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SEMI-F-SPACES 

BY 

RONNIE LEVY 

ABSTRACT. Semi-F-spaces are spaces such that given any pair of 
disjoint cozero sets, every countable subset of one is completely 
separated from the other. This generalizes the notion of an F-space 
and is stronger than the property that every countable subset is 
C*-embedded. Semi-i7-spaces are studied and several examples are 
given. 

0. Introduction. An F-space is a space with the property that any two disjoint 
cozero sets are completely separated. A space has the property that every 
countable subset is C*-embedded if and only if given any two disjoint cozero 
sets, every countable subset of the first is completely separated from every 
countable subset of the other. In this paper, we look at a property which lies 
between these two properties. We call a space a semi-F-space if given any two 
disjoint cozero sets, every countable subset of one is completely separated from 
the other. Among compact spaces, the property of being a semi-F-space takes a 
particularly nice form — a compact space is a semi-F-space if and only if every 
zero set has co-bounded interior. For normal spaces, the property of being a 
semi-F-space is closed-hereditary, but in general the property is preserved by 
neither closed nor open subsets. We will give examples to show this. We will 
also give a very simple example of an open subset of an F-space which is not an 
F-space. 

1. Preliminaries. All given spaces are assumed to be completely regular and 
Hausdorff. If X is a space, (IX denotes the Stone-Cech compactification of X 
and X* denotes J3X\X. An ordinal number is the set of its predecessors and a 
cardinal number is an initial ordinal. The countably infinite cardinal co0 is 
denoted by co. Unless we specify otherwise, ordinals will be assumed to have the 
order topology. If D is a discrete space, uD denotes the set of uniform 
ultrafilters on Z), that is, uD is the set of elements of fiD which are not in the 
closure of any subset of D having cardinal less than that of D. If X is a space, X8 

denotes X endowed with the Gô-topology, that is, the topology on X obtained 
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from the given topology by declaring that all Gg-sets of the original topology are 
open. In particular, if X is an ordinal, X8 is the order topology on X strengthened 
so that all ordinals of countable cofinality are isolated. 

An F-space is a space such that every two disjoint cozero sets are completely 
separated. Equivalently, an F-space is a space such that every cozero set is 
C*-embedded. A semi-F-space is a space such that given disjoint cozero 
sets, every countable subset of one is completely separated from the other. 
Clearly every F-space is a semi-i7-space. We will see below that not every 
semi-F-space is an F-space. 

A space X is co-bounded if the closure in X of every countable subset of X is 
compact. In particular, when we say that a subset S of a space is co-bounded, we 
mean that S is co-bounded as a subspace, that is, every countable subset of S 
has compact closure in S. Obviously every co-bounded space is countably 
compact. 

A point p of a space X is a weak P-point of X if p is not a limit point of 
any countable subset of X. It is known that co* has weak P-points and that 
uD has weak P-points, where D is the discrete space of cardinal ux. (See, for 
example, [3].) 

For definitions and terminology not given here, see [1], [4], or [7]. 

2. Basic Properties. In this section, we give some of the basic properties of 
semi-F-spaces. We also give some easy examples. 

2.1. LEMMA. Every countable subset of a space X is C*-embedded in X if and 
only if given any two disjoint cozero sets (or equivalently any two disjoint open sets) 
U and V of X, every countable subset of U is completely separated from every 
countable subset of V. 

PROOF. Suppose first that every countable subset of X is C*-embedded in X 
and let A and B be disjoint open subsets of X. Let CA and CB be countable 
subsets of A and B respectively. Since CA U CB is countable, it is C*-embedded 
in X, so the bounded continuous function f(CA U CB) —> R given b y / | Q = 0, 
f\CB = 1 extends to a bounded continuous function on X. Therefore, CA and CB 

are completely separated. 
For the converse, suppose that given disjoint cozero sets U and V of X, every 

countable subset of U is completely separated from every countable subset of V. 
Let C be any countable subset of X. To show that C is C*-embedded in X, by 
the Urysohn Extension Theorem it suffices to show that any two sets which are 
completely separated in C are also completely separated in X. Using the usual 
"shoestring" method, if A and B are contained in disjoint closed subsets of C, 
we can find disjoint open sets t/and Vof X such that A Q L^and B Q V. Since 
the cozero sets form a base for the topology of X, and since the union of 
countably many cozero sets is again a cozero set, we can find cozero sets U and 
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V of X satisfying A Q U Q Uand B Q V Q V. By the hypothesis, A and B are 
completely separated in X. • 

2.2. COROLLARY. If X is a semi-F-space, then every countable subset of X is 
C*-embedded in X. 

2.3. PROPOSITION. Suppose X is compact. Then X is a semi-F-space if and only 
if every zero set of X has u>-bounded interior. 

PROOF. Let X be a compact space. Suppose that X is a semi-F-space and Z is 
a zero set of X. Let U = Int^ Z. We must show that if C is a countable subset of 
U, then Cl^ C is compact. As in 2.1, we can find a cozero set W of X such that 
C Q W Q U. By the assumption that X is a semi-F-space, there exists a 
bounded continuous function/:X —> R such t h a t / ] X \ Z = 1 a n d / | C = 0. The 
zero set of / is compact and is contained in U, so Cl^ C is a closed subset of a 
compact set and is therefore compact. 

For the converse, suppose that X is compact and that every zero set of X has 
co-bounded interior. Let U and V be disjoint cozero sets of X and let C be a 
countable subset of V. We will show that U is completely separated from C. 
Let Z be the zero set X\ U. Then C is a countable subset of the co-bounded set 
W = Int^ Z, so C\w C is compact. Therefore, C\w C and X \ W are disjoint 
compact subsets of X the first of which contains C and the second of which 
contains U. Hence, C and U are completely separated. • 

2.4. COROLLARY. If X is a compact F-space, then the interior of any zero set of 
X is (à-bounded. 

The referee has pointed out that the proof of Proposition 2.3 essentially 
shows that a normal space X is a semi-F-space if and only if every zero set 
Z of X has the following property: If C is a countable subset of Int^ Z, then 
C\x C Q In t x Z. The referee has also observed that another generalization of 
Proposition 2.3 is inherent in the fact that the proof of sufficiency does not use 
compactness of X, only the co-boundedness of In t x Z since in a Tychonoff space, 
a compact set and a closed set are completely separated. (See [4], 3.11a.) 

Since every F-space is a semi-F-space and since every semi-F-space has the 
property that every countable subset is C* -embedded, it is natural to ask 
whether any of these properties coincide. The following examples show that 
they do not, even in the setting of compact spaces. 

2.5. EXAMPLE. There exists a compact semi-F-space which is not an 
F-space. 

CONSTRUCTION. Let D be the discrete space of cardinal wj. Let p be a weak 
F-point of uD. Obtain X from the product 2 X (5D by identifying (0, p) and 
(1, p) and let q:(2 X fiD) —> Xbe the quotient map. Denote by/? the identified 
point q( (0, p) ). Notice that p is a weak P-point of X. Obviously X is compact. 
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Let U and V be disjoint cozero sets of X and let C be a countable subset of V. 
In order to prove that X is a semi-P-space, it suffices to show that C\x U Pi 
C\x C = <j>. Notice that since 2 X /$D is an P-space the sets q^~(U) and q*~(V) 
have disjoint closures in 2 X (ID. Therefore, q~(U) and (f~{C) have disjoint 
closures in 2 X jSD. Therefore, either C\x U n Cl x C is empty or C\x U n 
C\x C = {/?}. But since p is a weak P-point, the only way that it can be in C\x C 
is if p e C, that is, if ^ ( C ) 3 2 X {;?}. But the closure in 2 X £D of ?""(£/) 
does not intersect (f~(V) so it cannot intersect 2 X {p}. Therefore, Clx(U) n 
C\X(C) is empty. It follows that X is a semi-P-space. 

To see that X is not an P-space, let f'.fiD —> R be a continuous function 
whose zero set Z is contained in D*. Then U = q~*( {0} X (X\Z) ) and V = 
^ ( { 1 } X (X\Z)) are disjoint cozero sets of X each of whose closures 
contain p. • 

2.6. EXAMPLE. There exists a compact space X such that every countable 
subset of X is C*-embedded in X but X is not a semi-i7-space. 

CONSTRUCTION. Let p0 be a weak P-point of <o* such that /?0 is not a P-point 
of Co*. Such points exist - see [6]. Obtain X from (2 X /?co)\( {0} X co) by 
identifying 2 X {p0} to a point. Let q be the quotient map. Then using the fact 
that p0 is a weak P-point, it is easy to show that every countable subset of X is 
C*-embedded in X. To show that X is not a semi-F-space, let Z = Z(f) be a 
zero set of co* whose boundary in to* contains /?0. We can do this because p0 is 
not a P-point. Let g:X —•> R be defined by g(x) = / (z ) provided that g(z) = x 
and z e {0} X co*, g(x) = 0 otherwise. It is routine to show that g is 
well-defined and continuous. But the interior of the zero set of g contains the 
countable set q~*( {1} X co) which has a limit point q(p0) which is not in 
the interior. Therefore, by 2.3, X is not a semi-P-space. D 

3. Subspaces of semi-P-spaces. It is clear from the definition that a C*-
embedded subset of a semi-P-space is again a semi-P-space. Therefore, every 
closed subset of a normal semi-P-space is again a semi-P-space. It is also 
easy to see that a cozero subset of a semi-P-space is a semi-P-space. In this 
section, we show that the property of being a semi-P-space is neither closed 
hereditary nor open hereditary. 

3.1. EXAMPLE. There exists an P-space and a closed subset which is not a 
semi-P-space. 

CONSTRUCTION. First notice that if X is a space satisfying co Q X Q /?co, then 
X is extremally disconnected and hence an P-space. Therefore, if we can find 
any subset S of co* which is not a semi-P-space, the subspace X = S U co of /?co 
would be an P-space whose closed subset S is not a semi-P-space. So we need 
only find a subset S of co* such that S is not a semi-P-space. 
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Let {Ak: k G CO} be a family of pairwise disjoint non-empty clopen subsets of 
co*. For each k G co, let {C„: « G w} be a pairwise disjoint family of non­
empty clopen subsets of Ak. Choose JĈ  G Ck and for each A:, choose 

Pk G C l ^ { 4 : « G co}\{x*: * G CO}. 

Let Ck = U„ e w C*. Finally, let 

S = U [ 4 W % * ^ ] U [Cl t t ,{A : A: G W } \ { A : * G CO} ]. 

To show that S is not a semi-F-space, put U = VkŒoi C^ and F = 
U^e(0 (^4^\C ) O S. Since each of the sets Ck is a union of the countably many 
clopen subsets Cn, n G CO, of S - in fact, of co* - each set Ck is a cozero set 
of S. Therefore, U9 being a union of countably many cozero sets of S is itself a 
cozero set of S. Each set of the form Ck n S is clopen in S (although such sets 
are not closed in co*), so each set (A/\C ) n S is clopen in S. Therefore, V 
is also a cozero set of S. The cozero sets U and V are obviously disjoint. Let 
D = {xk:n, k G CO}. Then D is a countable subset of U. But D and F 
are not completely separated in S: If f\D = 0 and f\V = 1, then for p G 
Clw*{/?£: /c G co}\{pk\ k G co},/assumes the values 0 and 1 on every neighbor­
hood of p so / does not extend continuously to p. • 

The next example serves two purposes. First, it gives a very easily described 
example of an open subset of an F-space which is not an F-space, and secondly, 
it will help in the example below of an open subset of an F-space which is not a 
semi-F-space. We note that a more complicated example of an open subset of an 
F-space which is not an F-space is given by Dow in [2]. Examples 3.2 and 3.4 
use the following fact: If D is a dense subset of X and f:D —> R is a continuous 
function such that for each p G X, f extends to a continuous real-
valued function D U {/?}, then/extends to a continuous real-valued function 
on X. (See [4], 6H.) 

3.2. EXAMPLE. There exists an F-space Xand an open subset f/such that t / is 
not an F-space. 

A 

CONSTRUCTION. Let p be any element of co*. Let X = A X B where 
A = [ (coj + 1) X (co2 + 1) ]8 and B = co U {/?}. Let X = X\(Ù3X X co2 X co). 

We can think of X as being a corner of a room with floor A X {p } and walls 
(coj -f 1) X co and (co2 + 1) X co. Then Xis just the floor and the two walls. To 
show that X is an F-space, it is (more than) enough to show that X is a Lindelôf 

A 

F-space, since X is a closed subset of X. A is Lindelôf because it has the 
G5-topology on a compact scattered space. (See for example [5].) Since X is 
the union of countably many copies of A, Xis also Lindelôf. Notice that for 
each x £ 5 , the subspace A X {x} of Xis a F-space. Suppose C is a cozero set 
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of X and / : C —» [0, 1 ] is continuous. We must show that / extends continuously 
to a function/: Cl£ C —» [0, 1]. Then the fact that Xis an F-space will follow 
from normality. Suppose x e Cl£ C\C. Then JC = (a, p) for some a e A, 
because if n ^ co, A X {n} is clopen in X and so is C n (A X {n} ). This 
is because A is a P-space so its cozero sets are clopen. Furthermore, since 
X\(A X {p})is dense in X, x e C1$C\(,4 X {/?})). For each « G w , either 
(a, n) £ C or there exists a neighborhood {/„ of a in v4 such that Un X {n } Q C 
andf\Un X {n} is constant, say/|£/w X {«} = rn. Define g:co —» [0, 1] by 

|

rw if Un is defined 

0 otherwise. 

Extend g to a continuous function g:/?to —» [0, 1]. Define/(x) = g(p)- Then 
clearly this defines a continuous extension of / to x. Therefore, we have 
continuously extended/, so Xis an F-space. To find an open subset of X which 
is not an F-space, let U = X\{ ((Oj, co2) } X B, that is, U is obtained by 
removing the meet of the two walls. Then Cx = (col X {w2} X w) n [/ and 
C2 = ({co 1 }Xco 2 X£o)n 17 are disjoint cozero sets of U — they are cozero sets 
because each is a union of countably many clopen subsets of U. But these 
sets are not completely separated in U because any continuous function which is 
identically 0 on one of these sets and identically 1 on the other would have to 
completely separate the top and right edges of (œ{ + 1)§ X (co2 + l)8 X 
{/?}\{ (<ol5 co2, p) }. It is clear that no such function exists. Therefore, U is not 
an F-space. • 

A 

We remark that since X is a closed subset of the Lindelôf space X, the space X 
is also Lindelôf. This observation will be used in 3.4. 

In order to get an F-space with an open subspace which is not a semi-F-space, 
we will start with the space X from the previous example and add countably 
many points in such a way that the wall (u>x + 1) X {co2} X B is in the closure 
of a countable discrete set. In order to have any hope of getting an F-space 
when we do this, we will need to add the points in such a way that the countable 
set we add is C* -embedded, so we will need to know that ( t o + l ) 8 X 2 ? C c o * . 
This is the content of the next lemma. 

3.3. LEMMA. Suppose p G CO* and B = <o U {/?}. Then (coj -f l)ô X B is 
homeomorphic to a subset of co*. 

PROOF. It is known that (col + \)8 embeds in co*. (This is due to van Douwen. 
See [6].) Let {An: n G CO} be a family of non-empty pairwise disjoint clopen 
subsets of co* and for each n e co, let Wn = {a^: X = coj} be a faithfully indexed 
copy of (ool -b 1)5 contained i n ^ . For each X ^ co1? the set Ix = {a£: n e to} is 
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a countably infinite discrete set, that is, each Ix is homeomorphic to co. Since 
countable subsets of co* are C*-embedded, for each A ^ cou we can find a point 
px G Clw* IX\IX such that for S Q co, px G C1W*{ÛJ[: « G 5} if and only if 
/> e C l ^ S. Define 

h:(co{ + 1)5 X 5 -> ( J (A U {/7X} ) by A (A, /i) = an
x and A (A, />) = px. 

We will show that h is a homeomorphism. 
Clearly h is one-to-one and onto. Obviously, the restriction of h to each of the 

clopen sets (coj + l)8 X {n} where n G CO is a homeomorphism. Once we show 
that the restriction of h to (coj + 1)5X {/?} is a homeomorphism, the fact that h 
is a homeomorphism will follow fairly easily from the choice of the pxs. If 
A0 < coj, we must find a neighborhood TV of px such that px <£ N for \ ¥= A0. 
We will in fact do a little more. Fix A0. For each n G CO, let ^ be a clopen (in co*) 
neighborhood of a^o such that ax £ Vnîor m ¥= n,\ =£ A0. Then V = VnŒo}Vn 

and Jf = UwGt0 (AJ\Vn) are disjoint cozero sets of co* so they are completely 
separated. Therefore, we can find an co*-neighborhood F of Cl^* F which does 
not intersect Clw* W. But then F is a neighborhood of px which contains no 
point of the form px or of the form ax for A ¥= A0. 

Next we show that neighborhoods of pu contain all but countably many pxs. 
Suppose that V is a clopen co*-neighborhood of pu . For each n such that 
al G V, let Cn be a countable subset of cox such that for A £ C„, ax

 G ^ Let 
C = Uw<Ew Cn. Then C is countable and clearly {px: A £ C} Q V. A similar 
argument shows that all countable subsets of {px: A < coj} are clopen in the 
relative topology of {px: A ^ coj}. 

To complete the proof we must show that Fis a neighborhood of (A, p) if and 
only if h~*{V) is a neighborhood of px. If A < col5 we may assume that Vhas the 
form {A} X A where A is a /?co-neighborhood of p in B. But then the choice of 
px and the second paragraph of the proof assures that h~*(V) is a neighborhood 
of px if and only if F is a neighborhood of (A, p). This leaves the point (cox, />). 
In this case, we may assume that F has the form U X W where U Q co{ and 
o){\Uis countable, and Wis a ^-neighborhood of /?. If we now use the argument 
of the preceding paragraph along with the choice of the pxs, we get the 
result. • 

In light of 3.3, we will view (co{ + \)s X B as being a subspace of co*. Then 
[ (coj + 1)5 X B] U co is extremally disconnected. 

3.4. EXAMPLE. There exists an F-space and an open subset which is not a 
semi-^-space. 

CONSTRUCTION. Suppose p G CO* and B = co U {/?}. Let X be as in 3.2 and 
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let X be [ (wj + \)8 X 5 ] U co considered as a subspace of /}co. Obtain Y from 
the discrete union of X and X by identifying the point (X, co2, z) of X with the 
point (X, z) of I . Then X and X are closed subspaces of Y. The identified 
points, that is, the elements of X D X, will be labelled as if they were elements 
of X. We omit the routine proof that Y is Hausdorff and regular. Since X is 
Lindelôf and Y differs from X by only countably many points, namely, the 
points of co, Y is Lindelôf and therefore normal. 

To prove that Y is an F-space, we must show that every cozero set is C*-
embedded in its closure. Suppose C is a cozero set of Y and f:C —» [0, 1] is 
continuous. Let y be a point of Cl y C\C. We will find a continuous extension 
of f to y. If y G X, then since X is extremally disconnected, and therefore 
an F-space, the restriction f\(C n X) extends to a continuous function F:X U 
[y] -» [0, !]• We claim that g:C U {j;} -> [0 ; 1] given by g\C = f, g(y) = 
F(y) is continuous. Since g\[(C U {y} ) Pi X] is continuous, we need only 
check that g\[(C U {7} ) Pi X] is continuous. It follows from the facts that 
[ (coj + 1) X (co2 4- 1) ]8 is a P-space and that y ^ X that the only way 
that y can be in the closure of C Pi X is if y is in the closure of C P\ X n X. 
The restriction / | C n X extends continuously to a function F:X —» [0, 1] 
because X is an F-space. Since F |C n I O I = f |C n I O 1 and 
j G Cly(C n X n X), F(.y) = ^ ( J0 = g(>0- Therefore, g is continu­
ous on C n X 

If y e y \ X , t h e n / | C Pi X extends to a continuous function F:X —> [0, 1], 
because Xis an F-space. Define g\C U {j^} —> [0, 1] by g\C = f, g(y) = f(y)-
Then the restriction of g to each element of the open cover {C,[C U {y} ]\X} 
of C U {y} is continuous, so g is a continuous extension of f. 

We still have to show that Y has an open subspace which is not a 
semi-F-space. The open set V will be Y with the meet of the two walls of X 
removed. More precisely, V = Y\{ (cob co2, z) G X z G B}. Then the set 
C, = [ {(0]} X <o2 X co] n Fis a cozero set of F — the argument is the same as 
in 3.2 - and the set C2 = co is a cozero set of Y and therefore of V. But Cj and 
C2 are not completely separated in V — as in 3.2, any continuous function which 
completely separated Cx and C2 would have to completely separate the top and 
right edges of (cox + \)s X (co2 f l)ô X {T?} \{ (col9 co2, p) }. Since C2 is 
countable, this shows that V is not a semi-i7-space. • 
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