = r(w). In this case we note that
7(2) = 7 (T(2)), that is, £ = v, Furthermore f(z, 2)7}(2)"? = f(z, w)r (W)™

DEFINITION. &, ,(z, 2), 0, .(z,2), ¥z, 2) or ¥, (z,2) is said to be a
regular g-form if it induces a regular g-differential on the Riemann surface
S(z).

By modifying the proof in [2], we have the following propositions.

ProrosiTioN 2. The series (2), (5) and (7) converge absolutely for every
(r,2) e > %5° %t@;"(Z') and uniformly in each compact set in > %3° %,@;"(Z').
For every fixed e &*(3), the functions §,,(z,2), 0,.(z, 2) and ¥z, 2) are
regular q-forms in 2(G(z)). The functions V,..(z, 2) are regular g-forms for
fixed t € ©}7(Y) and o€ F17.

Proposrtion 3. For every I C {1,2,---,8} and J C {1,2, ---,2g8 — 3},
&,.4(z, 2), 0, .z, 2) and V¥ (z, 2) are holomorphic functions of

(m e 3 §E).

So are ¥, (z,2) if 0 € S,
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§4. Continuity of functions ¢, ,, 0, ., ¥, and ¥,

4-1. ProrosITiON 4, Let I < {1,2,---,8} with|I|<g, JC {2, -,
2 — 3} and ke{l,2,---,g\l. Set K =1U {k}. Let f be one of the func-
tions ¢, 0. V; and ¥, , with o€ 7. If

(10) {z.} C 677S(2), limz, = 7,€ §57C,(Y),
then
(11 limf(z,, 2) = f(z, 2)  for ze 2(Gzy),

for t=0,1,2,-.-,2¢ — 3.
This is proved by modifying the proof in Bers [2].

4-2, Next we consider the deformation given in §3-1, by z, — z, with
7,€ 076, (2), 7, d""S,(Y), L =J U {l}. Notice that the number r is de-
termined by y, C [o.(J)].

At first we remember the following: For s with k(s) % ¢, ,(z,, 2) = 0
for ze Q/(G(z,) or ze 2(G(z,), and Gty 2) = 0 for ze (G (z) or ze
Q'(Gl(ro)). With respect to 6, , and 4, ,, the same holds.

For ke d,, 4z, 2) =0 for ze 2(G.(z,) or ze 2(G,z)), and V(z,, 2)
=0 for ze 2(G(z) or ze 2(Gz)).

Therefore we consider here ¢, ,, 6,., ¥,, for s with k(s) = r and +,
for ke d, only. From §4 through §6, we assume that s and % satisfy k(s)
= r and ke dJ,, respectively.

We recall that G.(r,) = G.(z,) and Gy(z,) = T.G,(z)T:%. Let F(z, z) be
one of @, ,(z, 2), 0, .(z, 2), ¥, 2 and ¥, (z,,2). We set

F¥(z,,w) = F(z,, T (w) TV W) for we 2(Gyz,)
f6n2) = 3 Fle, @)@ for 2e (G (=)

r€Gr(ty

fHe,w) = 3 F¥, r*w)r*(w)?  for we (Gyz) .

r*eli(cy)
By means of F(z,, z) with the similar meaning, we define f(z,, 2), 2 ¢ 2’ (G.(z)
and f*(c,, w), we 2(G(c) by setting

flen2) = 3 Fle, 1@ ()" for ze 2(G(z)

Gr(z0)

and

fiew) = Y1 Fre, rf@)¥ () for we (G (x)),

15 Gi(zy)
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where F*(z,, w) = lim F*(z,, w).

y—+00

4-3. Let Ic{1,2,---,8} and JC{1,2,---,28 — 3}, |J| <2g — 3.
Let 1e{1,2,---,28 — 3)\J. Set L=J U{l}. We denote by W,(J) (resp.
W.(L)) the set {s|k(s) = r} for J (resp. L). In general, W,(J) may not coin-
cide with W,(L).

ProposiTiON 5. Let I, J, I, L be as in the above. Suppose

12) {e.} C 677G ,(2), limz, = 7,€ 671S,(3) .

If F is one of the functions 0, (z,, 2) € M(z,) such that O, (z,, 2) € M(z,)
with se W,(L), then

(13) lim f(z,, 2) = f(z0, 2)  for ze 2(G(z) .

Here f are defined from F in §4-2.

Proof. It suffices to consider the following functions:

) Fed=1/(f] - a@) [ e - b)) aeie,s)

and

F(zy, 2) = lim F(z,, 2)

y->00

with ar)ePc) (G =1,2, - -,u), b(r)ePy) (=12 ---,0), m + ---
+m,>qg>m+ - +mn, 1<m=qg—-1 1<n,29—-1, m, n;e 2,
where a,z,) and b,(zr,) are selected as in §3-2, pp. 87-88.

We will prove the proposition by modifying the method in [2]. Let
é,(zv) = (A, (z,, 2, -+ -, A, .(z,,2)) be the subgroup of G.(z)) defined in
§3-1. Let

(15) G.(z,) = G(e)rz) + Ge)re) + Ge)plz) + -+ s

where 74(z,) = id., 1,(z,), 1:(z,), - - - is a complete list of the right coset repre-
sentatives of G,(z,) modulo G,(z,). Set

F(z,2) = X F(z, () (2" .

7€Gr(1y)

By the same way as in the proofs of Propositions 2 and 3, we see
that this series converges absolutely, and depends holomorphically on (z, 2)
e F,GLH(2). We have
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F(z,2) = 3 Floy 1@ = (s, 2)
7€ 0r(zg)
and

fle,2) = 2. )F (v, 12 (2)"

(v

r€Gr
= 3 Pl r.(@)r(ar
= F(e2) + 3 Flen 1@
where we write y, for 7,(z,) for simplicity. Set
R(2) = 3 Fen 1@

Since lim,_., I:“(r,, 2) = F(z,, 2) by Proposition 3, it suffices to show that
limR(z) =0  for ze 2/(G.(z)) .

For every large v, we can choose defining curves of G,(z,) (the boundary
curves of a standard fundamental domain w,(z,) for GT<T,,)) as follows: (1)
g, fixed curves C, , (h = 1,2, --.,g,) are independent of v. (2) Each C,,
surrounds the point p, ,(z,). (3) g, curves C, ,(z,) = A, ,(z,, C,.,). (4) Each
curve C,,(r,) surrounds the point p,,(z), h=1,2,---,8. () C].(z) =
A, .z, Co(z)). (6) All C,,(r,) and C],(z,) are contained in small disks
K(z,) with (diameters of K(z,)) = o(1) (v — o0). Let the 2g,-ply connected
region bounded by the 2g, curves C,, and C},(r,) (A =1,2,---,8,) be
denoted by &,(r,). Then d,(r,) is a standard fundamental domain for G,(z-y).
We remark that lim, . C; (c,) = C/ (7)) and C, , are 2g, boundary curves
of a fundamental domain w,(z,) for G,(z,).

By using Proposition 1, we have

[ 1h@ 20, 2-dsdy = 00), v —> o,
Or(ty)

where A(r,, 2)|dz| is the Poincaré metric on 2(G.(z,)). From this we obtain
the following: For every large v and for a properly chosen fixed circle
C surrounding the disk K(z,),

max |F(z,, 2)| = O(1), v—> oo (uniform in 7).
zel

ﬁ(ru, 2) [15-1 (2 — by(z,))", as a function of 2, is holomorphic in the
interior to C (we denote it by [C]). Hence for every large v and z in [C],
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there exists a constant M independent of v such that
Fz,2) ] (2 — bfe)”| < M.
J=1

Let p(z,) e ﬁl(r,). We denote by 4,.,(z,, 2)|dz| the Poincaré metric on

C\(p1(r.), @ a(2), P(2)} if & + k, = 1 (or C\[p}i(r.), P}(z.), P(,)} if &, + k.
= 0). Then we have the inequality

Z(Tw Z) Z Ap(tv)(z.v’ z) .
Furthermore in a neighborhood of p(z,),
Aoy 2) ~ |2 = p(z,)|"(— log [z — p(z,)])™*

(see [2], p. 343).
Hence in the interior to C,,(z,), A =1,2, - --, 8, (we denote them by
[C,,.(z)]), there exists a constant M, independent of v such that

@16) \F(z,, 2)|A(z,, 21 < M|z — p,,u(z)| "2 .

Similarly, in the interior to Cj,(z,), h =1,2, ---, g, (we denote them by
[C} .(z,)]), there exists a constant M independent of » such that

(16y |E(z,, 2)| Az, 270 < M|z — q,a()|""
We can choose the representatives r,, r,, --- of (15) as follows:

7)) € J(Coael] U [Chae]) -

Since 7,(0,(z.) N ru(0(z) = ¢ for m xn,
n@(z) U rdo () U -+ C de)\o,z) .
Thus

[ 1R@Ii, 2y-dxdy
< 5[ 1 @@, 2 rdxdy

= 3 A z-qd d
Zl jjrn(mr(r,)) lF(T”’ z)u(z'p, 2 xdy

= H | (z,, 2)| Az,, 2 *dxdy
Or(tv)\wr(ry)
<S[[ Mz - piae)l-rdxdy
h=1 [Ci,new)]

+[ Miz— g rdsdy)
[0 n ()]
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Since the diameters of C, ,(r,) and Cj ,(r,) tend to 0 as v—oo, we have

lim f f |R(2)| A(c,, 2)-dady = 0 .
v wr(zy)

— 00

Hence we obtain (13). Our proof is now complete.

4-4. ProposITION 6. Under the same assumption as in Proposition 5,

(17) lim f*(z,, w) = f¥z, w)  for we 2(Gy(z)) .

Here f* are defined from F in §4-2.
Proof. By Lemma 1, F*(z,, w) = lim,_., F*(z,, w) = 0. Since
o w) = 35 F*(z, rHw)y*(w)?,

r*eGi(zo)

we have f*(z,, w) = 0. Hence it suffices to show that

(18) limf*(t, w) =0  for we Q(G,(z)) .

y—co

We decompose G,(z,) into the following two sets:
Gii(e) = {r* € Gi(=) |7*(w) € [Cx(e)] U [CH4(e.)]
U U[CE, ()] U [CFL(z)] for some w e w(r,)*},
where C¥u(z,) = T(C,,)) and C¥i(z) = T(C7.(z) (h=1,2,---,8,), and
Gi(z) = Gi(z.)\G(z) -
We note that an element y* of Gj(z,) is the identity or satisfies
r*w) e [CH()] U [CE()] U - - - U [Clg (z)]

for we w(zr,)*, where Cf,(c,) = T,(C, ,(z,) and Cfi(z,) = T(C}.(z,). We
write

e, w)= 2 F¥, r*)r*w)

r*€ Gy (ry)

+ 2 F¥(, y*w)r*(w)
r*€ Gy (r)
= f¥(z,, w) + f¥(z,, w) .
We have Proposition 6 if the followings are proved:

lim f¥(z,, w) = 0

y—+00

and
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Lim f¥(z,, w) = 0,

y-s 00

which are Propositions 7 and 8, respectively, proved in the next section.

§5. Proposition 7 and Proposition 8
5-1. PropositioN 7. Under the same assumption as in Proposition 5,

Um ¥, w) =0  for we 2(G(z) .

p—>00

Here f} are defined in the proof of Proposition 6.
Prorosition 8. Under the same assumption as in Proposition 5,

lim ff(z,, w) =0  for we 2(GJzy) .

yoo

Here [} are defined in the proof of Proposition 5.

The proofs of Propositions 7 and 8 will be presented in a series of

the following lemmas. We need to introduce some notations in order to
state the lemmas.

We set Gu(c,) = T7'Gi(z)T,, Gu(z) = T;'Gi(z)T,,

G, () ={re Gr(rv)]r(z) e[C, ,] for some z¢ w,7,)},
h=12---,8)
G, u(z,) = {y € G(2.)|7(2) € [C] u(z.)] for some ze w,(z)},
h=12---,8)
G, () = GG, 1) U Glo), (=12 ---,8),
Guu(r,) = {1(z., 2) = A, \(W(A4, .(z,, 2)) € Gu(r,) | We G,(z,)
hk=12-.--,81}.
Guz("'y) = {T(fn 2) = W Wiz, 2)e Gn(fu)l Wi(z,, 2)
= A, (V(A,,(,2) with b, k=1,2, ---, &, ,
VeG,(z), and W,e Gyu(z,)}.

5-2. LemmA 3. (1) For every large v, there exists a constant M, inde-
pendent of v such that

> rTr@r <M, for we (Gyz)) .

1€ G113(ry
(2) For every large v, there exists a constant M, independent of v such
that

ST @) L M, for we 2(Giey) -

r€G11a(my)
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(8) For every large v, there exists a constant |M, independent of v such

that
*eg‘.l( )[T*l(w)lq = M4 fOT‘ we Ql(éz(fo)) .
Proof. (1) We set ye Gy(z,) as

_ (afc) bz -

(05 a0) @EdE = bEee -1
We have

IR0 ol () Ly 1 .
redinie) le, e | T (w) + (d(z,)[c(z,)[*

Since

— delefe) e U (C] U IC,aD

and T;%w) is sufficiently close to 1 for every large v, there exists a positive
constant 8, independent of v such that

| w) + ([d(z)lelz) =z 6,  for all ye Gu(z,) .

By modifying the method of Ford ([3], pp. 104-105), there exists a con-
stant M independent of v such that

2 el = 25 )" = M

G111(ty) Gr(rv)

for every large v. Therefore, for every large v,

> /Tyl < Mgt for we 2(Gy(z)) .

G111(v)
() Since p(T;'(w)) = W(W(T; w)),
7(T7(w)) = WIW(T ) WITT'(w)) .

Therefore
2 WIWLT ) WY T (w))|
< VZVZ (IWLT  (w))| %’] |W(WLT (w9 .
Set

o b(rp)), a(z,)d(z) — b(z)e(z) = 1.

o (C(fy) d(r,)
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Then we have

1 1
Wi(WAT; (w))| = ‘
WA = Ty W) + @ iee)F
Since
WAT ' (w)) LgJ ([ConeN U ICLE)D  for all W,e Gulr)
and

— d(z))/c(z,) = W) e [C, 1],
there exists a positive constant J, independent of v such that
|W(T* W) + (d(z)[c(z)| =6, for all W,e Gy(z,) .

By modifying the method of Ford ([3], pp. 104-105), there exists a con-
stant M independent of v such that

2 Ye) = 20 el = M.

G1p1(ry) Gr(ry)

Therefore
(19 >0 IWiWL(THw))|* = Ms3e
Wi1€Ga(y)
for all W, e G,(c,) and for every large v. Since T,W,T;'c Gj(z,) (we denote
it by W),

2 -1 = *(z __Lui:_d!’A___‘
WATw) = W) =

For every large v, there exists a positive constant §, independent of v such

that
|Wi(w) — d,| = 3, .
Set
*(z,) b*(z,
W = (Z*((:)) d*Z ;) ’ a*(r,)d*(z,) — b*(z)c*(z) = 1.
Then

1 1
le*@)P w4+ (@*@)e* @)

[W'(w)| =

https://doi.org/10.1017/50027763000020110 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020110

SCHOTTKY SPACES 99

For every large v, there exists a constant M independent of v such that

w — d,| <M for all WieGs
[+ @)@ or all Wie Gie).
Furthermore by modifying the method of Ford ([3] pp. 104-105), there exists
a constant M’ independent of v such that

21 e*(@)Pe = 20 1 e*(z)fe < M.

Ghi(zy) Gi(ey)

Therefore

(20) 5T )| WYT (w)|e < M*M/js22 for we 2(Gyry)) .

2€G2(ry

From (19) and (20), we have the desired result.
(3) By modifying the method of Ford ([3], pp. 104-105), we can easily
prove the assertion. We omit the proof here.

5-3. We consider the function (16) defined in the proof of Proposition
5 in the remainder of this section. Then

TV (w)*
(21 F*(z,,w) = - .
v (T (w) — afz )™ [15- (T (w) — by(z,)™
We set af(z,) = T(afz,), i=1,2,---,u and b¥(z,) = T,(b{(z,), j =1,
2,--.,v. Since

T (w) — afz,) = T (w) — T (af(z,)

_ 4 —d)w — af(z)
(w— d)a¥z) —d) ’

and

d(1—d)w — bj(z,)

0 = b4e) = ) brey — d),”

we have
f¥@,w) = > FX*z, r*w)r*¥(w)

7*€Gi(my)
v (af(z) — d)™ []5-1 (b%(z) — d)r*(w)*

= X AT ) [T @) — @) [ (@) — b5

By using
a¥(z) — d, = d(d, — Df(afz,) — d),
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o ate Gl — DT — ae)
W) = af®) = ) — d)ad) — d)

and

%7, — dxzz(]- - dv)2 / T—-1
) = ) — dyw —dy | e )

we have the following, where y = T,'/*T, ¢ G.(z,).

LemMmA 4.
. (= ymrermadin] — )
frie, w = (=Dl = 4
X 23 L
oot (T TNT (@) — )i ema
ECE Ay (T L) (T (w) ‘
i=t \r*(w) — b¥(z,) S (TP T T (w)) — ayz)™

5-4. LemmMA 5. (1) For every large v, there exists a positive constant
J, independent of v such that

IH(T7w)) — d,| = 4,

for all y = T;%y*T, e Gy(c,) and w e 2(G,(z)).
(2) For every large v, there exists a constant M, independent of v such
that

1165 — d)lGrH) — by < M,
for all v* € G¥(z,).
Proof. (1) Noting that
(T e [ ACIUIC.ED  for e G

and that d, is sufficiently close to 1 for every large v, we have the as-
sertion.

(2) Since for every large v, there exist positive constants M and &
independent of v such that

¥y —d| <M (=12 ---,0)

and
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IT*(w) - b;k(TP)I g 6 (j = 1: 27 Tty U) ’

we have the desired result.
Since

22) lim (= Ymtrediod — d,)e =0 for we Q’(él(z-o)) ,
pmee (w - dv)Zq

in order to prove Proposition 7 it suffices to show that there exists a con-
stant M independent of v such that

” AT W)
@3) ebten T GUT,0) — ale)™

for every large v and w e 2/(G,(z)).

IA

M

5-5. LemmA 6. Suppose a,(z,) is a distinguished point. Then for every
large v, there exists a positive constant & independent of v such that

(T (w) — afz)| =6,  for all ye Gy(z,) .

The proof is obvious and so we omit it here.

By the above lemma, from now on, we assume that each a,z,), i =
1,2, ..., u, is not a distinguished point. Furthermore we assume that
a(z) G0 =1,2, ---,u is the repelling fixed point of A, ,,(z,, 2). For the
other cases, we can treat similarly to this one.

We decompose (23) as follows:

5 7' (T (w))"
et [[% (T W) — afz,)™
_ e P (T (W)
:c};l ar,;mm [T¢a (T (w)) — afz )™
+ 5 7 (T (w))*

GrEN\UY_1Gr,nm () [T (T W) — afz )™

LeMMA 7. For every large v, there exists a positive constant &, inde-
pendent of v such that

/(AT (W) — alz)] = b

for all 7€ an(“'»)\U%ﬂ Gr,h(k)(fp)-
From Lemmas 3 and 7, we have the following.

LeEmMMA 8. For every large v, there exists a constant M, independent
of v such that
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5 7 (T (w))* <M.
Gy Graw e = (T W) — afz,)™ —
5-6. Next we consider
24 > 7 (T (w))? E=1,2---,u.

Gr,n ik (tv) n:;’;l ()’(T;l(w)) - ai(z‘u))mt ’
For each k= 1,2, ..., u, we easily see the following.

LEmmA 9. For every large v, there exists a positive constant §, inde-
pendent of v such that

5 HT2@) — ae) 2 6, for 7€ Grpnfe) .
ixk
Thus in order to show the boundedness of (24), it suffices to show by

Lemma 3 that there exists a constant M independent of v such that

95 T,(T;l(w))q <M
(25) or avcen | T w)) — e )™ | =

for every large v and for k= 1,2, --., u.
We set

_ (T (w)
(26) fulz,, W) = GM%} o ()’(T,,’l(IU)) — a (o)™ *

Here we introduce the Mobius transformation defined by

_._ _ R ak(fv) 1-— a;c(Tv)
C=80 = ) T a)

’

where a(z,) is the attracting fixed point of A, ,u(z,, 2). Then we have

- 1 — a(z)ai(z, )t — a,(z,)A — ai(z,)
= S =
# =570 A — aye)t — (1 — ae)

and

() — L= alr) ar) — ailz)
50 = 1—afs) (—a))

We Set G'r,h(k)(rv) = S:lGr,h(k)(ru)Sv'
By simple computation, we obtain
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LeMmA 10.

_ (= D — a(e))1 — aEa) — 6D}
et = o (0= ae ST ) — (& — e
FST W)
STy

where ¥ = S;%S, with r e G, ,u(z,).

By noting that (1 — a}(z,))/(1 — a,(z,))) = S,(0) € S(w,(z,), we see the
following lemma.

LEMMA 11. For every large v, there exists a constant M, independent
of v such that

(= DA — a4z,) "(aiz,) — ayz,)" ™ <
A — ae)HS T W) — A — gD/ — ae )y | =

7

for all § e G, (s

5-7. Any element ¥ ¢ é,,h( »(z,) is represented as #(z,,{) = A;,’,:‘(k)(é(ru, )
(m > 0), where Be S;'G,,10(z.)S,, namely if we write B = éléz e é,,, then
B1 X ALz, 2). Since Avr_,lh(k)(fv, 0 = tuw(z,) with 0 < [tha(z,)] <1 and
lim, .., ¢,4,(z.) = 0, where #;},(z,) is the multiplier of A, ,4(z,, 2), we obtain
the following

LEmmA 12.

7S, T (w))*
RS L (S el 7)) K
— )™ s M
1—tpE) ™ 3 B(S, T (w))™

Gr,n (ko (tv)

where G, u(c.) = S.Gruw(z)S5
The following Lemmas 13, 14 and 15 are easily seen.

Lemma 13. For every large v, there exists a positive constant §, inde-
pendent of v such that

|B(S,T- (w))| = 6,

for all Be (C}T,,,(k)(c,) and for we 9'(G,(z,).
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LEMMmA 14.

.2 BT W)
Gr.n(k) (tv)
= 3 (T7w) — a@)BT; W) — ez )y B (T w)e .

BeGr,n i (tv)

LeEmMmA 15. For every large v, there exists a constant M, independent
of v such that

(T (w) — aieDI(B(T (W) — ailz )] £ M,
for all Be G, . (z) and for we 2/(G(zy)).
By Lemmas 3, 9, 10, 11, 12, 13, 14, 15, we have

LeEMMA 16. For every large v, there exists o constant M, independent
of v such that

u 7' (T w))" < M. .
:4:‘1 a,,h,zk,m) M G W) — ae)™ 1=

Lemmas 4, 5, 7, 16 and (22) contain Proposition 7.

5-8. Next we will prove Proposition 8. We recall that
i, w) = i (@@) — d)™ [, (b¥(z) — d)

dil—d)
X > ) :
et TR PG0) — GHE)™ [Tim (FFG0) — BEG)™
LEMMA 17.
lim 1L (a¥(z) — d)™ [[3-1(0F(z) — d) _ )
@ i i1 — ) 0

Proof. We have

limd, =1, af()—d, = (d(d — D)) — d)

(=12, ---,u) and, as we showed in pp. 16, 17,

lim (63(z,) — d)) = bf(ze) — 1 %

y—+0

lim (a(z,) — d,) = afz) — 1% 0.

y—o0

Accordingly, the left hand side of (27) is equal to
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n?=l (b;k(fo) _ 1)71] lim (__ 1)m1+..-+mu(1 . dv)m1+...+7nu )
v (@) — D™ e 1—-4d)

Since m, + - -+ + m, = q + 1, we have the desired result.
Noting that lim, _a¥(z) =1 (=1,2, ---,u), we easily see the fol-
lowing.

LemMA 18. For every large v, there exists a positive constant &, inde-
pendent of v such that

l7r*(w) — a¥(z,)| =
for each i = 1,2, -- -, u and for all y* ¢ Gj(z,) .

On the other hand, by the same way as in the proof of Proposition 7,
we can show the following lemma.

LemmA 19. For every large v, there exists a constant M,, independent
of v such that

7 (w) oy
Gg'”) [T5-: G*(w) — b¥(c,)™ = 710

for we 2(Gy(z,).
By Lemmas 17, 18 and 19, we prove Proposition 8.

§6. Continuity of functions 6, ., v, and v, , (continued from §4)

ProrositionN 9. Under the same assumption as in Proposition 5, if F
is one of the functions @, ,(z,, 2) € N(z,) such that ®(z,, 2) € N(z,) with se
W.(L), then (13) and (17) are satisfied. Here f and f* are defined from F
in §4-2.

Proof. 1t suffices to consider the following function:

F(Tp, Z) = (p8~h(T") - qs,h(fy))q ,
(z = P (z)(z — q,,4(z,)*

h=12 ---,8, + k. Let
G.(z) = G, ue Do + Gouledr + Goaedpe + -+

where é,,,,(rv) = (A, (z,,2)) and 7, =1id., 7, 72, - -+ is a complete list of
the right coset representatives of G,(z,) modulo é,, 2(z). Set F*(z,, w) =
F(z,, T (w) T (w)? and f¥(z,, w) = 37 F¥(z,, 7 (w))r¥'(w)?.  Then f*(r,, w)
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= f(z,, T} (w)T;¥(w)?. Since F*(z,, w) = 0 for we 2(Gy(z,)) by Lemma 1,
f*(ry, w) = 0. Thus it suffices to show that

(28) limf(z,, 2) = f(z0, 2)  for ze 2(G,(z,)
and
(29) limf*e, w) =0  for we Q(Gz)) .

y— oo

By a similar method to the proof of Proposition 6, we can show (29).
Here we will show only (28). Let

G(z) = G, (@) + Gon@)i + Gon@)o + -+,

where 7, = id., #,, 75, - - - is a complete list of the right coset representatives
of G.(z,) modulo é,,h(z-v). We denote by E and E the sets {yo, 71 70 -}
and {#,, 71, f»» - - -}, respectively. We may assume that E D E and

E=Ef0UEf1UEf2U )
with mutually disjoint E?i.
We set
(30) Bz, 2) = 3 (e, 7@ -

By the same way as before, we see that the series (30) satisfies the
following:

(i) F(zy2) = f(z, 2),

(ii) the series (30) converges absolutely, and

(iii) F(z, 2) is holomorphic on (r, 2) € >1%5° F.SLX(2).
We have the following absolutely convergent expansion

fe,2) = 3P 7@
We set
R(2) = 53 Bz, 7.7 -

Let ,(z,) and &,(z,) be the fundamental domains for G.(z,) and ér(r,),
respectively which we constructed in the proof of Proposition 5. Let o, ,(z,)
be the fundamental domain for G,,h(z-p) bounded by C,, and C/,(z,). By
Proposition 1, we have
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J.L |F(z,, 2)|A(z,, 2)*-*dxdy
r(Ty)
é ff |F(Tw Z)IR(T” z)z—qudy .
wr,n(ty)

Then the right hand side tends to

[[. 1Py 2l 2r-tdady < + oo

as v — oo, where o, ,(z,) is the fundamental domain for é,, W(z0) = (A, (20, 2))
bounded by C, . and C. ,(z,) = A, .(z, C,,) and i(z,, 2)|dz| is the Poincaré
metric on 2/(G,(z,). Hence for properly chosen fixed circle C surrounding
the point 1,

max |F(z,, 2)| = OQ1), v —> oo .

zeC
Since F(z,, 2) is holomorphic in the interior to C, |ﬁ‘(r,, 2)|A(z,, 2)*" 7 is uni-
formly bounded, i.e., there exists a constant M independent of v such that

|F(z,, 2|z, 2F " < M.
Thus by a similar method to the proof of Proposition 5, we have
[ IR@Ixe, 2y-cdudy < M Area @)\ (e) -
or(7y)

Since Area (é,(z,)\e,(z,)) -0 as v — oo, we have lim,_, R(2) =0 for z¢
(G (zy)).

6-2. ProrosITION 10. Under the same assumption as in Proposition
5, if F is one of the functions 0, (z,, 2) € M(z,) such that 0O, (z,, 2) € L(z,)
with s e W/(L), then (13) and (17) are satisfied, where f and f* are defined
from F in §4-2.

Proof. It suffices to consider the following function:

Fe,a =1 /(1] e — a)™ [ ¢ = b)),
F(zy, 2) = lim F(z,, 2)

y—rco

with ai(Tv) € ﬁr(fv) (i = 1’ 23 ] u)’ bj(z'v) € pl(z‘v) (.] = 1, 2, ) v)s my+ -

—my =04 - +n,=q u=2 v=2 m =1 and n, =1, where a,z,)
and b,(z,) are selected as in § 3-2, pp. 87-88.
We have
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Flep2) =1 / (n (z — afe))™ (= — 1)4) ,

e 1%, (b¥(e) — 1
i B, ) = (= ) e o) = D — 17 [T = GG
Fon2) = 33 Flan 1)@

where b¥(r,) = T,(b)(z,)) and bf(z,) = lim, .., b¥(z,). Furthermore if we set
F*(z,, w) = lim,_ ., F*(z,, w), then

f¥row) = 20 F*ro, r*@)r*(w)? .

r*eGi(ro)
We will show that
(31) lim f(z,, 2) = f(z5, )~ for ze 2(G.(z)
and
(32) lim f*(z,, w) = f*(z,, W) for we Q’(él(ro)) .

We can prove (32) by combining the methods of proofs of (31) and
Proposition 6. Therefore we will prove only (31) here.
We decompose the group G,(r,) into the following two sets:

Gute) = {re Gue)lr = id. or 7&)e 0 C..1 U [CLae)D
for some ze a)r(r,,)}
and
Gule) = G(=)\Gu(z) -
We note that G, (z,) = Gy(z,) U {id.} and G,.(z,) = G(z,)\{id.}. We_write
feo2) = 3 Fleni@W@ + 5 Fle @)y Gr
= (60 2) + £ 2)

We set ajf(r,) = T(a(z,) and Gi(z,) = T,G,(z)T;". Setting

Fre,w) =1 /(1 @ — axr [T @ = b76)).
we have

hen2) = 25 Fe, r (L (TR Ti2)"

T*€GE (y
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i (0¥ () — d)™ [[5-1 (0 (z,) — &)

dil—d)
X (Gfd‘y)ﬁ (o, rX (T2 (T(2))T(2)° .
Since
[T (@) — d™ [T (b3c) — d)
_ did, — 1 3 (03) — )
[T (a(z,) — d)™
we have

o o — (= D5, (b3 — dy
iz, 2) Mt (a) — A
X (% Fre,, rH (T (T())TU2)" .

Ggr(ry)

By a similar method to the proof of Proposition 7, we have

lim > F*(c, (TN (T@)" < + oo

v—oo Gf.(ty
Furthermore we easily see the following:

lim (ai(z.v) - dv) = ai(fo) -1 x 0 (i = 11 27 tt Yy u) ’

y—00

lim (b¥(c,) —d) = b¥(z) —1xo00 (j=1,2--,0)

y—+00
and

lim 7(2)* = limd%(1 — d)//(z —d)*=0.
Therefore we have lim,_., fy(z,, 2) = 0 for ze Q’(G,(ro)).

Next we will show that lim,_.. fi(z,, 2) = f(z,, 2). We decompose the
group G,,(z,) into the following two sets: é,(r,) (see p. 24) and G,,(c,)/G, (<)
(we denote it by G.(r,)). We will show that

lim 3} F(e, 7(@)(2)*=0.
v—oo 1€ G(ty)

Elements of G(z,) are classified into the following 4g,g, types:

(i) r= WAr,n(T», Z)At,k(fpa )W,

(11) 7= VVIAr,h(Tw z)Al,k(Tn z)_lWZ,

(iii) r= WlAr,h(Tw z)_lAl,k(fw 2)W, and

(iv) T = WlAr,h(Tw z)_lAl,k(Tw 2)"'W,

https://doi.org/10.1017/5S0027763000020110 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020110

110 HIROKI SATO

where W, e G,(z,), W, % V,A, .(c,, 2" (n > 0) with V,e G,(z,) for (i) and
(i1); W, e G(z), W, x VA, (z,2" (n >0), V,e G,(z-,) for (iii) and (iv); W,
e G(z), W, % A, (z,,2) "V, (n > 0) with V,eG,(r,) for (i) and (iii); W, e
G(z), W, x A, (z,,2)"Vi(n > 0) with V, e G,(z,) for (i) and (iv).

Here we will only consider the case (i) for fixed 2~ and k. We can
similarly treat the other cases. We denote by Gj .(r,) the set of all ele-
ments of the type (i) for fixed 2 and k, and denote by (A},’z,k(z-,) the set of
all elements W, = A A, --- A, so that each A/(zr,,2) (i =1,2, -, n)is one
of A, (,2) (=12, ---,8) with A,(c,2) % 4,,(, 2"

Set

Foe,2)= X FG, @0 ().

r€ G;',»k('v)

This series converges absolutely and uniformly on any compact set in
(G (zy)).
We have the following decomposition into mutually disjoint sets.
Gru@) = Grue)i U GLue)in U -+ 5

each 7, is of form A, ,(z,, 2)A, (z,,2)V,. With respect to the fundamental
domain w,(r,) and the defining curves Cj ,(z,) introduced in the proof of
Proposition 5, we have

Pn(@(r.)) = A, u(r,, A7, Byo,(z.) C [A,x(z,, CLu(z))],

where [A(-)] means the interior to A(-).
Set

filen2) = 2. Fle, y@)' ()" .

7€ G}, 1ty

Then
frslen®) = 3 Foulen 7@

It is easily seen that ﬁh,k(r,, 2) is holomorphic in [A, ,(z,, C} (z,)]. Thus
by using the same method as in p. 93, we see that

B, (5., 2| 2e,, 20 < M

in [A, ,(z,, C} (z,)] for some constant M which does not depend on v. Thus
by the same way as before, we have

[ 1frsten 2)1aGe, 2 tdxdy < M Avea 4, x(e Cia(e)]
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Since Area [A, ,(z,, C; .(z,))] tend to 0 as v — oo, we have

limf, (z,,2) =0  for ze Q(G(zy) .

Hence we conclude

Lim f(z,, 2) = f(zo, 2)

y— oo

Our proof is now complete.

6-3. ProrosrrioN 11. Under the same assumption as in Proposition
5, if F(z,, 2) is one of the functions ¥ (z,, 2) € L(z,) such that ¥ (z,, 2) € L{z,)
with s e W.(L), then (13) and (17) are satisfied, where f and f* are defined
from F in §4-2,

Proof. It suffices to consider the following function:

Fe,d)=1/(I @ — e [1G = b)),

with m;=¢q, m; =0 ((=2,8,---,w), n, =0 (j=1,2,---,v), > .m; +
S5any =2g and a(r)e Pz, a(z)ePzr) (=23, -, u), br)eP()
(=12 --,0),orm;=0@GE=12,---,u),n=q, n;,=0(=23,---,0),
St my 4+ T ny = 2, and az) € Pz, by(e.) € Puz).

This proposition is proved by modifying the proofs of Propositions 5,
6, 7, and 8, when n, + --- + n, < q¢ — 1. Furthermore we can prove the
proposition by the same methods as the proofs of Propositions 5 and 10,
when n, + --- +n, = q.

6-4. ProrosiTioN 12. Under the same assumption as in Proposition
5, let F(z, 2) be one of the functions ¥, (z,, 2) with s€ W.(J). If F(z,,2) is
one of the following functions (1) F(zy, 2) = ¥, ,(zo, 2) with o€ I and se
W.L), (i) F(z,, 2) e M(z,) with se W(L), and (iii) F(z,, 2) € L(z,) with se
W.L), then (13) and (17) are satisfied, where [ and f* are defined from F
in §4-2.

Proof. For the cases (i) and (ii), the proposition is similarly proved
by modifying the proofs of Propositions 5, 6, 7, and 8. For the case (iii),
we can prove the proposition by similar methods to the proofs of Proposi-
tions 5 and 10.

6-5. For the sake of convenience, we summarize from Proposition 5
through Proposition 12 in the following form.
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ProposiTioN 13. Let IC{1,2,---,8} and JC{1,2,--.,2g — 3}. Let
F(z, 2) be one of the functions @, ,(z,2), 0, (z,2), ¥, 2) with kedJ, and
¥, (z, 2) defined on } 3 S5 (2), and let f(z, z2) be defined from F as in
§4-2.

(i) Suppose [I| < g, ke{l,2,---,g\l and {z,} is a sequence of points
in ¢"7&,(2) such that lim, . 7, = t,€ 6%¥'S,() with K = I U {k}. Then

limf(z,, 2) = f(z,,2)  for ze 2(G(c)), t=0,1,---,2g — 3.

(ii) Suppose |J| < 2g—3,1€{1,2, ---, 2g — 3}\J and {z,} is a sequence
of points in §"'&,(2) such that lim, .. 7, = 7, € 602S(2) with L =J U {I}.
Then

limf(z,, 2) = f(zs,2)  for ze 2/(Gyzy), t=0,1,---,2g — 3.

y—oo

From Proposition 13, we obtain the following proposition by modifying
the proof in Bers [2].

ProposiTioN 14. The functions ¢, ,(z, 2), 6, .(z,2), ¥.(c,2) are holo-
morphic functions of (z, 2) € 3.%3* ¥.8*(Z). The functions v, (z, 2) with o €
FEU2), are holomorphic functions of (z, 2) € X 1£:* F.SEH2).

§7. Linear independence

Let €6"76,(2). We recall that g, = gr), k, = k(zr) and [, = [(v)
mean the genus of S,(c), the half of the number of the distinguished points
of the first kind on S,(r) and the number of the distinguished points of
the second kind on S,(c), respectively.

7-1. ProrositioNn 15. For each s = 0,1, ---,2q9 — 3, there exist
(29 — 1)(g, + k, — 1) + n.q linearly independent q-forms ¢, ,(z,2) (h=1,2,---,
&+ k), 0,.(t,2) 1=1,2---,¢e), and ¥,z,2) with jed, (J,| =n,) for
every t€d"'S,(Y), provided g, <1, where e, ={2(g, + k) + n, — 2}q —
{2(g, + k) + n,} + 1 (see p. 83).

We can prove it by a method similar to that of proof in [2].

As in §3-4, we consider the projections ¢, ,, 6,., ¥, and +¥,, on S(z)
of the functions ¢, ,, 0, ., ¥, and ¥, ,, respectively. Suppose S,2) = S,z
and G,(c) = TG,(c)T-' with TeMéb. Then we may regard By nlr, 2) =
¢4z, 2), 0,.(z,2) = 6, ,(r,2), ---. Thus we have the following from Pro-
position 15.
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CoOROLLARY. Let r€d"'S,(2) with J = {j,, ---,ja.}. For each k=0,
1, ---, m, assume g;, < 1, where g, = g,, Then (2q — 1)(g — 1) differentials
on S(T) ¢s h(T’ Z) (S = 0 ]1, st a]m’ h = 1 2 8 + ks)’ 0s,ni(r’ Z) (S = O,
Ji o sdmbi =12, e(0), and ¥(7,2) (j =j,, - +,Jn) are linearly inde-
pendent.

7-2. LetJ= {jl’ e ’jm}' For 7 € BJ@A{(Z): let és(fo) = <As,1(70’ Z)’ A}
A, . (75, 2)> which represent Riemann surfaces §x(z-0) (s=0,j, -+, jn). Let
J = {ji, -, jw} CJ. For redGUY), we set

Gir) = <A, (5,2), -+, Ay (2, 2)> (5 =0,jy, -+, Jn). We recall the
notations P,(z) (see p. 82) and 133(‘:) (see p. 86). Let 7,(zo) = y(1, 1y, - - -, bu)z0)
(s=1,2---,m). Lety;(c) =715, -, luos Luw+n * * *» buw)(to) be the nodes
joining S, (r,) and S,(z). Assume that j,&J’. Then we note that S, ()
=8 (z) for z € 87€¥(2). In §5-2in [4], [o,] represents the part of S divided
by the loops 7,, with j’eJ’ which contains the cell g,.

We denote by i, the number 1 —i,. We define p(z), ¢'(z), p'(z) and
g'(z) as follows:

“(2) = {pl(f) if g)elo,]
PR = P-(l, il, ] i»)(T) if 0, & [o'j;] ’

where p~(1, i, - - -, 1,)(z) is the left distinguished point whose projection lies
on §,();

“'(f) . {p(11 ila tt ip(s)’ iy(s)ﬂy 0; Tty 0)(7) == pl(T) lf a; € [o'js]
p+(17 il’ ) i,u(s)) ip(s)n, 0, Tty 0)(7) lf ag; & [ajs] ’

where ¢, is the terminal cell and p*(1, i, - -, L., bucsr+1 05 * -, 0) (z) is the
right distinguished point whose projection lies on S, (z);

t(‘[) — {p(la il, e ip(t)’ s P 0)(1:) = pk(T) lf 0, € [ajz]
p+(1’ il’ . Z1;(1:)9 ‘ 0)(7:) 1f gy € [Gh] ’

where ¢, is the terminal cell and p*(1,i,, -+, 7,4, 0, - - -, 0)(z) is the right
distinguished point whose projection lies on Sn(f)’

L(‘E’) — {p(l’ i17 ) ip(l)’ 1, O, M) 0)(7) = ph(T) lf g, € [Gj,,]
p+(1’ il’ “"i.u(tb 1’ 0’ 30) lf O'he[o..h] '

where ¢, is the terminal cell and p*(1,i, - -+, 7,4, 1,0, - - -, 0)(z) is the right
distinguished point whose projection lies on .§h(r).
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7-3. Let 7,€ 8776, (Y) with J = {j, ---,j.}- Then there exist d =
(29 — 1)(g — 1) numbers of regular g-differentials foie,8) (s =071, Ja -,
Jusi=1,2..-,d, — n,) and fh(‘r,z"') t=12..-,m) for 2eS(z) and r ¢
@L7(2) satisfying the following properties (i) and (ii), where d, = d,(z) =
(29 — (g, + k, — 1) + gn,:

(1) For re@L7(2), let f,.(r,2) be linear combination of functions
$on(t,2) (h=1,2,---, 8, + k), ¥,.(z, 2) with ¢ € ¥}’ and

.z, 2) = 25 0,0z, r(RD'(2)*,

r€Gs(z)

where
6..5:2) = 1/([1 @ = a @ [T 2 — b,))

with >um, +2%.n,=2¢, 1<m<q—-1G=12,---,u), 03" n
<qg-—1, afr)e P(2) and b(o)e Ps(r)\ﬁx(r), where a,(z) and b,(z) are selected
as in §3-2, pp. 87-88. Then f,g,i(r, 2) are the projections of f, ,(z, 2).

(ii) Let 7,,(z,) be the node joining S ;.(z,) and S 5(zy). For zed""'S(2),
set

o 7@’
file D= 2 40— O 6@ — 4@G® — PO @) — @)

if j,&J’, and

| _ ,r/(z)q
filo D= 2 6@ — 7O @) — ¢@® — PN

if j,eJ’. Then fjt(z-, 2) are the projections of f, (z, 2).

ProrositTionN 16. d = (2¢ — 1)(g — 1) numbers of g-differentials fm-(ro, 2)
and f,(z,, 3) are linearly independent on S(z,).

A proof of the proposition is performed similarly to that in Bers [2].
We define

filen 2) = limf,(c,, 2),  for ze /(G ()

which is equal to

2 7@ @) — P (@) — @)@ — DY .

Gjg(ro)

Next for z,€677S,(2) with J' £ J, j, & J’, we set fi(c, w) = f; (.,
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T (w)T;" W), we (G, (z)), where T,e Mob with G,(c,) = T.G,(z,) T
Then we define

7t w) = lim f7(z,, w)

y—co

which is equal to

5 I i ()

e to (P*(w) — puz)*) (W) — g (z) ) *(w) — 1)¢

L (C D) — Ve — D)
(P°(ry) — D g*(zy) — 1)

for w e 2(G,(z,)), where p'(z)* = lim, ... T,(p'(z,)) and g'(z))* =lim,_.. T.(q'(z.)).

Remark. From Lemma 1, each fs,i(roa A (s=0,j, , ju3i=12 -,
dy(zy) — n,z,)) is identically zero on S(z,)\S,(z,).

7-4. ProrosiTioN 17. The g-differentials in Proposition 16 are linearly
independent on S(z) for sufficiently close to z,.

Proof. If zed"'S,(2) with I’ < I, the proposition is proved by a
similar method in Bers [2]. Thus we will show it in the case of z € §7'S,(2)
with J’ C .

It suffices to show the proposition in the case of J’ = J\{l}, since we
can show it similarly in the general case. For simplicity, we assume that
J ={l} and J' = ¢. Two parts of S(z,) joined by the node y,(z,) are Sy(zo)
and S,(z,). We write g, g, d, and d, instead of gy(c;), g.(z,), d(z,) and dy(z,),
respectively.

For simplicity, we introduce the following notations

fl(f’ 2)’ fz(f7 2)’ ) fd(r’ 2)7 TE @é,m(z)

as follows:

(i) For ce@d), £z, 2): - farile, 2) farni(,2)s -+, fapea(s, 2) are
functions as in p. 58. Then f,(r,2) (h=1,2,---,d, — 1,d, + 1, ---,d, + d)
are the projections of f,(z, 2) onto S(z).

(i) For r e ©X(3), fufc,2) is a function as in p. 59. Then f,(z, 2) is
the projection of f,(z, 2) onto S(z).

Remember that

(33) fx(fo, Z)> ) fdo(TOs Z) ’ ze QI(GO(TO))

and
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(34) fdo(fo, Z), ] fdo+dl(7"09 Z) ’ z€ ‘Q,(él(fo))

are linearly independent on 2/(Gy(z,)) and 2/(G,(z,), respectively, and that
fiey 2) = 0 on 2(Gy(zy) for i =1, 2, - --,d, — 1, and f,(z,, 2) = 0 on 2/(Gy(zo))
fori=d,+1,..--,d,+ d,.

It is necessary and sufficient for fi(zy, 2),i = 1,2, - - -, n, being linearly
independent on 2/(G(z,) that for z,€ 2(Gy(z,)) and for sufficiently small
e, the Gram determinant is positive, namely if we write

(fi(To’ ')7 fj(’t'o, -))20
- IIIZ—%I(: fi(To, z)m)Z(To, z)2—2qudy ,

then
det ((fi(fo, ')7 fj(To’ '))zo) >0 (i,] = 1’ 2’ ) n) ’

where i(c,, 2) is the Poincaré metric on 2/(G(z)). Thus we have

(35) det (fileos ), fizs N >0 Gj=1,2---,d)
and

(36) det (fi(zor ), fileoy N >0 Gj=1,2---,dy—1).
Similarly we have that for z, € 2(G/(z,)),

(37) det (fi(ror ), fi(zoy Ne) >0 (Gyj=dy, -+, dy + dy)
and

(38)  det((filro, ) [ty N >0 Gi=do+1,--+,dy+d).
Let € G1"(2) be sufficiently close to z,, We set

a.,(7) = (flz, ), filz, Do GJ=12---,dy+ d)
for z,€ 2'(Gy(r)) and

bif(2) = (filz, ) [, Doy Gj=12---,dy+ d)
for z, € 2/(G,(z)). Then if we show that

det (a,5(z)) + b,y(z))) >0 (G,j=1,2,---,d,+ d)
then we have

det (@, (z) + by(2) >0  (Gj=12---,dy+ d)
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for ¢ near 7, by using continuity of the functions, and therefore f,(z, 2), - - -,
fa44, (7, 2) are linearly independent on S(z) for = near z,.

Set
A(/)(TO) = det ((aij(z-o))) (1'7.] = 19 2, Sty do - 1) )
AO(T()) = det ((aij(fo))) (i)J = 13 2, ) do) ’
M) = det ((by(z))  (Gj=dy+1,---,dy+ d)
and

A(z,) = det ((bij(TO))) @Gj=d, -, dy+ d).

We note that foreach i = 1,2, ---,dy— 1, a;(zp)) =0(i=d, + 1, -- -,
d, + d,) and bij(To) =0(=12" .-,d,+d); foreach i=d, +1,---,d,
+ du aij(fo) =0 (] = 19 2, c ',do + dl) and bij(fo) = 0(] = 1’ 2: Tty do - 1)
Then we have that

det (az’j(fo) + bz‘j(To)) = A(’)(TO)AI(TO) + A0<TO)A{(TO) .
From (35) through (38),
det (a,,(z,) + bij(fo)) >0.

Our proof is now complete.

7-5. We consider the set Z C &©}7(Y) defined as totality of the r for
which the g-forms are linearly dependent.

PropositioN 18. For each J’' C J, the set Z is either empty or an
analytic subvariety of pure codimension 1 in §”GL(3).

This proposition is proved by the method similar to that in [2].

§8. Theorems

In this section, we will state three theorems. They were obtained in
the case of the fiber space of the augmented Schottky space in the sense
of Bers by Bers [2]. Our theorems are for the fiber spaces of the augmented
Schottky space defined in [5].

8-1. By using the results of the previous sections, Propositions 14,
15, 16, 17, and 18, we obtain the following Theorems 1 and 2.

THEOREM 1. Let g=>2 and g =2 be integers. There exist d =
(2q — 1)(g — 1) holomorphic functions
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fule D) o2 fude 2, @ 2)e S, 5K

foreach s = 0,1, --.,2g — 3, and an analytic subvariety Z C @;‘(Z) (see [4],
Dp. 163-167 for the definition of the augmented Schottky space &¥(3)) having
the following properties (1)—(v):

(i) Z C &’'©Y2) is either empty or of pure codimension 1 in §'&KZ)
for JC{1,2,---,28 — 3}

(i) Z avoids all points  which lie on any set §7'S,(Z) with g(c) < 1
for all t=0,1,-.-,2g — 3, where g[c) represents the genus of the Riemann
surface S,(2).

(iii) Suppose S,(r) = S(z) and G(z) = TG()T-* with T < Mob. Then

foiz, 2) = f,.(c, T@NT'(2):  for ze 2(Gc), i=1,2,---,d.

When f, .z, 3) and f..(z, 3) are the projections of f..z, 2 and f, (z, 2),
respectively and s and t have the above relation, we have fm.(r, 2) = f,,i(r, 2).
Therefore we define d numbers of g-differentials f|(z, 3), - - -, fuz, 2) for ze
@;"(Z') and 2¢ S(r) by setting

Fiz, 8) = Fouz, 2)
if ze S,(r), s=0,1, ---,2g — 3. The fourth property is as follows.
(iv) For each e &*(3), fuz, 3) are regular q-differentials on S(z).

(v) These g-differentials f,(r, 3) are linearly independent if and only
if t& Z.

THEOREM 2. Let g > 2 and q = 2 be integers. Let 7,€ 677S,(2), where
gz = 2 for some s = 0,1, ---,2g — 8. Then there exist an analytic sub-
variety Z C ©L7(2) and d = (2q — 1)(g — 1) holomorphic functions f, (z, 2),
(z,2) e > = FSLI(2), for each s =0,1,2, - -, 28 — 3 having the following
properties (1)—(v):

(i) For each J' C J, Z N §"GL2) is either empty or pure codimension
1 in 6"GK2).

(i) .6 Z.

(iii) Suppose S,(r) = S,(c) and G(z) = TG,()T-* with T e Méb. Then

fs,i(T, Z) = ft,i(f’ T(Z))T’(Z)q for FAS ‘Ql(és(f))ﬁ i= 1’ 2: ) d.

(v) Fori=1,2 ---,d, letf(z, 3) (c e &57(2) and 2 e S(z)) be similarly
defined as in Theorem 1 from f, (z, 2). Then iz, 2) are regular q-differentials
on S(z).
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(v) These g-differentials fi(z, 2) are linearly independent if and only
if c& Z

8-2. THEOREM 3. Let g = 2 be an integer and let t,e S¥(3). Then
there exist a neighborhood N of t, in ©¥(3) and g holomorphic functions
foilz, 2), (z,2) € 2% 3S5(3)|N, for each s =0,1,--.,2g — 3, having the
following properties (i) and (ii), where the vertical segment means a restric-
tion:

(1) Suppose S,(z) = S,(z) and G(c) = TG()T~* with TeMésb. Then
file, 2) = f.c, T@)T(2)"  for ze Q(G(2), i =1,2, ---, g

(3i) For i=1,2,---,8, let f(c,8) (ce N and 3¢ 8()) be similarly
defined as in Theorem 1. Then fi(r, 2) are linearly independent regular
1-differentials on S(z).

This theorem is obtained from Theorems 1 and 2 by modifying the
method in [2].
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