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The Ranks of the Homotopy Groups of a
Finite Dimensional Complex
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Abstract. Let X be an n-dimensional, finite, simply connected CW complex and set

R log rank 7 (X)
ay = limsup ———.
i i

fl;f '+, rank 7; (X) for k sufficiently large.
We also show for any r that aix can be estimated from the integers rk 7;(X), i < nr with an error
bound depending explicitly on r.

When 0 < ax < o0, we give upper and lower bounds for

1 Introduction

Recall that any finitely generated abelian group, G, has the form G = 7 @ T, where
T is a finite groups; k is called the rank of G, rk G. Evidently rk G = dim G ®7 ), and
so the definition may be extended to all abelian groups.

Definition The rank of an arbitrary abelian group, G, is defined by
kG =dim G ®; Q.

In particular, since for any pointed topological space X the groups m;(X), i > 2,
are abelian, the sequences (rk;(X));>, are well defined.

It is a classical result that if (k;);>, is an arbitrary sequence with each k; a non-
negative integer or oo, then there are simply connected CW complexes X with

l‘k’]Ti(X) :ki, 122

In this paper we shall be concerned with the following question.

Question  What are the restrictions on the sequences (tkm;(X))i>, imposed by the
condition that X be a finite dimensional connected CW complex ?

First note that the class of all pointed topological spaces, X, may be divided into
the three distinct groups characterized by the following conditions:

(i) Do, tkmi(X) < o003
(ii) fori > 2 each rk7;(X) < oo, but D i Tk (X)) = 003
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The Ranks of the Homotopy Groups of a Finite Dimensional Complex 83
(iii) for somei > 2, rkm;(X) = occ.

Definition  An n-dimensional, connected, finite CW complex, X, is called ratio-
nally elliptic (resp. rationally hyperbolic, m-rank infinite) if X belongs to group (i)
(resp. group (ii), group (iii)) above.

Now a classical spectral sequence argument applied to Postnikov decompositions
for the universal cover, X, establishes the following equivalences:

(1.1) rkm;(X) < oo for2 < i <k += dim H<x(X;Q) < oo.

Therefore, if X is rationally elliptic (resp. rationally hyperbolic), then X is rationally
elliptic (resp. rationally hyperbolic) in the sense of [7]].

Now consider the question above. In the elliptic case it is completely resolved
in [9]], where the authors establish a simple algorithm that decides whether any finite
sequence ki, . . ., k, of non-negative integers appears as the sequence (rk 7;(X));>, for
arationally elliptic finite dimensional CW complex. For the rationally hyperbolic and
m-rank infinite cases, however, such a characterization seems out of reach, especially
given the fact that when # is odd, the space S” V S” and S" V S! satisfy rk m;(X) = 0
unless i = 1(mod(n — 1)). Thus, instead, we consider the sequence

X) = ki (X).
P(X) k+2r£ia§Xk+nr mi(X)

Our principal result deals with the hyperbolic case, and we first need to recall the
following definition.

Definition The homotopy log index, ax, of a pointed topological space X is given
by
. log rk m(X)
ax = limsup — %
k

This invariant, which provides one measure of the growth of the sequence rk 7(X)
is analogous to the classical Gelfand Kirillov dimension defined for a finitely gener-
ated graded algebra A by

oAk
GK dim A = lim sup w.
k logk

This invariant was introduced by Gelfand and Kirillov for enveloping algebras of Lie
algebras in [10] and [13]. When dim A* ~ k", GK dimA = n. In our case, when
rk m(X) ~ da, ax = loga.

Associated with X are the Hilbert series

w(z) = Zrkm(X)zi and Q(z2) = Zdim H;(QX;Q)Z.

i>2

When X is a simply connected, rationally hyperbolic, finite CW complex, then by a
result of Babenko, [3]], 7(z) and §2(z) have the same radius of convergence p, and by
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definition, ax = — log p. We prove in [7] that in this case 0 < ax < co. In this paper
we will give more precise estimations of ax.

Now if X is a rationally hyperbolic, connected, n-dimensional CW complex, we
have that dim H(X; Q) < oo, and so we may set h = max; dim H; (X;Q). To state
our main theorem we introduce the notation

B(n, h) =40 (2nlog2n +log(h + 1) + 1) log nh,
~v(n,h) = nlog(h+ 1) + 2nlog 2n.

Then our first main theorem reads as follows.

Theorem 1.1 Suppose X is an n-dimensional, connected, rationally hyperbolic CW
complex. Then 0 < ax < oo, and for some K, and for every k > K,

B(n.h)

- 2k
ST e < max rkm(X) < etk
k+2<i<k+n

Moreover, for every k > 2,

@} ek,

ea X

rkm(X) < max{ 1,

This leaves the 7-rank infinite case, and here we have a complete answer.

Theorem 1.2 Suppose X is an n-dimensional connected CW complex. If X is w-rank
infinite, then for allk > 0,

max rkm;(X) = co.
k+2<i<k+n
Remarks

(i) The principal result of 7] is equivalent to the assertion that (for X as in The-
orem [I])) if k is sufficiently large, then maxy s<j<jn 1k 7;(X) = eloxtek with
er — 0as k — oo. Theorem [ Ilimproves this result with precise estimates for
ey depending only on #, h, and k.

(ii) While the result of [7] generalizes to spaces of finite Lusternik—Schnirelmann
category, Theorem [LT]does not, as we shall see in Theorem[L.7]

When combined with the results of [12] and [9]], Theorems [[.1land [[.21 have the
following immediate corollaries.

Corollary 1.3 Let X be an n-dimensional connected CW complex. Then

(i) X is rationally elliptic <= rkm;(X) = 0,1 > 2m;
(ii) X is rationally hyperbolic <=1 < maxgia<i<isn 1k mi(X) < 00 for all k > 0;
(iii) X is w-rank infinite <= maXg<i<i+n 1k T (X) = 0o forall k > 0.

Corollary 1.4 Let X be an n-dimensional connected CW complex. Then
(i) X is rationally elliptic <= ax = —00;
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(ii) X is rationally hyperbolic <= 0 < ax < 00;
(iii) X is w-rank infinite <= ax = oo.

Corollary 1.5 Let X be an n-dimensional connected CW complex. Then X is ratio-
nally elliptic (resp. rationally hyperbolic, w-rank infinite) if and only if

max rkm(X) =0
2m<i<3n—2

(resp. € (0, 00), resp. = o).

Remark  The asymptotic formula of Theorem [L1] provides a good estimate of the
homotopy log index ax in terms of maxy,><j<+n 1k mi(X), provided k > K for suffi-
ciently large K. Unfortunately we are not able to give any estimate for K, and, indeed,
nothing we know gives any suggestion that this might be possible. Thus Theorem[L]
does not provide a “computational” tool for the estimation of ax.

By contrast it is possible to directly estimate ax from the integers rk 7;(X), r <
i < 2r, or equivalently from the integers dim H;(2X; Q)), r < i < 2r, with an error
bound depending explicitly on r. Thus, our third main result reads as follows.

Theorem 1.6 Let X be a rationally hyperbolic n-dimensional CW complex and set
h = max; dim H'(X; Q)). Then for logr > 2""1n?*"*> log nh,

ax logrk'm(X) _ nlog2n < ay < max log rk m;(X) N B(n, h)

i>r i r r<i<2r i 10logr’

The main part of Theorem [L1] asserts that for the “universal sequence” & =
1/ logk, given any n-dimensional rationally hyperbolic CW complex X there is a con-
stant ¢ = ¢(n, h) such that for k sufficiently large

log rk 7;(X) .

> ax — cOp.
k+2<i<k+n k

This is the assertion that does not generalize to rationally hyperbolic spaces of finite
Lusternik Schnirelmann category. Our final main theorem reads as follows.

Theorem 1.7 Let 0y — 0 be any sequence of non-negative numbers and let o €
(0, 00) be any number. Then there is a simply connected rationally hyperbolic wedge of
spheres X such that ax = «, and for any ¢ > 0 and any integer d > 0 there are infinitely
many k for which

log rk m;(X) <

ax — cOg.
k<i<k+d k

The main theorem of [[7] and Theorem[L.I]are steps to a better knowledge of the
sequence rk 7,(X) for a connected finite CW complex, X. The results are inspired
by what we know concerning some special families of spaces, like wedge of spheres
(Theorem[I.7) or cofibers of maps between suspensions as illustrated by the following
result of P. Lambrechts for cofibers of maps between suspensions.
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Theorem ([[15]) Let X be a finite simply connected CW complex of dimension n that
is the cofiber of a map between suspensions.

(i)  There are constants A and B such that for k large enough,

A B
Ee‘”‘k < Z rkm;(X) < Eeaxk.
k+2<i<k+n
(ii) There is a polynomial P(z) such that Q)(z)P(z) is the expansion at the origin of an
analytic function without zero in a disc of radius > p.

By comparison, Theorem [[Tlasserts that if X is a rationally hyperbolic #n-dimen-
sional CW complex, t~hen there are constants A, B, and r depending only on #n and
the Betti numbers of X such that for k sufficiently large,

A
= ek < Z k7 (X) < Be™k,

kr
k+2<i<k+n

We do not know if our estimates for A, B, and r can be significantly improved, al-
though it seems clear that they are not sharp, nor we do know if B can be replaced by
B'/K' with ¢ > 0.

A second open question is whether the Hilbert series {2(z) has a singularity at
z = p and if so to discover its nature. The special case that H,(Q2X;Q) is a finitely
generated algebra is settled by the following result of D. Anick.

Theorem ([2]) Let H be a finitely generated graded connected algebra over a field k
and H(z) its Hilbert series with radius r. Then liminf,_, - (r — z)H(z) > 0.

Finally, as indicated above, it is open whether the constant K in Theorem [L.T]can
be estimated in terms of 7 and the Betti numbers of X.

The proofs of Theorems [L.1] [L.2] and [[7] proceed by a careful analysis of
the homotopy Lie algebra Ly = 7,(Q2X) ® Q with Lie bracket given by the Samel-
son product. The starting point for such an analysis is the minimal Sullivan model
(AV,d) of a simply connected rationally hyperbolic space, X, which has the key prop-
erty that dim V' = rk7;(X) and H(AV,d) = H*(X; Q). The proof of Theorem [T}
which occupies almost the full paper, follows the same general strategy as [[7]. In fact
the analysis here is more delicate, the estimates more difficult, and considerable addi-
tional tools not needed in [7] are now required. In Section 5 we translate the algebra
into proofs for Theorems [[.1l and and give a direct proof of Theorems[I.2] and
L7

More precisely, in Section 2 we develop the relations between the growth of a Lie
algebra L, its universal enveloping algebra UL and the indecomposable elements of
some sub Lie algebras. Section 3 is a refinement of the exponential growth result
obtained in [5]. Let n be the dimension of the space X. We prove in particular that
for any integer N there is some q < n"*>N with rk mg+2(X) > N. This section con-
tains all the material required for the proof of Theorem[L.6l Section 4 deals with the
asymptotic formula and using partial results from [7] leads to the proof of Theorem

intl
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2 Growth of Graded Lie Algebras

We work over an arbitrary ground field k of characteristic 0. If W = {W;} is
any graded vector space, we adopt notation such as Wey = {Wj}ick, Wiy =
{Wi}i<i<k, and Wy = {W;}io. We denote by W(z) = > dim W;z' the Hilbert
series of W. Note that we will also use a graded vector space with a superscript no-
tation V. = {V'} with similar notations. Additionally we define the log index of W
by

log index W = lim sup logleka.
k

A graded Lie algebra L is a graded vector space equipped with a Lie bracket
[-,-]: L®L — L, satistying

[x, y] + (=138 [y x] = 0 and [x, [y, 2]] = [[x, y], 2] + (—1)%8%%EV [y [x, 2]].

We will consider graded Lie algebras L that are connected, L = {L;};>¢, and
of finite type (each L; is finite dimensional). Graded Lie algebras satisfying those
conditions are called cft graded Lie algebras. The rational homotopy Lie algebra,
Ly = m.(2X) ® Q of a simply connected CW complex of finite type is a cft graded
Lie algebra, and dim(Ly); = rank ;4 (X).

Throughout this article we work entirely in graded categories, so that, for exam-
ple, subspace, sub Lie algebra, and subalgebra mean, respectively, graded subspace,
graded sub Lie algebra, and graded subalgebra.

Lemma 2.1 For any integer s > 1 the coefficients in the power series
ax" = ————
l—x—x°
k=0

satisfy ap < (s+ 1)¥/5, k > 1. Moreover, the radius of convergence of this power series p;
satisfies

1\ 1/s
ps > (f) , i sis sufficiently large.
s

Remark The reader will notice that the second assertion does not follow from the
first, but the necessary improvement in the estimate for the ay is very small, technical
to obtain, and not necessary for this paper.

Proof Setx, = (1) '/*, To show that ps > (1) " for large s we need only show that
1 —x, —x; > 0, s large.

Set u, = % Thenl —x, —x =1 — usl/S — us and we have only to show that
1 —u*—u>0foru e (0,6). An easy calculus argument shows that 1 — u* — u is

increasing in some interval (0, ) and that lim,_,o(1 — u* — u) = 0.
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It remains to show that for all k,s > 1, ax < (s + 1)¥/*. Note that

1—x 1 = 1 \¢
= =1+ x“( )
l—x—x 1—-x/(1—-x) ; 1—x

=1+§:xsf§:<£;1_ll)xf NB.(S) 1.

=1  j=0

In particular,ap = land g, = 0,1 < k <s.
Thus it is sufficient to prove the inequality for k > s. Thus fix k > sand letq > 1
and i € [0,s — 1] be the unique integers such that k = gs + i. Then

q .
B l+(q—0Os+i—1
ak—;< é—l )

Write m = ¢ — 1, so that

! m+(g—m—1)s+i
" .
But
m+(g—m—1)s+i<m+(q@—m—1s+s—1=(q—m)s+ (m—1).

Thus,

m m!

(m+(qm1)s+i> < ((g—m)s+(m—1)]---[(g—m)s+r]---[(qg — m)s]

Sm(qf1)(q72)~~~(q7m+r)~~(q*m)
m!
()
m

-1
—1

ar < 5’”<qm ) =1+ < (143", [ |

0

IN

Hence for k > s,

=

3
Il

Remark Whens=1,

1—x 1—x (1 )00(2 )k
= = — X E X) .
l—x—x° 1—2x 5

Thus in this case
ap=2F—2F T = (14 9k — 1+
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Lemma 2.2 Suppose that a graded Lie algebra F satisfies
Fr=0,k<s and dim(F/[EF]) <é™ k>,
for some integer s > 1 and some B > 0. Then
dim(UF); < P +i gtk >

Proof Let W be a graded vector space satisfying Wy = 0, k < s, and dim Wy is the
integral part of %, k > s. The tensor algebra TW is the universal enveloping algebra
of the free graded Lie algebra E generated by W : TW = UE. The respective Hilbert
series satisfy (< denotes coefficient-wise inequality <)

8 c- 8. \k (e'2)°
s ys —
W) < (e2)' Y (€'2) = -
k=0
and
1 > ko= (e92)5 \ K
UEZ) = ——— =S [w (7)
@ 1—-W(2) Z[ (@] < Z 1 —élz
k=0 k=0
_ 1 _ 1—eéz
1 P ] — Bz — (eBz)
1—efz
Write 22 = 3" ° ) ax*. Then

o0
UE(z) < Z ar e?kZF.
k=0

Since Wy = 0, k < s, it follows that (UE), = 0,1 < k <sandsoa; =0,1 < k <s.
On the other hand, Lemma[ZT] gives ax < (s + K5, k > s. Thus,

: k) Bk gl 1
dim(UE); < es 1086+ D+0k — GlB+=2=0k g > ¢

By construction of W, there is a surjective linear map W — F/[F, F] that extends to
a surjective map of graded Lie algebras E — F and to a surjective map of universal
enveloping algebras UE — UF. The lemma follows. ]

Lemma 2.3 Suppose E C LandY C L are a sub Lie algebra and a graded subspace of
a cft graded Lie algebra L, respectively. Suppose further that for some integer s > 1 and
some [3 > 0 they satisfy

dim(UE) < e* k>0, Yi=0k<s, and dimY;<e™ k>s.

Then the sub Lie algebra G generated by E and Y satisfies

dim(UG); < P37 k>o0.

log(s+1) )k
)

Moreover, if Y =Y, then

Sk

e’r, k<s
i < .
dlm(UG)k ~ {e(ﬂ+210g§:+1))k7 k 2 s
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«_»

Proof Denote the adjoint action of UL in L by “o” and note that for j > s,

lng s+1 )

dim(UEoY); < Zdlm(UE), dimY;_; < jell < e PHTI

i

because for j > s > 1, we have
It follows from Lemma[2.2] that the sub Lie algebra F generated by UE oY satisfies

logj < log(s+l)
J

dim(UF), < ePtilogsrk g >

Since [E,F] C F, it follows that G = E + F. Thus multiplication in UG gives a
surjective map UE ® UF — UG, whence fork > s > 1,

dim(UG) <> dim(UE); dim(UF)_; < kel etk < o9+ loglss Dk,

Now, ifk < s, dim UG); = dim(UE); < e < (f+: log(st 1)k
Finally, if Y = Y, then fork > 5, (UEoY )y = (UE)y—s0Y;and so dim(UEoY); <
ek, Since (UEoY); = 0 for k < s we obtain from Lemma 2.2] that dim(UF); <
B+ k> clearly (UF); = 0for 1 < k < s. The same argument as above now
gives the ﬁnal assertion. ]

Lemma 2.4 Let L be a cft graded Lie algebra and assume given a positive integer iy,
an infinite sequence of integers 0 < ry < r; < ---, and an infinite sequence of real
numbers (A;)i>i,, such that

1 i+ 1 1
og(r; + )+ og3

dimL, > €M, i>0, and Ay > N +2
Ti Tit1

i>0.

)

Then L contains a sub Lie algebra E, generated by subspaces in degrees ri, i > iy, such
that

1o, . o
Ee’\”’ < dim(E/[E,E]) < N i>0.

Proof We construct inductively a sequence of subspaces W,, C L,,, i > 0 such that
1 )\'f/' . A.r. .
(2.1) Ee"gdlmwnge”, i>0

and such that the sub Lie algebra E(i) generated by W,,, ..., W,, satisfies

(2.2) dim[UEG) ], < eV 2555 k>0
and
(2.3) E(i) = [EG), ED)] ® (®j_oWy,), i20.
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It is then immediate from (2.1) and (2.3) that E = U;E(i) satisfies the conditions of
the lemma. It remains to choose the W,..

Suppose W, ..., W,, are constructed. Then by (2.2) and the hypothesis on the
Ais

<1
dim[UE(¢)] <3 Zpreren

Tev1 —

Thus, since dim L,,, > e+, we may choose W,,., C L, so that (ZI) holds for
i ={+1andso that W,,, NE({),,,, = 0. Then (2.3) is immediate for i = £+ 1. Since
Ap+ 2812 log(” *1) < A1, we may apply the final assertion of Lemma23with Y = W,
B8 = Ain1 and s = 144 to obtain (2.2)) fori = ¢ + 1. [ |

3 Approximating Log Index L

In this section we recall from [[6] some basic definitions and properties for Sullivan
algebras. Thus, a simply connected minimal Sullivan algebra (AV,d) is a graded
commutative differential algebra in which V' = {V'},5, is a graded vector space, AV
is the free graded commutative algebra generated by V, and Imd C (AV)* - (AV)*.

For any graded vector space V, the algebra AV is the direct sum of the subspaces
AV =V A - AV (k factors). In the case of a simply connected minimal Sullivan
algebra (AV, d) the surjection AV — AV /A”™V is a morphism of graded differential
algebras, which extends to a quasi-isomorphism (AV @ AW, d)—(AV / A"V, d)
from a second simply connected minimal Sullivan algebra. The least m (or oo) for
which the identity morphism of (AV, d) extends to a morphism (AV @ AW, d) —
(AV,d) is called the category of (AV, d).

A graded vector space V has finite type if each dim V' < 0o, and a simply con-
nected minimal Sullivan algebra (AV,d) has finite type if each dim V'’ < oco. With
each such Sullivan algebra is associated its homotopy Lie algebra, L, defined by Ly =
(VK 1)# and with Lie bracket dual to the component d; : V — A2V of the differential
d. (Here # denotes vector space dual.) For details cf. [6, Proposition 13.16].

The starting point for the main results of this paper is a growth theorem estab-
lished in [5]], which in turn depends on the following result.

Proposition 3.1 ([l6) Theorem 29.5]) Suppose ¢: (AV,d) — (AW, d) is a surjective
morphism between simply connected minimal Sullivan algebras of finite type. Then
cat(AV, d) > cat(AW, d).

We now introduce the following hypotheses and notation for a simply connected
minimal Sullivan algebra (AV, d) and its homotopy Lie algebra L:

6] dimV’ < oo foralli and dimV = oo,

(ii)) dimH(AV,d) < oo, and n = max{i| H'(AV,d) # 0},
and h = max; dim H (AV, d).

(iii) cat(AV,d) = m.

(H)

https://doi.org/10.4153/CJM-2012-050-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2012-050-x

92 Y. Félix, S. Halperin, and J.-C. Thomas

Remark Recall ([6, Corollary to Proposition 29.3]) that
n
(3.1) m1<—+l<n

Moreover, since the only simply connected minimal Sullivan algebra with n = 2
and h = 1 has the form A(v, w) with dw = +?, it follows that

(3.2) nh > 3.

It is the interplay between the hypotheses of (H) and the Lie structure of L that
provides the ingredients for the proof of our main theorems. In particular, it is shown
in [5, pp. 188—189],that (H) implies that the integers dim V¥ are unbounded. Here
we establish a more precise statement.

Proposition 3.2 Suppose (AV, d) is a simply connected minimal Sullivan algebra sat-
isfying (H). Then for some g, dim V%*? > [2(m +1)]""'. Moreover for any integer
N > 0 there is some q < 6(m + 1)"™*n?N for which diim V4*2 > N.

Corollary Ifn > 4,dim V"% > N for some g < n"*N.

Proof Recall from (3I) thatm+1 < 2 + 1. If n > 4, then (n +2):™ < n"* and
6(m+1)""*n’N < n"™N. [ |
Proof of Proposition[3.2] The first assertion is [5, Lemma 4.3]. Now let r = /n.
Since [r+ 1,2r] = Ufizl[in +1,i(n + 1)], we deduce from [12, Theorem C(i)] that
dim VL2 > ¢ Choose ¢ = 3n(m + 1)™3N, and set s = dim V"2, Then
trivially, s > 2m.

Now, divide AV by the ideal V=" - AV. This yields a quotient minimal Sullivan
algebra (AV>", d). There is a unique linear map of degree 1, §: V> — AZ2y 127l
such that

d—0: V" S5 VT LAV

Write |
0= Z 0;, where 0;: V¥ — Ayl
i>2

Since cat(AV>",d) < m, by Proposition B.I} and since d(VI+1:>1) = 0, it follows
that B
/\m+1V[r+1,2r] c Im d.

This implies that

m+1
(33) /\m+1V[r+1,2r] _ Z 9,‘(V>2r) /\m+17i V[r+1.2r]'
i=2

Now we make the following observations:

o AIVI+12 s concentrated in degrees k € [(r + 1)i, 2ri] and so

ei(v>27) — oi(V[(r+1)i71,2ri71]);
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m+1

o dimamttylretad > (<) > s (because s > 2m);

m+1/) = 2™ (m+1
. dim/\erlfzv[rJrl,Zr] < sm+171‘

On the other hand, setting
A =max{dimV/ | 2r+1 < j <2r(m+1) — 1},
we find that

dim /\m+l Vv [r+1,2r]

m+1 m+1
: [(r+1)i—12ri—1] q: m+1—iys[r+1,2r] s m+1—i
< E dimV dim A \%4 <A g (ri—i+1)s
i=2 =2

< AXm+ 1)((r— D(m+1)+ l)sm_l.

In other words, since (m + 1)! < e(Z51)"*!,

§? $?

A e s Dlnm T 12~ 38m o

Since s = dim V™11 > ¢, it follows that A > N. But A\ = dim V72, some g + 2 €
[2r+1,2r(m+1) — 1] and so g < 2¢n(m + 1) = 6(m + 1)"**n>N. [ |

Definition  The critical degree for a simply connected minimal Sullivan algebra sat-
isfying (H) is the least integer o such that dim V72 > [2(m + 1)]™*!.

Remark Since m + 1 < n, it follows from the corollary to Proposition [3.2] that if
n > 4, then the critical degree satisfies 0 < 2"1n?"*>. The same is true when n = 2
or 3. In those cases, (AV,d) is the cochain algebra on a free graded Lie algebra,
L, generated in degrees < 2, and with at least two generators. Then m = 1, and
(2(m+1))™1 = 16. If L has at least two generators x, y in degree 1, then the elements
(adx)’(ad y)*~[x, y] are linearly independent and so dimV'® = dimL;g > 17. It
follows that 0 < 17 < 2"n*"*>. The case when dim L; < 1 is similar.

Lemma 3.3 Let L be the homotopy Lie algebra and let o be the critical degree of a

simply connected minimal Sullivan algebra, (AV, d) satisfying (H).

(i) IfdimL, > [2(m+ 1)]™ (in particular if g = o +1), then q extends to an infinite
sequence q = qo < q1 < --- such that foreachi > 1, q; +1 = {i(gi_1 +1) — 1
with2 < {; <m+1, and

1 .
dim Vatl > [71 }W (diqu‘”“)Z’.
2(m+1)

(i) Given a sequence (q;) as in (i), then dim V4t > [2(m+1)]™*! for alli > 0, and
foralli > j >0,

log dim V4:*1 S logdim V4*t  (m+1)log2(m + 1)
qi + 1 - q;j+ 1 q;j+ 1 '
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(iii)

log dim V4*! 1)log?2 1
log indexV > sup( o8 I _ {m+ Dlog2(m+ )).
q q+1 q+1

Proof The proof is essentially contained in [5, pp. 188-189]. To make this paper
more self contained we reproduce here the main lines of the proof. Denote N =
dimV%! and a = (1/2(m+ 1))™*'. By hypothesis N > [2(m + 1)]™*!, and so

Na > 1. Wehave N/2 > (m + 1)%,and since N > 2m, we have for 1 <i < m,

N—-—i_ N-m N
- > > .
i+1 — m+1 — 2(m+1)

It follows from ([3.3)) that A1V = Z:";zl g;(Viar =1y am+1—i ya+l 5nd hence

N mtl N . 1 1 o . 1 1 1 1—i
(m+1)(ﬁ) < ) S dimpmtyan < Y dim Vi@ N
(m+1) m+ =

Therefore, since Na > 1, for some j € [2,m + 1],
dimV/@=1 > Ni. 4> N?a > N > 2(m+1))™.

We set £, = j, and we iterate the procedure to construct the sequence (g;);>o. Thus
we have a sequence of integers g = qo < q1 < --- withg; +1 = £i(gi—1 +1) — 1,
where /; is an integer in (2, m + 1] and

1 .
dim v+l > [L} " (dimve-r)
2(m+1)

This proves (i). It follows that dim V! > gl*l+liibivtbli . NOGb Gince each
G>2,(1+li+- 4L 4)[(0ly - 4) < 5+ -+ 5 < 1,and s0

9i+1
) , m+1 s
dim V4t > (aN)Beb > [*] dim V1t ' .
2(m+1)
We deduce part (ii) of the lemma, namely that

log dim V4! S logdim VI*! — (m + 1)log2(m + 1)
g+1 = q+1 ’

Finally, (iii) is a direct consequence of (ii). [ |

Lemma 3.4 Let L be the homotopy Lie algebra of a simply connected minimal Sullivan
algebra, (AV, d), satisfying (H).

(i) Forany j, k>0,

log S dim L,
log index L = lim sup M.
>k 14
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(ii) dimL, < (nh)’ forall ¢ > 1.
(iii) IfdimL; < cfori <k, thendim Ly < h+ m(k+2)™ ¢"*.
(iv) 0 <logindexL < log(h + 1).

Proof Part (i) is obvious.

(ii) Let S be a space with minimal model (AV,d). Then 7,.(2S) ® Q = L,
and a classical result of Milnor-Moore [16] states that UL = H,(25;Q). An
even earlier result of Adams—Hilton [I]] states that H, (2S; Q) = H(TY, D), where
(TY, D) is a differential graded tensor algebraonY and Y = {Y;};>; with dimY; =
dim H*'(AV, d).

Let {yij} be a basis of ¥; and let X = X, be a vector space concentrated in
degree 1 with basis {x;;} in 1-1 correspondence with {y;;}. Then the elements
wij = X;; generate a sub algebra of TX isomorphic with TY. Since dim X = dimY =

>, dimH'(AV,d) < (n — 1)h, we obtain

dim(TY), < dim(TX), < [(n— Dh]",
and (ii) follows.

(iii) It follows from the minimal model translation of a theorem of Ginsburg [6,
Theorem 29.14] that the kernel of the linear map

d
q: VL S AV 5 AV ALY

is isomorphic with a subspace of H**'(AV, d). Thus,

m+1
dim Ly = dim V¥*' < b+ " dim(A'V)*2,
(=2
Moreover,
dim(AV)F? < Z dim V¥ ... dim V¥,
2<ki <<k
kit +he=k+2

Denote by p(k + 2) the number of partitions of k + 2 of length ¢ and recall that
pe(k +2) < (k+2)~' (In fact, this is obvious for £ = 1 and follows by a simple
induction argument in general.) Since, by hypothesis, dim V' < ¢, i < k, we obtain
dim(A'V)2 < (k +2)'1¢f, whence

dimL; < b+ m(k+2)"™ 1,

(iv) Recall that W(z) = . dim W; z' denotes the Hilbert series of a graded vector
space W = {W;};>; and recall that < denotes coefficient-wise inequality between
power series. Then, with the notation in the proof of (ii),

1 _ 1—2z
1-30" " hai T 1—=(h+ Dz +hz"

=

L(z) < UL(z) < TY (2) <
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Denote by r; the radius of convergence of L(z). These inequalities show that r; > ﬁ
But

logdim L
log index L = lim sup %
14

Finally, it is immediate from PropositionB2land Lemma[33lthat 0 < log index L. M

= —logr. <log(h+1).

Lemma 3.5 Suppose given integers 1 < s < r, a constant b > 0, an integer ¢ > 0 and
a graded vector space W concentrated in degrees 1 < i < r. If

dimW’vgc7 1<i<s and dimWigebi, i>s,

then ,
dim(AW)F < (k+ 1)<e™ 7%, k> 1.
Proof Ifs; is the number of monomials of degree 7 in sc variables, then

dim(AWhi < ;.

Buts; = (”5;_1) = (’Jsrjc__ll) is also the number of monomials of degree sc — 1 ini+1

variables, and so s; < (i + 1)*~1.
On the other hand,

dim(AW 1)1 < dim (@)=, T(W"))’
= Z dim(@k”lWS“) -~-dim(®k'*1Wr_]) < p(j)ehj,
> the=j
where p(j) is the number of partitions of j, ie., the number of solutions of
Soripi = jwith p; > 0 ([17, §15]). Thus,
dim(AW)E < >+ DY p(j)e! < (k+ 1) p(k)e™.
i+j=k
But by [17, Theorem 15.7],

p(k) < e7r\/2k/3.

™
Vo6(k—1)

It follows (from this for k > 3 and by inspection when k = 1 or 2) that p(k) < e3ﬁ,
k > 1. Thus,
dm(AW)F < (k + 1)<e@3/VRk >, n

Lemma 3.6 Let L be the homotopy Lie algebra of a simply connected minimal Sullivan
algebra (A\V, d) satisfying (H). Suppose for constants ¢ > 0 and b > 0, and for integers
0 <s <r, that

dimV' <¢ i<s and dimV* < s<i<r
Then

dim Ly = dim VF! < (n + Dh(k + 2)<e® ™D p < p <o 1.
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Proof Define a graded vector space W by W/ = V*1 1 < i < r—1and W = 0,
i & [1,r — 1]. There is then ([6} p. 181]) a quasi-isomorphism

(AV @ AW, D) —s (AVZ"1 3)

in which (AV=*1 d) is the quotient Sullivan algebra obtained by dividing AV by the
ideal generated by V2T and (AV,d) — (AV @ AW, D) is a relative Sullivan algebra
for the projection (AV,d) — (AVZ"*1 d). Since (AVZ2"*!, d) is minimal, it follows
that VI+12T embeds in H(AVZ", d).

On the other hand, filtering by the degree in AV gives a spectral sequence con-
verging from H(AV,d) @ H(AW, D) to H(AV=""!,d). Thus we may apply Lemma
[B.Alto obtain for k € [r, 2r — 1] that

dim Ly = dim V¥ < dim H*'(AV @ AW,D) < ) dim H'(AV, d) dim(AW)

i+j=k+1

(k+1)

< (n+ Dh max dim(AW)! < (n-+ Dh(k+ 2)sceltt i) -
1<k+1

Proposition 3.7 Let L be the homotopy Lie algebra of a simply connected minimal

Sullivan algebra (AV, d) satisfying (H). Suppose for an integer s > 0 and for some ¢ > 0
that dim L; < c fori < s. Then for any integer r > sand r > 3,

sup log di.m L; < max log d.im L N 2logn(n+ 1)h? N 5sclogr N 15

s<i i s<i<r i r r N
Proof Consider s as fixed and set

logdim L; logdim L;

[y = max and  poo = sup
s<i<r 1 s<i 1

Apply Lemma[3.§with b = p, and r > 2 to obtain, for k € [r, 2r — 1], that

(3.4) log dim Ly < log(n + 1)h +sclog(k+ 2) ot Broy 3‘/m
k k k k k
log(n + 1)h log 2k Hr \/5
< Hr z
< p + sc . + pr + 3 +3 k
<y + 08 DR ogar 3\/E'
r r r r

Now by Lemma 3:4(ii) we have dim L, < (nh)’, £ > 1, and it follows that u, <
log nh, whence
2
log(n + 1)h N Hr < logn(n+ 1)h .
r r r
Thus, because the previous inequalities (3.4) hold for k € [r,2r — 1], r > 2, we may

conclude that either py, — 1, = 0 or else

(log dim Ly)
Mor — fty = MAX —————— —

re
r<k<2r—1 k
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Thus in either case,

1 + 1h log2 2
/~L2r_,ulr§ Og(n ) +SC %8 r+/~‘Lr+3\/7
r r r r

2
< logn(n+ 1)h N sclog2r 3 2
r r r

Now replace r by 2'r (0 < i < 00) in this inequality and sum over i to obtain, for
r > 3, that

,U'oo_,urg

1Y logn(n+ 1)k . 1+log2™! sclogr = /2\ 1
(3 5) e, (y M by

i=0 i=0

Standard sums and a little calculation give

1 1+ log 2! = /2
25:2, ZTga and 3 S <1
i=0

i=0 i=0
Substitution in the previous inequality then gives the assertion in the proposition. B

Corollary  Let o be the critical degree for (AV, d). Then for r > max(o,9),

logdimL; 21 + 1)h? 1 15
log index L < max 08 ?m Ly ogn(n+1) + 52215 o8, 2
o<i<r 1 r r \/;
log dim L; 1
< gy o8dimL 1
o<i<r 1 \/1j
Proof Since dimL; < [2(m + 1)]™! for i < o, we may substitute o for s and
[2(m + 1)]™*! for ¢ in Proposition[3.7 Now since m + 1 < n,

2logn(n+ 1)k +52*"'n*"*> +15) .

sc < (znn2n+5) [2(1’/’! + 1)] m+1 < Dy 2ntSgn A2 305

This gives the first inequality, because log index L < sup__; (logdim L;)/i. Finally,
because r > 9, it follows that 1/1/r < logr//r < 1. This gives the second inequality.
|

Lemma 3.8 Let L be the homotopy Lie algebra and let o be the critical degree of a
simply connected minimal Sullivan algebra satisfying (H). Suppose 0 < s < r are
integers such that r > o. Then

logdim L; logdim L; +1)log2(m+1
max og' imL; < max og- im i (m+1)log2(m ).
s<i<(m+1)r 1+1 r<i<(m+1)r 1+1 s

https://doi.org/10.4153/CJM-2012-050-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2012-050-x

The Ranks of the Homotopy Groups of a Finite Dimensional Complex 99

Proof Leti, € (s, (m + 1)r) be an integer for which

logdim L;, — (m+ 1) log2(m+1) ma logdimL; — (m +1)log2(m + 1)
io +1 a s<i<(m)4(rl)r i+1 '

Since r > o, it follows from Lemma 3.3 that dimL;, > [2(m + 1)]™"!. Thus, by
Lemmal[3.3] i extends to an infinite sequence iy < i; < -- - for which, in particular,

logdim L;, S logdimL;, — (m +1)log2(m + 1)
i,+1 = ip+ 1

, alv>o0.

Since i, < (m+ 1)(i,—; + 1) — 2, it follows that some i satisfies r < i; < (m + 1)r.
Thus it follows from Lemma[3.3] that

logdim L; < logdim L;, S logdim L;, — (m + 1)log2(m + 1)

r<i<(m+l)r  1+1 T e +1 - 190+ 1
logdimL; — (m + 1) log2(m + 1)
= max -
s<i<(m+1)r 1+1
logdim L; +1)log2(m+1
> max g. imL; (m+1)log2(m )'
s<i<(m+1)r 1+1 S
This establishes the lemma. [ |

Theorem 3.9 Let L be the homotopy Lie algebra and let o be the critical degree of a
simply connected minimal Sullivan algebra (AV, d) satisfying (H). Suppose k > 2 and

r are fixed integers for which 211‘:) ggk;h > max(20, k, o). Then

max
i>r

(logf:nllL,-) n loran

< log index L

< max

r<i<kr

( logdimLi) N 4 (2nlog2n +log(h+ 1) + 1) log nh
i+1 log r '
Corollary  The conclusion of Theorem[B9holds for k = 2 iflogr > 2™1n?"*5 log nh.

Proof As observed in the remark following the proof of Proposition o <
2”1’12n+5. ]

Proof of Theorem[3.9] Recall from (B.1]) that m + 1 < n. Thus for i > r, Lemma
B.3Liii) gives

logdim L; _ nlog2n < logdim L; — (m + 1)log2(m + 1)
i+1 r - i+1

< log index L.

To prove the second inequality, let s be the largest integer satisfying s < zliggk;h. Then
s> kand (nh)* < kr. Now note that

logdim L; logdim L;
log indexL = lim_sup & < sup &.

i 1 s<i 1
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By Lemma[3.4(ii) we have dim L, < (nh)’, £ > 1. Thus we may use Proposition [3.7]
with ¢ = (nh)® to obtain

logdim L; logdimL; 21 + 1)k?
sup ogd%m i < max ogd?m ; ogn(n+ 1)h

s<i i T s<i<(nh)® i (nh)%
5s5(nh)* log(nh)* 15
(nh)* (nh)s

Since s > 20 and 10% < L forx > 0, it follows that 2log n(n + 1)h* < (nh)*. Thus

1
e

2logn(n+ 1)h? . 5s(nh)* log(nh)* L1516+ 10s? log nh
(nh)* (nh)* (nh)* — (nh)®

Since s > 20 and (by (3.2) nh > 3, we have 16 < s* log nh and

11s* log nh 115 11s* 1
< <<
(nh)s  — e(nh)s—1 — ¢ s

Altogether then, we obtain

logdim L; logdimL; 1
log index L < sup g < max L + —.
s<i 1 s<i<(nh)* 1 s

Next, for i > s, Lemma[3.3[iii) gives

logdim L;

+1)log2(m+1
: < log index L + (m + 1) log 2(m )7
1+ 1 S

whence
logdimL;  s+1 logdim L;
max " max ——(——
s<i<(nh)® 1 S s<i<(nh)»  1+1

logdimL; 1 .
e A [log index L +
s

(m+1)log2(m+1)
p .

AN

< max .
s<i<(nh) 1+ 1
Since 3 < 1, while 1 log index L < 1log(h + 1) by Lemma[3.4(iv), the inequalities
above reduce to

logdim L;

log index L < max + 1[log(h +1)+(m+1)log2(m+1) + 1] .
s

s<i<(nh)® i+1
Finally, since s < (logkr)/(2log nh) it follows that (nh)* < kr. Since (cf. 3.2))

nh > 3, we have ¢ < kr. A little calculation shows that x> < e** for x > 0, and
s0, since s > k we have sk < §* < kr; i.e, s < r. On the other hand, we have

https://doi.org/10.4153/CJM-2012-050-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2012-050-x

The Ranks of the Homotopy Groups of a Finite Dimensional Complex 101

chosen r so that (logkr)/(2log(nh)) > o and since s is the largest integer for which
(logkr)/(2lognh) > s, we have 0 < s < r. Now we may use Lemma[3.8]to obtain

logdim L; logdim L;
max ————— < max ——
s<i<(nh) 1+ 1 s<i<kr 1+ 1

logdim L;
ax og.dlle N (m+1)log2(m+ 1)’
r<i<kr 1+1 S

Indeed, if max,;<k, (logdimL;)/i +1 = (logdimL;,)/(ip + 1) with r < iy < kr
then the inequality is trivially true. Otherwise,

logdimL;  logdimL;,

max —= -
s<i<kr 1+1 10+ 1
with s < iy < r. Then
logdim L; logdim L;
max ————— = max —————,
s<i<kr 1+ 1 s<i<(m+l)r 1+ 1
and we apply Lemma But because s is the greatest integer less than zlﬁ)ggk;h, it

follows that
log kr — 2lognh

$= 2lognh
On the other hand, by the choice of r, 2log nh < %. Thus, because k > 2,

] k—1 logkr S logr
~ k 2lognh ~ 4lognh’

Thus since k < s < r, substitution in the inequality above yields the second inequality
of the theorem. [ |

4 The Asymptotic Formula

In this section we again consider the homotopy Lie algebra L of a simply connected
minimal Sullivan algebra (AV, d) that satisfies (H). In particular, we introduce the
following additional notation:

oy = log index L,
An, h) = 4(2nlog2n +log(h+ 1) + 1) log nh.
We have from Lemma[3.4(iv) that 0 < oy < oo.
The depth of L is the least integer, k, (or co) such that Ext’{, (Q,UL) # 0, and

we recall from [6, Theorem 35.13] that depth L < m, where, as set out in (H), m =
cat(AV, d).
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Lemma 4.1 Let L be the homotopy Lie algebra of a simply connected minimal Sullivan
algebra (A\V, d) satisfying (H). There is then an infinite sequence ro < r; < --- and a
sub Lie algebra E C L such that

(i) fori>0,2r; <ripg < (m+ Dry;
(ii) E is generated in degrees r;, i > 0, and fori > 0

1 2h) y

(o — By, : (ar—Fort
3 e o M < dim(E/[E, E]),, < e Tog
Proof We first use Theorem[3.9]to construct infinite sequences (r;) satisfying (i) and
such that

2X(n, h)
L —
r; logr;

logdim L,,

(4.1) >«

y 1 Z

Indeed, let r > n be any integer such that

(log(m + 1)r)

20 1
(2log nh) > max(20,m + 1,0),

where o is the critical degree of (AV, d). Then choose ry € [r, (m + 1)r) to maximize
(logdimL;)/(j + 1) forr < j < (m + 1)r. Then TheoremB9with k = m + 1 yields

logdim L,, S logdim L,, S A(n, h) S 2X\(n, h)
oy —

1o - rntl T t logr = logry

(The last inequality follows because m < n/2, and so ry < (n/2 + 1)r, and hence
logry < log(n/2+ 1) +logr < 2logr.)

Next suppose by induction that the r;, j < i, have been constructed. Since r; > ry
we may apply Theorem 3.9 exactly as above to find riy; € [2r;, (m + 1)r;) and such
that (4.I)) holds.

We complete the proof by applying Lemma[2.4} and for this we shall suppose that
the initial r above was chosen so that

2(log2)A(n, h) S 3log2x
logxlog2x — «x

for x > r. To obtain this lemma from Lemma [2.4]it is sufficient, in view of (4.1J), to
show that for i > 0,

ZA(n,h){ 1 1 } 22log(ri-kl) +log3'

logr;  logriy r; Tit1

Since 2r; < iy < (m + 1)r;, it is enough to show that

2log2A(n, h) S 3log2r;
logr; log2r; — 1;

i

and this is exactly our additional hypothesis above on r. ]
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We will use the Hochschild—Serre spectral sequence in the next proposition. We
refer the reader to [7] for the notation and properties of the spectral sequence, noting
that since chark = 0, AU = I'U, the free divided powers algebra on U, for any
graded vector space U = {U;};>1. We denote by sU the graded vector space defined
by (sU); = U;_;. Then for each sub Lie algebra E C L, we write I = [E, E], and
observe that the proof of (Xy) in [7, §4] implies that

(4.2) Ext zp) (Tory ! (k, Ts(L/E)), U (E/T)) # 0

forsome p+q =15 < m.
In fact, the Hochschild—Serre spectral sequence converging from

Ext{y; (A9s(L/E), UL)

to Exty[(k,UL) gives Extl,z(A%s(L/E),UL) # 0 for some i + q¢ < m, because

depth L < m. Since UL is U E-free, this implies that Exth(/\qs(L/E), UE) # 0). Now

the proof of [8, Lemma 4.2] applies verbatim to give EXt{]E(/\qs(L/E)7 UE/I) # 0.
On the other hand there is a Hochschild—Serre spectral sequence converging from

Exty, ? /I)(Tor;”(k, Nis(L/E)), U(E/I)) to Ext},(A9s(L/E), U(E/I)). Formula [&2)
follows.

Finally [7, Proposition 1, §2] asserts that if F is an abelian Lie algebra, M is an
F-module, and Extyp(M,UF) # 0, then for some x € M and some r the map
U(F>,) = M, a — a - x is injective. This, together with (4.2]), shows that for any sub
Lie algebra E of L, for some integer A and some w € Torgl (k, N1s(L/E)), the natural

action of U (E/I) satisfies
U((E/I)ZA) — U((E/I)Z,\) - w is injective.

Proposition 4.2 Let L be the homotopy Lie algebra of a simply connected minimal
Sullivan algebra satisfying (H). There is then an integer R such that for allr > R,

1 imL;
max —2mH d?m - > log index L — OA(n, h).
r<i<ry/r—1 i logr

Proof Let (r;) and E C L satisfy the conditions of Lemmal[41] and write [E, E] = L.
There is thus some integer A and some w € Torgl(k7 Nis(L/E)) for which p + q =
s<mand

(4.3) U((E/I)>)) — U((E/I)>)) - w is injective.

Write W = sI ®sL/E and represent w by a cycle z € A*(W<y), some N. Then choose
ig > 0so thatr;, > N.
We will impose a number of conditions on R. To begin, we require that

VR

m>)\ and \/E>T’i0+N.
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Now let r > R be any integer. Then r;, + N < 4/, and so there is a greatest integer
i such that r; + N < /r. Clearly then r; < \/r < r. Let k > 2 be the least integer for
which r;k > r. Since (k— 1)r; < rwehavekr;+ N = (k— D)r;+ri+ N <r+/r—1;
ie.,

(kri, kr; + N C [r,r++/1 — 1).

Next, let {u;} C E,, represent a basis of (E/I),, and denote the adjoint represen-
tation of E in T'W by ” o ”. Further, for £ > 1, denote by A’ C UE the linear span
of the elements uj, - - - u;, with j; < --- < j,. Note that AT < AL A Since i
is the largest integer for which r; + N < /r, we have (m + 2)r;, = (m+ )r; +1; >
tis1 + 1y > rig1 + N > /r. Thus,

Vi, VR

> A
m+2 - m+2

T >
It therefore follows from (&3)) that for any ¢ > 1, A® — A’ o z is injective.
Now recall that z € I¥(W<y), where s < m. Set K = dim I‘S’”(WSN). As in the
proof of (Xy) in [[7, §4], we have

ozcz > (Aflow<N) (A" o W) T (W),

t=1 {1+--+l,=
0H<-- <£,

When ¢ = ks, we have ¢, > % > k (because s > t). Since AR AZA[/, and since
¢, > k, it follows that A oW«y C Al—k oAkoWSN. Sinces < m, dim I (W<y) <
dim FS’”(WS ~) = K. Thus, since A% — A¥ o zis injective, we obtain

dim A* < E E (KdimA®) - -+ (K dim A%') dim A% ~* dim(A* o W<n)K.
t=1 {+---+l,=ks
0<-- <l

2\ (n,h)

Togr ) and set

Next, write d; = log index L —

logdim L;
d= max —2°0
r<j<r+y/r—1 r

Now recall that A* is the linear span of the elements uj, - - u;j, with j; < -+ < ji.
Thus the elements of A* have degree kr;. Since [kr; + 1,kr; + N] C (r,r +/r — 1), it
follows that

kr,»+N
dimAfo Wy < Z dimW; <N - max dimL; < Ne.
- Pt r+1<j<r+/r—2
On the other hand (LemmaT) dim(E/I),, < e%", and so for any ¢, dim A* < %"’
Denote by p the number of partitions of ks. Then, because t < s < m, the inequalities
above yield

(4.4) dim A* < pK”‘ed"”(S*l)kNedr.
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If x > I are respectively a real number and a strictly positive integer, we write

x\  x(x—1)---(x—L+1)
<£) 0

and note that (’,f) > (%)5. We now require the following further condition on R: for

any y > R,
2A(n, h
(log index L — I(Eg,y )) y > log(4m(m+2)*y).
Then, with this condition satisfied, we establish the inequality
L odiri editi\ ks
45 dimat > (27 ) > (52)
(4:3) maAn = ( ks ) —\ 2ks

In fact, since (Lemmal41)) we have dim(E/I),, > %ed*' i it is sufficient to show that

¢ > 2ks. But since (k — 1)r; < rand r; < r, it follows that kr; < 2r. Moreover,
as observed earlier in the proof, r; > m—‘{; It follows that k < 2(m + 2)+/r, and so
2ks < 2km < 4m(m + 2)\/r < 4m(m + 2)*r;. Since r; > R, our hypothesis above
on R implies that d;r; > log(4m(m + 2)*r;) > log(2ks), i.e., ¢4 > 2ks. Thus is
established.

Now recall, as observed in the proof of Lemma[3.3] that p < ¢€° ks Recall also that
r < r;k and that s < m. With these observations, combine the inequalities (4.4]) and
(4.35) and take logs to obtain

dr > dir — kmlog(2km) — 3vkm — mlogK — logN.

It follows that for some ¢ depending only on m, K, and N that
dr > dir — cklogk.
But k < 2(m + 2)4/r, and so
_ 2¢(m +2)
Vr
We now impose one final requirement on R, namely that for y > R,
A(n, h)
logy

d—d; > 10g(2(m+2)\/;).

M log(Z(m + 2)\fy) <

Then, because r > R, we have

d>d — Alm ) _ log index L — 22(mh) _ Aln, h).
logr logr; logr
Finally, as observed earlier, r; > % and so logr; > %logr — log(m + 2). But
r >R > (m+2)*ji and solog(m + 2) < }logr. Thuslogr; > ;logrand
d > log index L — 9, h). [ |
logr
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Theorem 4.3 Let L be the homotopy Lie algebra of a simply connected minimal Sul-
livan algebra satisfying (H). Then, given € > 0, there is an infinite sequence of even
integers qo < q1 < - -- and a constant Cy > 0 such that

gin1 — qi < /qi +Co, 120,
and

logdim L, > log index I — (9 +5))\(n,h)’ P> 0.
qi log gi
Proof As in the proof in [7, §4] that (Xy) = (X3), there are finitely many elements
Y1, ..,y of odd degree in L such that for £ odd and sufficiently large there is some
p(€) € [1,r] for which dim Lyt deg y, ) > % dim L.
Next, recall from Proposition [£2] that if an integer q is sufficiently large, then for
some ! € (q,q+ /9 — 1),

logdim L
w > log index L — A, h).
4 logg
Define k by
e if £ is even,
| £+ degyup ifisodd,

and write Cy = max, <;<, deg y;. Then kis even and g < k < q + ,/q + Co, whether
{ is even or odd.
In the case £ is odd we have

log dim Ly . logdim L, _ logr

(4.6)

k - k k
_logdimL, 1 logdim L,
== E(degy#(g)f +logr) .

It follows from Lemma B.4(iv) that the set {M | ¢ > 1} has a finite upper
bound, and so for sufficiently large g,

1 logdim L, g/2X(n, h)
4. - —— +1 T
Moreover, whether / is even or odd we have k < 2¢, and so

logk < log g + log2 _

+4
logg — logg ’

where for g sufficiently large 6 < €/2. Then

logdim L
(4.8) log dim I, > log index L — O (n, h)
4 logg
9+ ) A(n, h
> log index L — M
logk
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Formula (4.38)), combined with ([4.6)) and ([4.7) when ¢ is odd, establishes the in-

equality
logdim L 9 A, h
logdimLr - g indexr — O MMM
k log k
always provided g > Q for some fixed Q. For such g set k = g and then iterate the
construction to obtain the sequence (¢;). [ |

Proposition 4.4 Let L be the homotopy Lie algebra of a simply connected minimal
Sullivan algebra satisfying (H). Then, given € > 0, there is a constant C > 0 such that
fork > C,

logdim L; (9 +3e)A(n, h)

> log index L —
wadioken 3 — osmaex log(k+ 1)

Proof The principal step in the proof is to show that for some d > n,

> log index  — O 22N 1)

logdim L;
m _—
(<i<l+d i log?

(4.9) ,
if £ is sufficiently large. We establish this by showing that the hypothesis that ([4.9)
fails leads to a contradiction, and we do so following the general idea of the proof of
[7, §3, Thm. 2].

To begin, recall that we set oy = log index L, and remark that, by Lemma [3.4(i),
since dim L = 0o, we have oy > 0. Now simplify notation by writing

c=(9+2¢)An,h).

Then if (4.5 is false, we may find an infinite sequence 0 < ¢y < ¢; < --- such that
forr > 0,
logdim L;
(4.10) max & < ap— _c
6<i<botr i log ¢,

Moreover, by choosing a subsequence if necessary, we may also arrange that for r > 0,

(4.11) o - € <o,

og/,

and forr > 0and x > {,,,,

1 L+ 1
(4.12) c _Slogltl) ¢
log ¢, 4, logx
For the last equation, remark that when ¢, > 5

£,41 so that this quantity is bigger than gl

Recall next from Theorem[4.3] that there is a constant Cy and an infinite sequence
2 < gy < q < --- of even integers such that for j > 0,

¢ Slogllytl) o 0, so we can find

> log ¢, L

gj+1 < 4j +,/q; +Co
(4.13) logdim Ly, (9+¢) A(n, h)
R e
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By beginning the sequence at a sufficiently large qo we may also arrange that for j > 0,

(9+¢e)An, h)

(4.14) ap — ogd; >0 and g;+./q;+Co < 2q;.
In particular, comparing (4.10) with ([4.13) we find that for all j,r > 0,
(4.15) 05 & s, 0, + 7).

We now construct an infinite sequence (z;) of elements of L and a strictly increas-
ing infinite subsequence (s;) = (¢,,) of the sequence (¢,) such that the following holds
fori > 0:

(Cl) z # 0,degz is even, and degz; > degz;_;.
(C2) The sub Lie algebra, E(i), generated by z, . . . , z; together with the subspaces
Lis; 541, 0 < j < i, satisfies

dim(UE(i)); < ™ ® | j>0.

(C3) The subspace (UE(i — 1))+ o z; is finite dimensional and concentrated in odd

«_»

degrees, where “o” denotes the adjoint representation.
Remark Ininterpreting (C1)—(C3) fori = 0, weset E(—1) = 0,andz_; = 0 € L.

Now once the sequence s; = £, and z; are constructed, we will use the same ideas
as in the proof of [7, Theorem 2, §3] to yield a contradiction and hence establish
(49). Thus first we will recall how to obtain a contradiction from (4.9]), and then we
will construct these two sequences by induction on i.

Recall first that an L-module M is weakly locally finite if M is the increasing union
of finite dimensional subspaces M (1) C M(2) C --- such that M(k) is preserved
by L<t. Then the weak depth of L, w-depthL, is the least k (or oo) such that
Ext¥,; (M, UL) # 0 for some weakly locally finite L-module, M.

Now set E = U,E(r). Since (L/E); = 0 for i € [sj,s; + r;], L/E is a weakly locally
finite L-module, and so, by [7, Lemma 5], w-depth E < w-depth L < m.

The relation (C3) clearly implies that for any r, and any i > 0, [E(r), z,4;] is finite
dimensional and concentrated in odd degrees.

Let w-depth E = k, and let Z(r) C E(r) be the sub Lie algebra of elements that
commute with each z,.;,, 0 < i < k. Since [E(r), z,4;] is finite dimensional and
concentrated in odd degrees it follows that E(r)/Z(r) is also finite dimensional and
concentrated in odd degrees. By 7, Lemma 8], the restriction morphism

EXtUE(,) (1\47 UE) — EXtuz(,) (M, UE)

is injective for any E-module M.

On the other hand, since w-depth E = k, there is a weakly locally finite E-module
M such that Ext]{]E(M, UE) # 0. Moreover, since E = U,E(r), for some r the re-
striction morphism Ext][, (M, UE) — Extlfj (M, UE) is non-zero. Hence also the
composite

Extf;z(M, UE) — Extf;(,,(M, UE)
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is non-zero.

Since each [E(i), zi;1] is concentrated in odd degrees, it follows that [z;, z;] = 0,
0 < j<i< oo ThusZ = @  kz.; is an abelian Lie algebra commuting with
Z(r). Because Z(r) — E factors as Z(r) — Z(r) + Z — E, the restriction map
Extf (M, UE) — Ext]{]Z(,) (M, UE) factors through Ext]{](z(r)JrZ) (M,UE). Since UE
is a free U(Z(r) + Z)-module, it follows that w-depth(Z(r) + Z) < k. Since Z is
an ideal in Z(r) + Z, there is a Hochschild-Serre spectral sequence converging from
ExtIZ((Z(T)JrZ)/Z)(k7 Ext?](z)( -, +)) to Extfjg(r)JrZ)( -, - ). It follows that w-depth Z < k.
But Z is finitely generated, so [[7, Lemma 5] asserts that depthZ < k. On the other
hand, since Z is abelian and concentrated in even degrees, [6} Theorem 36.4] asserts
that depth Z = dim Z = k + 1, and we have the desired contradiction.

Now we proceed to the construction of the sequences s; and z;. To begin, we
set rp = 0 so that so = £y, and we let zy be any non-zero element in some L, with
q;j > o, noting that (413) and (4.14) imply that this space is non-zero. Thus, because
E(—1) = 0and z_; = 0 € Ly, (Cl) and (C3) are trivially satisfied for i = 0.
Moreover, since E(0) is generated by L, + kz, it follows from and (4.17)) that

m( [ E(0)

(p—==7)] .
— ) <e ogfy )/ > 1.
E<0>,E(0>1) j !

Also, since E(0); = 0 for j < {y, we have from Lemma[2.2] that

log(fp+1) )]

dimUE(0); <™ ®mn " . j>1.

Now apply (.12), noting that whatever the choice of s; we will have s; > ¢, to obtain
that E(0) satisfies (C2).
Next, suppose s, . .., s, and 2o, . . . , z, have been selected so that (C1)—(C3) hold.
Set
d(p) = 1+ max(s, +r,,degz,),

and choose g to satisfy the following three conditions:
i) q>d(p);

.. log x (9+1.5¢) ,

(i) forx > 4, o vmmey > ©re

2/x+2C logd(p) 56 ¢
(iii) forx > g, ap ==+ == q+2¢ logx*

Then choose 14 and s, = £,,,, so that for some g; > g,

Tp+1
rpr1 >d(p) and sy > qi > q.

Because of (4.I3)), no g; is in the interval [s,.1,sp+1 + 7p11]. It follows that for some
(unique) g; > g,
[5p+17 Sp+1 t+ rp+1] - [Qja Qjﬂ)-

Now dualize the adjoint representation of UE(p) in L to linear maps

0,‘: Lq] —Li® (UE(p),'_qj)#7
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where # denotes vector space dual. From (4I0) and (C2) we find that for i €
[5p+175p+1 + rp+1];

dimL; ® (UE(p)iqu )# < e(aL_logSPH )le(aL_logsp+1 )l—‘JJ'.

From (4.13) we have 5,1 +d(p) < sp11 +1p1 < gj11 < gj + V4 * Co. Substitution
in the inequality above yields

dimIm g; < ™ R @AV
1= .

for s, < i <spyy +d(p). Thus,

spr+d(p)—1
1 r 2./G;: +2Cy  logd
log( Z dim IM9,~) <ap— ¢ + ap 1 4 o8 (P).
q; log sy q; q;

1=5p+1

But
c c c logg;

> = .
log sp41 log(g; + VAt Co) logg; log(q; + Vait Co)

Thus, since q; > g, it follows from our conditions above on g that

Sp+1 d(P)—l '
1 "y logdim Ly,
e log( Z dim Im 91‘) <a— (9+¢e)A(n, h) < ogdim L, .
qj logq; 0

i=5p+1
This implies in turn that for some non-zero z € L,
0iz=0, sp <i<spy +d(p).
Equivalently, where, as usual, “o” denotes the adjoint representation,
(4.16) UE(p)ioz=10 forie [spﬂ —qj,spr1 — gt d(p)) .

But since d(p) > s, + 1, and d(p) > degz,, it follows from the definition of E(p)
that this sub Lie algebra is generated by elements of degree < d(p). Thus from
we obtain

UE(p)ioz=10, i2>sy11—4q;;

i.e., UE(p) o z is finite dimensional. Moreover, z € Ly, is a non-zero element of
even degree in UE(p) o z. Let z,,1 be a non-zero element of maximal even degree
in UE(p) o z. Then degz,,; > degz = q; > d(p) > degz,, and so (C1) holds for
i = p+ L. Obviously (C3) holds by the very choice of z,;. Finally, note that E(p + 1)
is generated by E(p) together with

W = L[5p+17 1+ kZpH.

Sp+1HTpe1
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In particular, it follows from (£I0) and (£II) that for all j > 1, dimW; <
(= m—)j
e .

logspi

Furthermore, since degz,1 > qj and s, > g;, we have W; = 0, i < g;. Thusin
view of (C2) for i = p and Lemma[2.3[ii), we may conclude that for any j > 1,

logdim UE(p + 1); < ¢, 3log(g; +1)
- <ap— .

L
j logs,+1 g

Since g9 > 2 and @ decreases as x increases for x > 2, we obtain from (£.14)
that

3log(g; +1)  6log(q; +1) < 6log(q; +./q; +Co+ 1) < 6log(sps1 + 1)
qj 2q; B aj+/d; +Co Sp+l '

Finally, apply (.12) to obtain that for all j > 0 that

c
Sop——,
logx

logdim UE(p + 1); c 6log(sps1 + 1)
Eptl); (£ Slogtra v D))
J Sp+l Sp+1

whenever x > /£, + 1. Since any choice of 1., will satisfy rpsy > 141 + 1, we will
have s,., > Erpmrb so (C2) follows for i = p + 1. This completes the induction, and
with it the proof of (£.9)).

It remains to deduce the proposition from (£3]). Thus we suppose (£9)) holds for
¢ > Cy, some C; > 0. Then, because dim Ly = dim V¥ (all k > 1) with (AV, d) a
minimal Sullivan algebra satisfying dim H'(AV, d) < h,alli > 0,and H'(AV,d) = 0,
all i > n, we may apply [14}, Corollary 7]. This asserts that for some C, > 0 and any
integer £ > C, there is an integer i € (¢, ¢ + n) for which

1
dimL; > — dim L.
nh

It follows that if k + n — d > C,, then for any ¢ € [k+ n — d, k + n] there is an integer
i > {suchthati € [k+ 2,k + n] and

1 d—n+2
dimL; > (—) dim L,.
nh

Now suppose k+n—d > Cyandk+n—d > C; and choose £ € [k+n—d, k+n]
so that

logdim L, logdim L;
———— = max ——.
Y4 ktn—d<j<k+n j

Then because of (4£.9), we will have for the i € [k + 2, k + n] above that

logdim L; S logdimL,  (d —n+2)lognh
14 - 1 1
(g+2e)A(n,h)  (d—n+2)lognh
 logk+n—d) i '

Z af
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Next, choose C3 > 0 so that for k > Cj,

log(k+1) < 9+2.5¢

(4 17) log(k+tn—d) — 9+2¢
. doy+(d—n+2) log nh .5 A(n,h)
k+2 — log(k+1) *

Set C = max{C;,C,,C;}. Then for k > C the i € [k + 2, k + n] above satisfies

logd.imL,» > (aL— (9+25))\(n,h)) ( 7 i—é) 7 (d—n+.2)10gnh

i log(k+n —d) i i
S é (9+2e) A(n,h)  (d—n+2)lognh
=T TN T Yogk+n—d) i
- (9+2¢) A(n,h)  log(k+1) B (d—n+2)lognh+day
t log(k+1) log(k+n—d) k+2 '
In view of (417 this yields
logdim L; (9 +3¢) A(n, h)
— 2
i log(k+ 1)
and since i € [k + 2, k + n], the proof of Proposition[£4]is complete. [ |

Next, recall the notation

B(n,h) = 40(2nlogn + log(h + 1) + 1) lognh,
v(n,h) = nlog(h + 1) + 2nlog2n
from the introduction. In particular, 5(n, h) = 10\ (n, h).

Theorem 4.5 Let L be the homotopy Lie algebra of a simply connected minimal Sulli-
van algebra that satisfies (H). Then the homotopy log index oy, satisfies 0 < ay < 0.
Moreover, for some K > 0 and for all k > K,

_ B . A(n.h)
cmm )R o dim I < el EkD

T k2<i<k+n

Proof It follows from Lemmas B3(i)(ii), and B4(iv) that 0 < o < log(h+ 1).
Moreover, the first inequality follows from Proposition 4 provided that K > C
and 3¢ < 1. On the other hand, the first inequality of Theorem B9limplies that for
an appropriate K, and for all k > K,

logdim L; < logdim L; <ap+t nlog 2n.
k+2

max < max -
k+2<i<k+n k+n+1 k+2<i<k+n 1+1

Therefore, for i € [k + 2,k + n], we have dimL; < ot ) (ktnt])  Gince by
LemmaB4(iv) oy < log(h + 1), the second inequality of the theorem follows, pro-
vided that k + 2 > n. [ |
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5 Topological Results
We begin by proving Theorem[I.2]

Lemma 5.1 LetY be a simply connected n-dimensional CW complex such that for
some k, MaXpp<i<irn 1K (Y) < 00. Then rkmi 1 (Y) < oo.

Proof We may assume that Y has a single zero cell and no 1-cells, and that the attach-
ing maps for all the cells preserve base points. We shall assume rk 741 (Y) = oo and
deduce a contradiction. Indeed, given any subcomplex i: W C Y, consider based
maps f: S¥! — Y for which f Vi: &' VW — Y extends to a map S! x W — Y,
also denoted by f. This property depends only on the homotopy class [ f] € 741 (Y),
and the homotopy classes in 71 (Y) with this property form a subgroup Gy (W,Y)
first introduced by Gottlieb in [11]].

Now suppose Z O W is a second subcomplex of Y obtained by the addition of
a single cell: Z = W U, D%. Given amap f: ! x W — Y, we let m: DM —
DM /sk = Sk and p: S¥ x Z — Z be the projections and form

f(m xid) Ulp: (D' x W)U ($ x Z2) — Y,

where ¢: Z — Y is the inclusion. The obstruction O(f) to extending this to a map
DM x Z — Y is the obstruction to extending

f:DM x s U Sk x DT) — ¥

to D’ x D4 i.e., it is an element of Tirq(Y).

Lemma 5.2 The correspondence f — O(f) defines a linear map
Gri1(W,Y) — g (V)

whose kernel is G (Z,Y).

Proof Recall first the classical definition of the addition in 7,4(Y). Denote by H
the hyperplane x; = 0 in R¥"4"!. Then the pinch map V: S — Sktd v/ k¥ jg
the quotient by the subspace ¥ N H, and the sum of two elements /; and h, is the
composition

v hiVh,
CRCSRENE LT AVEN AL ity ig

The map V decomposes as follows
(DM x ST U (SF x D1) — [(D! v DEYy x s U [(SE v skt ) x D] =
[(DE x ST U (S5 x D] v [(DE! x s U (SE x DY),

where DX! denotes the quotient of {(x;, . . ., Xk11) € D! |x; > 0} by the subspace
D" N H. We use similar definitions for D**!, S and S* . Clearly $* = §¢ = ¥ and
Dk+l ~ Dk+l ~ Dk+l

=D .
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Now let f,g € G 1(W,Y). The extension of f +g to S! x W is the composition

v xid U
(SF X W) 8 (SET v SE) X W= (S5 X W) Uy sy (S5 5 W) 55 Y.

Since the projection p: S x D1 — D1 is the composition

S x DI VY (S v 85 ) x DT = (85 % D) Upag ) (SE x DT) =¥ DA,

the maps f/-l\—jg and ]?+ g coincide. ]

Since 2 < q < n, Triy(Y) ® Q) is finite dimensional, it follows that the image of
Gi+1(Z,Y) ® Q) has finite codimension in Gy (W,Y) ® Q.

A trivial induction now shows that for finite subcomplexes W C Z of Y the image
of Gi;1(Z,Y) ® Q has finite codimention in Gy (W,Y) ® Q.

Next, given a based map g: P — Y, we denote by [g] ® 1 the corresponding
element of ,(Y) ® Q. Similarly if p: W — Y is the inclusion of a subcomplex we
denote by 7, () ® Q) the induced maps between the rationalized homotopy groups.
We shall construct a sequence pt = W(0) C W(1) C --- of finite subcomplexes of
Y together with maps f(i): S % W (i) — W (i + 1) such that

[f(i)lskﬂxpl] ®1¢g Im7rk+1(f(i)|ptxw(i)bigr) ® Q.

Indeed, first note that G (pt,Y) ® Q = w41 (Y) ® Q is supposed infinite di-
mensional, so we may choose for f(0) any representative of a non-zero element of
Tre1 (V) ® Q.. Thenif W(0) C --- C W(¥) and f(0), ..., f(£) are constructed, we let
W (£+1) be any finite subcomplex of Y that contains IM f(¢). Then mi.; (W (£+1)) ®
@ is finite dimensional and so has finite dimensional image in 7; (Y) ® Q.. Since the
image of Giy1 (W (£ +1),Y) ® Q has finite codimension in the infinite dimensional
space Giy1(pt,Y) = T (Y) ® Q), we may find f(£+1): S x W(£+1) — Y such
that

[fU+1)gnxp] @1 €Im[me (W +1)) @ Q) = mn(Y) Q) .

In particular, for each £ > 1 we have the maps

O(0): S s SR R o SR (1) — SMT - x ST W (2)
~——— —
7 1 [AS)

= WU+1)

with each 41 (¢(£)) ® Q) injective.

Finally, let F — W({ + 1) — B be the Postnikov fibration in which 7;(B) = 0,
i>k+1,and 7;(F) = 0,i < k+ 1. Then ¢(¢) is homotopic to a map 1 (¢): S x
-+ x ST 5 F. The restriction of 1(¢) to the (k+1)-spheres are linearly independent
elements of 41 (F)®Q. = Hyy1 (F; Q). Label these spheres Si*1, . .., S*1. Then there
are cohomology classes 71, . . ., v, € H*"'(F;Q) such that

(H* (9 (0)y, 1S511) = (i, [w(f)\5§+1]> = dij-
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(Here (-, -) denotes the pairing between cohomology and homology.) It follows
that

¢ 4
HED () [T = TTH (0(0) £ 0,
i=1 i=1

and thus vy - - -y, # 0.

But since 7, (F) @ Q. — 7, (W (£+1)) ®Q) is injective, it follows from the Mapping
Theorem [4] that the rational category, caty, satisfies catoF < caty(W (£ + 1)) <
dim W (£ + 1) < n. In particular the product of # + 1 classes in H**!(F; Q)) vanishes,
which contradicts the above assertion for { = n + 1. [ |

Proof of Theorem[[.Z Let X be the universal cover of the n-dimensional CW com-

plex X. If for some k, maXys2<j<+n 1k mi(X) < 00, then Lemma[5.JlappliedtoY = X,
also asserts that rk m, (X) < oo. It follows that

rkmi(X) <oo, 2<i<k+n.

Hence (¢f. (L)) HL()N(; Q) is finite dimensional for i < k + 1, and so (since X is n-
dimensional), H,(X; Q) is finite dimensional. This implies in turn that rkm;(X) is
finite for all i and thus that X is not 7-rank infinite. [ |

Proof of Theorems[I.Tland[1.6] Theorems[I.1land[I.6]deal with the ranks of a ratio-
nally hyperbolic #n-dimensional connected CW complex X. Thus in proving these
theorems we may replace X by its universal cover; i.e., we may restrict to the case
where X is simply connected. Since rk m;(X) < oo for i > 2, the Betti numbers of X
are finite. We can thus suppose that X is a finite complex.

In this case we let (AV,d) be the minimal Sullivan model of X ([6l]). Then
H(AV,d) 2 H*(X;Q) and V & 7,(X) ® Q. It follows that (AV, d) satisfies (H)
with n = dim X and h = max; dim H;(X; Q). Moreover the homotopy log index,
vy, satisfies

. log dimV* log dim Ly
ayx = limsup —————— = limsup —=——,
k k k k
where L = {L;} is the homotopy Lie algebra of (AV, d). In particular, in the termi-
nology of Sections 3 and 4, ax = log index L = ay.

With these translations the first assertion of Theorem [I.1] coincides with Theo-
rem[4.5] while Theorem [L.6] coincides with the corollary to Theorem 3.9 It remains
to prove the second assertion of Theorem [[1l In fact, the right-hand inequality in
the first assertion of Theorem [[.Tlimplies that for some fixed ¢ > 0, rk m;(X) < ce®’
for all i > 2. Now suppose for some k that rk m¢(X) > max{1, %} - ¢k, Then
dimV* > 2n)" > [2(m + 1)]"*), where m = cat(AV, d). Thus, as in Lemma[3.3]
k extends to an infinite sequence k = kg < k; < --- such that for each i > 1,
ki =/Vki_1 — 1,some 2 < ¢; < m+ 1, and also

1

. kl >
dimV™ > [2(m+ 1)

} " (dim yki-i ) li.
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Now write dim V% = X\;e®* i > 0. Then with i = 1 this inequality gives

1 m+1 ¢
A ax(61k0—1)>{ } Aotk
1€ —L2(m+1) [ 0 }
Thus
)\ S |: 1 i|m+l O.'x)\Il
t= 2(m+1) ¢ o

Since n > m + 1 and since by hypothesis \y = o(2n)"e”“* for some ¢ > 1, we
may write \; = o—Af}‘l. But we also supposed that A\g > 1, and thus A\; > o).
In particular \; > o max{1,(2n)"e"**}. We may now iterate to obtain A\;; >
o' max{1, (2n)"e~**}. Since o > 1, this gives \; — oo in contradiction with our
earlier observation that \; < ¢ for all i. [ ]

Proof of Theorem[1.7] We are given a number o € (0, 00) and a sequence 6 — 0
of nonnegative numbers, and we have to construct a rationally hyperbolic simply
connected wedge of spheres X such that ax = « and such that for any ¢, d > 0 there
is an infinite sequence k, for which

rk m; (X)
ke<i<ke+d ke

< a — cdg,.

First recall from [6] that if Y is any finite wedge qf spheres of dimension > 2, then
the Poincaré series 2Y (z) = Zzo dim H;(Q2Y;Q)Z is given by

1
() = ————,
1 - fy(2)
where fy(z) = ijl dimH;,(Y; 7)z!. Thus the log index ay is the unique number

suchthat 1 — fy(e™*) = 0.
We construct X as the union of an increasing sequence of spaces X(¢) such that

X(1) =V $T and X(0+1) =X(0) v \/ swtt,
j=1 j=1

Here (ry) and (q¢) are sequences to be determined, and the S;“H are all copies of the
(ge¢ + 1)-sphere.

To begin, set r; = 2 and choose g; so large that 1 — 2e~*? > 0. Then ax() < a.
Next, suppose X(£) has been constructed with ax) < « and, for simplicity, denote
X(0)byY: ay < . Suppose thenthatZ =Y Vv \/?ZISEJrl for some g and r and define
fy(2) and QY (z) as above. Then oz is determined by the equation

1— fy(e” ) —re 71 =0.

Next, choose an integer p; so that the following conditions hold:

logrk;(Y _
M<a + P wforjzpii

@ j Y pe+l 3
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o — Qy

(ii) 55]‘ <

for j > pss

o — Qy
5
Then for j € [pl, py + ] we have

(ii1) ﬁay <
D

logrk (Y
ogrkm;( )<

(5.1) .

a—ééj.

Indeed,

logrkm;(Y) - p/;+€logrk'7rj(Y) - pet+? N a— ay
pe 4 j 14 3

a—aqy o—Qy 1
< ay+ + =a— (-«
Y 3 3 3( Y)

< 04—55]:

Now, given g, choose r = 7(q) to be the least integer satisfying r > e2(*+2)4, The
log index of \/;ZIS?Jrl is then greater than (a + ay) and so, trivially,

(5.2) ay > %(a+ay).

Moreover, we have, for sufficiently large g, that

(5.3) ay < a.

Indeed, sincer — 1 < e%((”‘”), it follows that
1—fzle)=1—fr(e®)—(r—1)e M—e ™M >1—fy(e*)— em3laman)q _ p—aq

Thus for g sufficiently large, 1 — fz(e™*) > 0, and follows.

Now choose gg+1 so that (5.3]) holds for g = g4 and also so that g4y > ps + £.
Then set g4 = 1(qe+1); thus X(£ + 1) = Z and by (B3), ax+1) < «. We may thus
iterate the construction to produce the infinite sequence X(1) C X(2) C --- and we
set X = U X(0).

To complete the proof we observe first that (5.2) implies that

1
x(r+1) > O — E(a —axw), (>1.

Since ay > aux(p) for all 4, it follows that ax > «. Moreover, by construction there is
some fixed A such that dim H;,;(X; Q) < M for all i > 0. As stated in [[7, Theorem
4] this implies that ax < oo and, for some integer s,

log rk 7; (X)

— ax ask — oo.
k<i<k+s k
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In particular this holds for the subsequence ky = p, + ¢ — s

log rk 7; (X) .

(54) ax.

ke<i<kpts ke
Since for £ > s we have p; < k; < k; +s = py + ¢, it follows from (5.I) that the limit
in (5.4 is at most o i.e., ax < a. Thus ax = a.

Finally let ¢ > 0 and an integer d > 0 both be arbitrary, and choose any integer
¢ > max(c,d). Then m;(X) = m(X({)) for i < qg41, and so since qp1 > py + £, we

have from (5.1)) that
rk;(X) rk;(X(£))
max — 7 <
petl—d<i<ptl pg+ L€ —d T prtl—d<i<p+l pe

< ayx — €6p(‘+g_d < ax — C(sp/_,_(g_d.
Now the sequence k; = p; + £ — d goes to oo with ¢, and we have

I‘k’]Tj(X)

max < o — b, . ]
k<i<ke+d ke
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