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The Ranks of the Homotopy Groups of a
Finite Dimensional Complex

Yves Félix, Steve Halperin, and Jean-Claude Thomas

Abstract. Let X be an n-dimensional, finite, simply connected CW complex and set

αX = lim sup
i

log rank πi(X)

i
.

When 0 < αX < ∞, we give upper and lower bounds for
∑k+n

i=k+2 rank πi(X) for k sufficiently large.

We also show for any r that αX can be estimated from the integers rk πi(X), i ≤ nr with an error

bound depending explicitly on r.

1 Introduction

Recall that any finitely generated abelian group, G, has the form G ∼= Zk ⊕ T, where

T is a finite group; k is called the rank of G, rk G. Evidently rk G = dim G ⊗Z Q , and

so the definition may be extended to all abelian groups.

Definition The rank of an arbitrary abelian group, G, is defined by

rk G = dim G ⊗Z Q.

In particular, since for any pointed topological space X the groups πi(X), i ≥ 2,

are abelian, the sequences (rkπi(X))i≥2 are well defined.

It is a classical result that if (ki)i≥2 is an arbitrary sequence with each ki a non-

negative integer or ∞, then there are simply connected CW complexes X with

rkπi(X) = ki , i ≥ 2.

In this paper we shall be concerned with the following question.

Question What are the restrictions on the sequences (rkπi(X))i≥2 imposed by the

condition that X be a finite dimensional connected CW complex ?

First note that the class of all pointed topological spaces, X, may be divided into

the three distinct groups characterized by the following conditions:

(i)
∑

i≥2 rkπi(X) <∞;

(ii) for i ≥ 2 each rkπi(X) <∞, but
∑

i≥2 rkπi(X) = ∞;
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(iii) for some i ≥ 2, rkπi(X) = ∞.

Definition An n-dimensional, connected, finite CW complex, X, is called ratio-

nally elliptic (resp. rationally hyperbolic, π-rank infinite) if X belongs to group (i)

(resp. group (ii), group (iii)) above.

Now a classical spectral sequence argument applied to Postnikov decompositions

for the universal cover, X̃, establishes the following equivalences:

(1.1) rkπi(X) <∞ for 2 ≤ i ≤ k ⇐⇒ dim H≤k(X̃; Q) <∞.

Therefore, if X is rationally elliptic (resp. rationally hyperbolic), then X̃ is rationally

elliptic (resp. rationally hyperbolic) in the sense of [7].

Now consider the question above. In the elliptic case it is completely resolved

in [9], where the authors establish a simple algorithm that decides whether any finite

sequence k1, . . . , kr of non-negative integers appears as the sequence (rkπi(X))i≥2 for

a rationally elliptic finite dimensional CW complex. For the rationally hyperbolic and

π-rank infinite cases, however, such a characterization seems out of reach, especially

given the fact that when n is odd, the space Sn ∨ Sn and Sn ∨ S1 satisfy rkπi(X) = 0

unless i ≡ 1(mod(n − 1)). Thus, instead, we consider the sequence

µk(X) = max
k+2≤i≤k+n

rkπi(X).

Our principal result deals with the hyperbolic case, and we first need to recall the

following definition.

Definition The homotopy log index, αX , of a pointed topological space X is given

by

αX = lim sup
k

log rkπk(X)

k
.

This invariant, which provides one measure of the growth of the sequence rkπk(X)

is analogous to the classical Gelfand Kirillov dimension defined for a finitely gener-

ated graded algebra A by

GK dim A = lim sup
k

log dim Ak

log k
.

This invariant was introduced by Gelfand and Kirillov for enveloping algebras of Lie

algebras in [10] and [13]. When dim Ak ≃ kn, GK dim A = n. In our case, when

rkπk(X) ≃ ak, αX = log a.

Associated with X are the Hilbert series

π(z) =
∑

i≥2

rkπi(X)zi and Ω(z) =
∑

i

dim Hi(ΩX; Q)zi .

When X is a simply connected, rationally hyperbolic, finite CW complex, then by a

result of Babenko, [3], π(z) and Ω(z) have the same radius of convergence ρ, and by
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definition, αX = − log ρ.We prove in [7] that in this case 0 < αX <∞. In this paper

we will give more precise estimations of αX .

Now if X is a rationally hyperbolic, connected, n-dimensional CW complex, we

have that dim H(X̃; Q) < ∞, and so we may set h = maxi dim Hi(X̃; Q). To state

our main theorem we introduce the notation

β(n, h) = 40 (2n log 2n + log(h + 1) + 1) log nh,

γ(n, h) = n log(h + 1) + 2n log 2n.

Then our first main theorem reads as follows.

Theorem 1.1 Suppose X is an n-dimensional, connected, rationally hyperbolic CW

complex. Then 0 < αX <∞, and for some K, and for every k ≥ K,

e(αX− β(n,h)
log k

)k ≤ max
k+2≤i≤k+n

rkπi(X) ≤ e(αX + γ(n,h)
k

)k.

Moreover, for every k ≥ 2,

rkπk(X) ≤ max
{

1,
(2n)n

eαX

}
eαX k.

This leaves the π-rank infinite case, and here we have a complete answer.

Theorem 1.2 Suppose X is an n-dimensional connected CW complex. If X is π-rank

infinite, then for all k ≥ 0,

max
k+2≤i≤k+n

rkπi(X) = ∞.

Remarks

(i) The principal result of [7] is equivalent to the assertion that (for X as in The-

orem 1.1) if k is sufficiently large, then maxk+2≤i≤k+n rkπi(X) = e(αX +εk)k with

εk → 0 as k → ∞. Theorem 1.1 improves this result with precise estimates for

εk depending only on n, h, and k.

(ii) While the result of [7] generalizes to spaces of finite Lusternik–Schnirelmann

category, Theorem 1.1 does not, as we shall see in Theorem 1.7.

When combined with the results of [12] and [9], Theorems 1.1 and 1.2 have the

following immediate corollaries.

Corollary 1.3 Let X be an n-dimensional connected CW complex. Then

(i) X is rationally elliptic ⇐⇒ rkπi(X) = 0, i ≥ 2n;

(ii) X is rationally hyperbolic ⇐⇒ 1 ≤ maxk+2≤i≤k+n rkπi(X) <∞ for all k ≥ 0;

(iii) X is π-rank infinite ⇐⇒ maxk+2≤i≤k+n rkπi(X) = ∞ for all k ≥ 0.

Corollary 1.4 Let X be an n-dimensional connected CW complex. Then

(i) X is rationally elliptic ⇐⇒ αX = −∞;
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(ii) X is rationally hyperbolic ⇐⇒ 0 < αX <∞;

(iii) X is π-rank infinite ⇐⇒ αX = ∞.

Corollary 1.5 Let X be an n-dimensional connected CW complex. Then X is ratio-

nally elliptic (resp. rationally hyperbolic, π-rank infinite) if and only if

max
2n≤i≤3n−2

rkπi(X) = 0

(resp. ∈ (0,∞), resp. = ∞).

Remark The asymptotic formula of Theorem 1.1 provides a good estimate of the

homotopy log index αX in terms of maxk+2≤i≤k+n rkπi(X), provided k ≥ K for suffi-

ciently large K. Unfortunately we are not able to give any estimate for K, and, indeed,

nothing we know gives any suggestion that this might be possible. Thus Theorem 1.1

does not provide a “computational” tool for the estimation of αX .

By contrast it is possible to directly estimate αX from the integers rkπi(X), r ≤
i < 2r, or equivalently from the integers dim Hi(ΩX; Q), r ≤ i < 2r, with an error

bound depending explicitly on r. Thus, our third main result reads as follows.

Theorem 1.6 Let X be a rationally hyperbolic n-dimensional CW complex and set

h = maxi dim Hi(X̃; Q). Then for log r > 2n+1n2n+5 log nh,

max
i≥r

log rkπi(X)

i
− n log 2n

r
≤ αX ≤ max

r≤i<2r

log rkπi(X)

i
+
β(n, h)

10 log r
.

The main part of Theorem 1.1 asserts that for the “universal sequence” δk =

1/ log k, given any n-dimensional rationally hyperbolic CW complex X there is a con-

stant c = c(n, h) such that for k sufficiently large

max
k+2≤i≤k+n

log rkπi(X)

k
≥ αX − cδk.

This is the assertion that does not generalize to rationally hyperbolic spaces of finite

Lusternik Schnirelmann category. Our final main theorem reads as follows.

Theorem 1.7 Let δk → 0 be any sequence of non-negative numbers and let α ∈
(0,∞) be any number. Then there is a simply connected rationally hyperbolic wedge of

spheres X such that αX = α, and for any c > 0 and any integer d > 0 there are infinitely

many k for which

max
k≤i≤k+d

log rkπi(X)

k
< αX − cδk.

The main theorem of [7] and Theorem 1.1 are steps to a better knowledge of the

sequence rkπn(X) for a connected finite CW complex, X. The results are inspired

by what we know concerning some special families of spaces, like wedge of spheres

(Theorem 1.7) or cofibers of maps between suspensions as illustrated by the following

result of P. Lambrechts for cofibers of maps between suspensions.
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Theorem ([15]) Let X be a finite simply connected CW complex of dimension n that

is the cofiber of a map between suspensions.

(i) There are constants A and B such that for k large enough,

A

k
eαX k ≤

∑

k+2≤i≤k+n

rkπi(X) ≤ B

k
eαX k.

(ii) There is a polynomial P(z) such that Ω(z)P(z) is the expansion at the origin of an

analytic function without zero in a disc of radius > ρ.

By comparison, Theorem 1.1 asserts that if X is a rationally hyperbolic n-dimen-

sional CW complex, then there are constants A, B, and r depending only on n and

the Betti numbers of X̃ such that for k sufficiently large,

A

kr
eαX k ≤

∑

k+2≤i≤k+n

rkπi(X) ≤ BeαX k.

We do not know if our estimates for A, B, and r can be significantly improved, al-

though it seems clear that they are not sharp, nor we do know if B can be replaced by

B ′/kℓ with ℓ > 0.

A second open question is whether the Hilbert series Ω(z) has a singularity at

z = ρ and if so to discover its nature. The special case that H∗(ΩX; Q) is a finitely

generated algebra is settled by the following result of D. Anick.

Theorem ([2]) Let H be a finitely generated graded connected algebra over a field lk

and H(z) its Hilbert series with radius r. Then lim infz→r−(r − z)H(z) > 0.

Finally, as indicated above, it is open whether the constant K in Theorem 1.1 can

be estimated in terms of n and the Betti numbers of X̃.

The proofs of Theorems 1.1, 1.2, 1.6, and 1.7 proceed by a careful analysis of

the homotopy Lie algebra LX = π∗(ΩX) ⊗ Q with Lie bracket given by the Samel-

son product. The starting point for such an analysis is the minimal Sullivan model

(∧V, d) of a simply connected rationally hyperbolic space, X, which has the key prop-

erty that dim V i
= rkπi(X) and H(∧V, d) ∼= H∗(X; Q). The proof of Theorem 1.1,

which occupies almost the full paper, follows the same general strategy as [7]. In fact

the analysis here is more delicate, the estimates more difficult, and considerable addi-

tional tools not needed in [7] are now required. In Section 5 we translate the algebra

into proofs for Theorems 1.1 and 1.6, and give a direct proof of Theorems 1.2 and

1.7.

More precisely, in Section 2 we develop the relations between the growth of a Lie

algebra L, its universal enveloping algebra U L and the indecomposable elements of

some sub Lie algebras. Section 3 is a refinement of the exponential growth result

obtained in [5]. Let n be the dimension of the space X. We prove in particular that

for any integer N there is some q < nn+5N with rkπq+2(X) > N. This section con-

tains all the material required for the proof of Theorem 1.6. Section 4 deals with the

asymptotic formula and using partial results from [7] leads to the proof of Theorem

1.1.
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2 Growth of Graded Lie Algebras

We work over an arbitrary ground field lk of characteristic 0. If W = {Wi} is

any graded vector space, we adopt notation such as W<k = {Wi}i<k, W[ j,k] =

{Wi} j≤i≤k, and W+ = {Wi}i>0. We denote by W (z) =
∑

dim Wiz
i the Hilbert

series of W . Note that we will also use a graded vector space with a superscript no-

tation V = {V i} with similar notations. Additionally we define the log index of W

by

log index W = lim sup
k

log dim Wk

k
.

A graded Lie algebra L is a graded vector space equipped with a Lie bracket

[ · , · ] : L ⊗ L → L, satisfying

[x, y] + (−1)deg x·deg y[y, x] = 0 and [x, [y, z]] = [[x, y], z] + (−1)deg x·deg y[y, [x, z]].

We will consider graded Lie algebras L that are connected, L = {Li}i≥0, and

of finite type (each Li is finite dimensional). Graded Lie algebras satisfying those

conditions are called cft graded Lie algebras. The rational homotopy Lie algebra,

LX = π∗(ΩX) ⊗ Q of a simply connected CW complex of finite type is a cft graded

Lie algebra, and dim(LX)i = rankπi+1(X).

Throughout this article we work entirely in graded categories, so that, for exam-

ple, subspace, sub Lie algebra, and subalgebra mean, respectively, graded subspace,

graded sub Lie algebra, and graded subalgebra.

Lemma 2.1 For any integer s ≥ 1 the coefficients in the power series

∞∑

k=0

akxk
=

1 − x

1 − x − xs

satisfy ak ≤ (s + 1)k/s, k ≥ 1. Moreover, the radius of convergence of this power series ρs

satisfies

ρs >
( 1

s

) 1/s

, if s is sufficiently large.

Remark The reader will notice that the second assertion does not follow from the

first, but the necessary improvement in the estimate for the ak is very small, technical

to obtain, and not necessary for this paper.

Proof Set xs =
(

1
s

)1/s
. To show that ρs >

(
1
s

)1/s
for large s we need only show that

1 − xs − xs
s > 0, s large.

Set us =
1
s
. Then 1 − xs − xs

s = 1 − u
1/s
s − us and we have only to show that

1 − uu − u > 0 for u ∈ (0, ε). An easy calculus argument shows that 1 − uu − u is

increasing in some interval (0, ε) and that limu→0(1 − uu − u) = 0.
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It remains to show that for all k, s ≥ 1, ak ≤ (s + 1)k/s. Note that

1 − x

1 − x − xs
=

1

1 − xs/(1 − x)
= 1 +

∞∑

ℓ=1

xsℓ
( 1

1 − x

) ℓ

= 1 +

∞∑

ℓ=1

xsℓ
∞∑

j=0

(
ℓ + j − 1

ℓ− 1

)
x j NB.

(
r

0

)
= 1.

In particular, a0 = 1 and ak = 0, 1 ≤ k < s.

Thus it is sufficient to prove the inequality for k ≥ s. Thus fix k ≥ s and let q ≥ 1

and i ∈ [0, s − 1] be the unique integers such that k = qs + i. Then

ak =

q∑

ℓ=1

(
ℓ + (q − ℓ)s + i − 1

ℓ− 1

)
.

Write m = ℓ− 1, so that

ak =

q−1∑

m=0

(
m + (q − m − 1)s + i

m

)
.

But

m + (q − m − 1)s + i ≤ m + (q − m − 1)s + s − 1 = (q − m)s + (m − 1).

Thus,

(
m + (q − m − 1)s + i

m

)
≤ [(q − m)s + (m − 1)] · · · [(q − m)s + r] · · · [(q − m)s]

m!

≤ sm (q − 1)(q − 2) · · · (q − m + r) · · · (q − m)

m!

= sm

(
q − 1

m

)
.

Hence for k ≥ s,

ak ≤
q−1∑

m=0

sm

(
q − 1

m

)
= (1 + s)q−1 ≤ (1 + s)k/s.

Remark When s = 1,

1 − x

1 − x − xs
=

1 − x

1 − 2x
= (1 − x)

∞∑

0

(2x)k.

Thus in this case

ak = 2k − 2k−1
= (1 + s)k − (1 + s)k−1.
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Lemma 2.2 Suppose that a graded Lie algebra F satisfies

Fk = 0, k < s and dim(F/[F, F])k ≤ eβk, k ≥ s,

for some integer s ≥ 1 and some β ≥ 0. Then

dim(U F)k ≤ e(β + 1
s

log(s+1))k, k ≥ 0.

Proof Let W be a graded vector space satisfying Wk = 0, k < s, and dim Wk is the

integral part of eβk, k ≥ s. The tensor algebra TW is the universal enveloping algebra

of the free graded Lie algebra E generated by W : TW = U E. The respective Hilbert

series satisfy (≪ denotes coefficient-wise inequality ≤)

W (z) ≪ (eβz)s

∞∑

k=0

(eβz)k
=

(eβz)s

1 − eβz

and

U E(z) =
1

1 −W (z)
=

∞∑

k=0

[
W (z)

] k ≪
∞∑

k=0

( (eβz)s

1 − eβz

) k

=
1

1 − (eβz)s

1−eβz

=
1 − eβz

1 − eβz − (eβz)s
.

Write 1−x
1−x−xs =

∑∞
k=0 akxk. Then

U E(z) ≪
∞∑

k=0

ak eβkzk.

Since Wk = 0, k < s, it follows that (U E)k = 0, 1 ≤ k < s and so ak = 0, 1 ≤ k < s.

On the other hand, Lemma 2.1 gives ak ≤ (s + 1)k/s, k ≥ s. Thus,

dim(U E)k ≪ e
k
s

log(s+1)+βk
= e[β+

log(s+1)
s

]k, k ≥ s.

By construction of W , there is a surjective linear map W → F/[F, F] that extends to

a surjective map of graded Lie algebras E → F and to a surjective map of universal

enveloping algebras U E → U F. The lemma follows.

Lemma 2.3 Suppose E ⊂ L and Y ⊂ L are a sub Lie algebra and a graded subspace of

a cft graded Lie algebra L, respectively. Suppose further that for some integer s ≥ 1 and

some β > 0 they satisfy

dim(U E)k ≤ eβk, k ≥ 0, Yk = 0, k < s, and dim Yk ≤ eβk, k ≥ s.

Then the sub Lie algebra G generated by E and Y satisfies

dim(U G)k ≤ e(β+3
log(s+1)

s
)k, k ≥ 0.

Moreover, if Y = Ys, then

dim(U G)k ≤
{

eβk, k < s

e(β+
2 log(s+1)

s
)k, k ≥ s.
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Proof Denote the adjoint action of U L in L by “◦” and note that for j ≥ s,

dim(U E ◦ Y ) j ≤
∑

i

dim(U E)i dim Y j−i ≤ jeβ j ≤ e(β+
log(s+1)

s
) j ,

because for j ≥ s ≥ 1, we have
log j

j
< log(s+1)

s
.

It follows from Lemma 2.2 that the sub Lie algebra F generated by U E ◦Y satisfies

dim(U F)k ≤ e(β+ 2
s

log(s+1))k, k ≥ 0.

Since [E, F] ⊂ F, it follows that G = E + F. Thus multiplication in U G gives a

surjective map U E ⊗U F → U G, whence for k ≥ s ≥ 1,

dim(U G)k ≤
∑

i

dim(U E)i dim(U F)k−i ≤ k eβke[ 2
s

log(s+1)]k ≤ e(β+ 3
s

log(s+1))k.

Now, if k < s, dim U G)k = dim(U E)k ≤ eβk ≤ e(β+ 3
s

log(s+1))k.

Finally, if Y = Ys, then for k ≥ s, (U E◦Y )k = (U E)k−s◦Ys and so dim(U E◦Y )k ≤
eβk. Since (U E ◦ Y )k = 0 for k < s we obtain from Lemma 2.2 that dim(U F)k ≤
e(β+

log(s+1)
s

)k, k ≥ s; clearly (U F)k = 0 for 1 ≤ k < s. The same argument as above now

gives the final assertion.

Lemma 2.4 Let L be a cft graded Lie algebra and assume given a positive integer i0,

an infinite sequence of integers 0 < r0 < r1 < · · · , and an infinite sequence of real

numbers (λi)i≥i0
, such that

dim Lri
≥ eλi ri , i ≥ 0, and λi+1 ≥ λi + 2

log(ri + 1)

ri

+
log 3

ri+1
, i ≥ 0.

Then L contains a sub Lie algebra E, generated by subspaces in degrees ri , i ≥ i0, such

that

1

2
eλi ri ≤ dim

(
E/[E, E]

)
ri
≤ eλi ri , i ≥ 0.

Proof We construct inductively a sequence of subspaces Wri
⊂ Lri

, i ≥ 0 such that

(2.1)
1

2
eλi ri ≤ dim Wri

≤ eλi ri , i ≥ 0

and such that the sub Lie algebra E(i) generated by Wr0
, . . . ,Wri

satisfies

dim[U E(i)]k ≤ e
(λi +2

log(ri +1)

ri
)k
, k ≥ 0(2.2)

and

E(i) = [E(i), E(i)] ⊕
(
⊕i

j=0 Wr j

)
, i ≥ 0.(2.3)
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It is then immediate from (2.1) and (2.3) that E = ∪iE(i) satisfies the conditions of

the lemma. It remains to choose the Wri
.

Suppose Wr0
, . . . ,Wrℓ are constructed. Then by (2.2) and the hypothesis on the

λi ,

dim[U E(ℓ)]rℓ+1
≤ 1

3
eλℓ+1rℓ+1 .

Thus, since dim Lrℓ+1
≥ eλℓ+1rℓ+1 , we may choose Wrℓ+1

⊂ Lrℓ+1
so that (2.1) holds for

i = ℓ+ 1 and so that Wrℓ+1
∩E(ℓ)rℓ+1

= 0. Then (2.3) is immediate for i = ℓ+ 1. Since

λℓ + 2
log(rℓ+1)

rℓ
≤ λℓ+1, we may apply the final assertion of Lemma 2.3 with Y = Wrℓ+1

,

β = λℓ+1 and s = rℓ+1 to obtain (2.2) for i = ℓ + 1.

3 Approximating Log Index L

In this section we recall from [6] some basic definitions and properties for Sullivan

algebras. Thus, a simply connected minimal Sullivan algebra (∧V, d) is a graded

commutative differential algebra in which V = {V i}i≥2 is a graded vector space, ∧V

is the free graded commutative algebra generated by V , and Im d ⊂ (∧V )+ · (∧V )+.

For any graded vector space V , the algebra ∧V is the direct sum of the subspaces

∧kV = V ∧ · · · ∧ V (k factors). In the case of a simply connected minimal Sullivan

algebra (∧V, d) the surjection∧V → ∧V/∧>mV is a morphism of graded differential

algebras, which extends to a quasi-isomorphism (∧V ⊗ ∧W, d)
≃−→(∧V/ ∧>m V, d)

from a second simply connected minimal Sullivan algebra. The least m (or ∞) for

which the identity morphism of (∧V, d) extends to a morphism (∧V ⊗ ∧W, d) →
(∧V, d) is called the category of (∧V, d).

A graded vector space V has finite type if each dim V i < ∞, and a simply con-

nected minimal Sullivan algebra (∧V, d) has finite type if each dim V i < ∞. With

each such Sullivan algebra is associated its homotopy Lie algebra, L, defined by Lk =

(V k+1)# and with Lie bracket dual to the component d1 : V → ∧2V of the differential

d. (Here # denotes vector space dual.) For details cf. [6, Proposition 13.16].

The starting point for the main results of this paper is a growth theorem estab-

lished in [5], which in turn depends on the following result.

Proposition 3.1 ([6, Theorem 29.5]) Suppose ϕ : (∧V, d) → (∧W, d) is a surjective

morphism between simply connected minimal Sullivan algebras of finite type. Then

cat(∧V, d) ≥ cat(∧W, d).

We now introduce the following hypotheses and notation for a simply connected

minimal Sullivan algebra (∧V, d) and its homotopy Lie algebra L:

(H)





(i) dim V i <∞ for all i and dim V = ∞,

(ii) dim H(∧V, d) <∞, and n = max{i|Hi(∧V, d) 6= 0},

and h = maxi dim Hi(∧V, d).

(iii) cat(∧V, d) = m.
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Remark Recall ([6, Corollary to Proposition 29.3]) that

(3.1) m + 1 ≤ n

2
+ 1 ≤ n.

Moreover, since the only simply connected minimal Sullivan algebra with n = 2

and h = 1 has the form ∧(v,w) with dw = v2, it follows that

(3.2) nh ≥ 3.

It is the interplay between the hypotheses of (H) and the Lie structure of L that

provides the ingredients for the proof of our main theorems. In particular, it is shown

in [5, pp. 188–189],that (H) implies that the integers dim V k are unbounded. Here

we establish a more precise statement.

Proposition 3.2 Suppose (∧V, d) is a simply connected minimal Sullivan algebra sat-

isfying (H). Then for some q, dim V q+2 > [2(m + 1)]
m+1. Moreover for any integer

N > 0 there is some q < 6(m + 1)m+4n2N for which dim V q+2 > N.

Corollary If n ≥ 4, dim V q+2 > N for some q < nn+5N.

Proof Recall from (3.1) that m + 1 ≤ n
2

+ 1. If n ≥ 4, then (n + 2)
n
2

+3 ≤ nn+3 and

6(m + 1)m+4n2N < nn+5N.

Proof of Proposition 3.2 The first assertion is [5, Lemma 4.3]. Now let r = ℓn.

Since [r + 1, 2r] = ∪2ℓ−1
i=ℓ [in + 1, i(n + 1)], we deduce from [12, Theorem C(i)] that

dim V [r+1,2r] ≥ ℓ. Choose ℓ = 3n(m + 1)m+3N, and set s = dim V [r+1,2r]. Then

trivially, s ≥ 2m.

Now, divide ∧V by the ideal V≤r · ∧V . This yields a quotient minimal Sullivan

algebra (∧V>r, d). There is a unique linear map of degree 1, θ : V>2r → ∧≥2V [r+1,2r]

such that

d − θ : V>2r → V>2r · ∧V>r.

Write

θ =
∑

i≥2

θi , where θi : V>2r → ∧iV [r+1,2r].

Since cat(∧V>r, d) ≤ m, by Proposition 3.1, and since d(V [r+1,2r]) = 0, it follows

that

∧m+1V [r+1,2r] ⊂ Im d.

This implies that

(3.3) ∧m+1V [r+1,2r]
=

m+1∑

i=2

θi(V
>2r) ∧m+1−i V [r+1,2r].

Now we make the following observations:

• ∧iV [r+1,2r] is concentrated in degrees k ∈ [(r + 1)i, 2ri] and so

θi(V
>2r) = θi(V

[(r+1)i−1,2ri−1]);

https://doi.org/10.4153/CJM-2012-050-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-050-x


The Ranks of the Homotopy Groups of a Finite Dimensional Complex 93

• dim∧m+1 V [r+1,2r] ≥
(

s
m+1

)
≥ sm+1

2m+1(m+1)!
(because s ≥ 2m);

• dim∧m+1−iV [r+1,2r] < sm+1−i .

On the other hand, setting

λ = max{dim V j | 2r + 1 ≤ j ≤ 2r(m + 1) − 1},

we find that

dim∧m+1V [r+1,2r]

≤
m+1∑

i=2

dim V [(r+1)i−1,2ri−1] dim∧m+1−iV [r+1,2r] < λ

m+1∑

i=2

(ri − i + 1)sm+1−i

≤ λ(m + 1)
(

(r − 1)(m + 1) + 1
)

sm−1.

In other words, since (m + 1)! < e( m+1
2

)m+1,

λ >
s2

2m+1(m + 1)! ℓ n(m + 1)2
>

s2

3ℓ(m + 1)m+3n
.

Since s = dim V [r+1,2r] ≥ ℓ, it follows that λ > N. But λ = dim V q+2, some q + 2 ∈
[2r + 1, 2r(m + 1) − 1] and so q < 2ℓn(m + 1) = 6(m + 1)m+4n2N.

Definition The critical degree for a simply connected minimal Sullivan algebra sat-

isfying (H) is the least integer σ such that dim V σ+2 > [2(m + 1)]m+1.

Remark Since m + 1 ≤ n, it follows from the corollary to Proposition 3.2 that if

n ≥ 4, then the critical degree satisfies σ < 2nn2n+5. The same is true when n = 2

or 3. In those cases, (∧V, d) is the cochain algebra on a free graded Lie algebra,

L, generated in degrees ≤ 2, and with at least two generators. Then m = 1, and

(2(m+1))m+1
= 16. If L has at least two generators x, y in degree 1, then the elements

(ad x)i(ad y)k−i[x, y] are linearly independent and so dim V 19
= dim L18 ≥ 17. It

follows that σ ≤ 17 < 2nn2n+5. The case when dim L1 ≤ 1 is similar.

Lemma 3.3 Let L be the homotopy Lie algebra and let σ be the critical degree of a

simply connected minimal Sullivan algebra, (∧V, d) satisfying (H).

(i) If dim Lq > [2(m+1)]m+1 (in particular if q = σ+1), then q extends to an infinite

sequence q = q0 < q1 < · · · such that for each i ≥ 1, qi + 1 = ℓi(qi−1 + 1) − 1

with 2 ≤ ℓi ≤ m + 1, and

dim V qi +1 ≥
[ 1

2(m + 1)

]m+1(
dim V qi−1+1

) ℓi
.

(ii) Given a sequence (qi) as in (i), then dim V qi +1 > [2(m + 1)]m+1 for all i ≥ 0, and

for all i > j ≥ 0,

log dim V qi +1

qi + 1
≥ log dim V q j +1

q j + 1
− (m + 1) log 2(m + 1)

q j + 1
.
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(iii)

log index V ≥ sup
q

( log dim V q+1

q + 1
− (m + 1) log 2(m + 1)

q + 1

)
.

Proof The proof is essentially contained in [5, pp. 188–189]. To make this paper

more self contained we reproduce here the main lines of the proof. Denote N =

dim V q+1 and a = (1/2(m + 1))m+1. By hypothesis N > [2(m + 1)]m+1, and so

Na > 1. We have N/2 ≥ (m + 1) N
2(m+1)

, and since N ≥ 2m, we have for 1 ≤ i ≤ m,

N − i

i + 1
≥ N − m

m + 1
≥ N

2(m + 1)
.

It follows from (3.3) that ∧m+1V q+1
=

∑m+1
i=2 θi(V

i(q+1)−1) ∧m+1−i V q+1, and hence

(m+1)
( N

2(m + 1)

)m+1

≤
(

N

m + 1

)
≤ dim∧m+1V q+1 ≤

m+1∑

i=2

dim V i(q+1)−1 ·Nm+1−i .

Therefore, since Na > 1, for some j ∈ [2,m + 1],

dim V j(q+1)−1 ≥ N j · a ≥ N2a > N > (2(m + 1))m+1.

We set ℓ1 = j, and we iterate the procedure to construct the sequence (qi)i≥0. Thus

we have a sequence of integers q = q0 < q1 < · · · with qi + 1 = ℓi(qi−1 + 1) − 1,

where ℓi is an integer in [2,m + 1] and

dim V qi +1 ≥
[ 1

2(m + 1)

]m+1(
dim V qi−1+1

) ℓi
.

This proves (i). It follows that dim V qi +1 ≥ a1+ℓi +ℓi−1ℓi +···+ℓ2···ℓi · Nℓ1ℓ2···ℓi . Since each

ℓi ≥ 2, (1 + ℓi + · · · + ℓ2 · · · ℓi)/(ℓ1ℓ2 · · · ℓi) ≤ 1
2i + · · · + 1

2
< 1, and so

dim V qi +1 ≥ (aN)ℓ1ℓ2···ℓi ≥
([ 1

2(m + 1)

]m+1

dim V q+1

) qi +1

q+1

.

We deduce part (ii) of the lemma, namely that

log dim V qi +1

qi + 1
≥ log dim V q+1 − (m + 1) log 2(m + 1)

q + 1
.

Finally, (iii) is a direct consequence of (ii).

Lemma 3.4 Let L be the homotopy Lie algebra of a simply connected minimal Sullivan

algebra, (∧V, d), satisfying (H).

(i) For any j, k ≥ 0,

log index L = lim sup
ℓ≥k

log
∑ℓ+ j

i=ℓ dim Li

ℓ
.
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(ii) dim Lℓ ≤ (nh)ℓ for all ℓ ≥ 1.

(iii) If dim Li ≤ c for i < k, then dim Lk ≤ h + m(k + 2)m cm+1.
(iv) 0 < log index L ≤ log(h + 1).

Proof Part (i) is obvious.

(ii) Let S be a space with minimal model (∧V, d). Then π∗(ΩS) ⊗ Q ∼= L,

and a classical result of Milnor–Moore [16] states that U L ∼= H∗(ΩS; Q). An

even earlier result of Adams–Hilton [1] states that H∗(ΩS; Q) ∼= H(TY,D), where

(TY,D) is a differential graded tensor algebra on Y and Y = {Yi}i≥1 with dim Yi =

dim Hi+1(∧V, d).

Let {yi j} be a basis of Yi and let X = X1 be a vector space concentrated in

degree 1 with basis {xi j} in 1-1 correspondence with {yi j}. Then the elements

wi j = xi
i j generate a sub algebra of TX isomorphic with TY . Since dim X = dim Y =∑n

i=2 dim Hi(∧V, d) ≤ (n − 1)h, we obtain

dim(TY )ℓ ≤ dim(TX)ℓ ≤
[

(n − 1)h
] ℓ
,

and (ii) follows.

(iii) It follows from the minimal model translation of a theorem of Ginsburg [6,

Theorem 29.14] that the kernel of the linear map

q : V k+1
d

−→ ∧V → ∧V/ ∧>m+1 V

is isomorphic with a subspace of Hk+1(∧V, d). Thus,

dim Lk = dim V k+1 ≤ h +

m+1∑

ℓ=2

dim(∧ℓV )k+2.

Moreover,

dim(∧ℓV )k+2 ≤
∑

2≤k1≤···≤kℓ
k1+···+kℓ=k+2

dim V k1 · · · dim V kℓ .

Denote by ρℓ(k + 2) the number of partitions of k + 2 of length ℓ and recall that

ρℓ(k + 2) ≤ (k + 2)ℓ−1. (In fact, this is obvious for ℓ = 1 and follows by a simple

induction argument in general.) Since, by hypothesis, dim V i ≤ c, i ≤ k, we obtain

dim(∧ℓV )k+2 ≤ (k + 2)ℓ−1cℓ, whence

dim Lk ≤ h + m(k + 2)mcm+1.

(iv) Recall that W (z) =
∑

i dim Wi zi denotes the Hilbert series of a graded vector

space W = {Wi}i≥1 and recall that ≪ denotes coefficient-wise inequality between

power series. Then, with the notation in the proof of (ii),

L(z) ≪ U L(z) ≪ TY (z) ≪ 1

1 −∑n−1
i=1 hzi

=
1 − z

1 − (h + 1)z + hzn
.
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Denote by rL the radius of convergence of L(z). These inequalities show that rL >
1

h+1
.

But

log index L = lim sup
ℓ

log dim Lℓ

ℓ
= − log rL < log(h + 1).

Finally, it is immediate from Proposition 3.2 and Lemma 3.3 that 0 < log index L.

Lemma 3.5 Suppose given integers 1 ≤ s < r, a constant b > 0, an integer c ≥ 0 and

a graded vector space W concentrated in degrees 1 ≤ i < r. If

dim W i ≤ c, 1 ≤ i ≤ s and dim W i ≤ ebi , i > s,

then

dim(∧W )k ≤ (k + 1)sce
(b+ 3√

k
)k
, k ≥ 1.

Proof If si is the number of monomials of degree i in sc variables, then

dim(∧W [1,s])i ≤ si .

But si =
(

i+sc−1
i

)
=

(
i+sc−1

sc−1

)
is also the number of monomials of degree sc − 1 in i + 1

variables, and so si ≤ (i + 1)sc−1.

On the other hand,

dim(∧W [s+1,r−1]) j ≤ dim
(
⊗r−1
ℓ=s+1T(W ℓ)

) j

=

∑
∑

ℓkℓ= j

dim
(
⊗ks+1W s+1

)
· · · dim

(
⊗kr−1W r−1

)
≤ ρ( j)eb j ,

where ρ( j) is the number of partitions of j, i.e., the number of solutions of∑n
i=1 i pi = j with pi ≥ 0 ([17, §15]). Thus,

dim(∧W )k ≤
∑

i+ j=k

(i + 1)sc−1ρ( j)eb j ≤ (k + 1)scρ(k)ebk.

But by [17, Theorem 15.7],

ρ(k) <
π√

6(k − 1)
eπ
√

2k/3.

It follows (from this for k ≥ 3 and by inspection when k = 1 or 2) that ρ(k) ≤ e3
√

k,

k ≥ 1. Thus,

dim(∧W )k ≤ (k + 1)sce(b+3/
√

k)k, k ≥ 1.

Lemma 3.6 Let L be the homotopy Lie algebra of a simply connected minimal Sullivan

algebra (∧V, d) satisfying (H). Suppose for constants c ≥ 0 and b > 0, and for integers

0 < s < r, that

dim V i+1 ≤ c, i ≤ s and dim V i+1 ≤ ebi , s < i < r.

Then

dim Lk = dim V k+1 ≤ (n + 1)h(k + 2)sce
(b+ 3√

k+1
)(k+1)

, r ≤ k ≤ 2r − 1.
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Proof Define a graded vector space W by W i
= V i+1, 1 ≤ i ≤ r − 1 and W i

= 0,

i 6∈ [1, r − 1]. There is then ([6, p. 181]) a quasi-isomorphism

(∧V ⊗ ∧W,D)
≃
−→ (∧V≥r+1, d)

in which (∧V≥r+1, d) is the quotient Sullivan algebra obtained by dividing ∧V by the

ideal generated by V [2,r] and (∧V, d) → (∧V ⊗ ∧W,D) is a relative Sullivan algebra

for the projection (∧V, d) → (∧V≥r+1, d). Since (∧V≥r+1, d) is minimal, it follows

that V [r+1,2r] embeds in H(∧V≥r+1, d).

On the other hand, filtering by the degree in ∧V gives a spectral sequence con-

verging from H(∧V, d) ⊗ H(∧W,D) to H(∧V≥r+1, d). Thus we may apply Lemma

3.5 to obtain for k ∈ [r, 2r − 1] that

dim Lk = dim V k+1 ≤ dim Hk+1(∧V ⊗ ∧W,D) ≤
∑

i+ j=k+1

dim Hi(∧V, d) dim(∧W ) j

≤ (n + 1)h max
j≤k+1

dim(∧W ) j ≤ (n + 1)h(k + 2)sce
(b+ 3√

k+1
)(k+1)

.

Proposition 3.7 Let L be the homotopy Lie algebra of a simply connected minimal

Sullivan algebra (∧V, d) satisfying (H). Suppose for an integer s ≥ 0 and for some c ≥ 0

that dim Li ≤ c for i ≤ s. Then for any integer r > s and r ≥ 3,

sup
s<i

log dim Li

i
≤ max

s<i<r

log dim Li

i
+

2 log n(n + 1)h2

r
+

5sc log r

r
+

15√
r
.

Proof Consider s as fixed and set

µr = max
s<i<r

log dim Li

i
and µ∞ = sup

s<i

log dim Li

i
.

Apply Lemma 3.6 with b = µr and r ≥ 2 to obtain, for k ∈ [r, 2r − 1], that

log dim Lk

k
≤ log(n + 1)h

k
+ sc

log(k + 2)

k
+ µr +

µr

k
+ 3

√
k + 1

k

≤ log(n + 1)h

k
+ sc

log 2k

k
+ µr +

µr

k
+ 3

√
2

k

≤ µr +
log(n + 1)h

r
+ sc

log2r

r
+
µr

r
+ 3

√
2

r
.

(3.4)

Now by Lemma 3.4(ii) we have dim Lℓ ≤ (nh)ℓ, ℓ ≥ 1, and it follows that µr ≤
log nh, whence

log(n + 1)h

r
+
µr

r
≤ log n(n + 1)h2

r
.

Thus, because the previous inequalities (3.4) hold for k ∈ [r, 2r − 1], r ≥ 2, we may

conclude that either µ2r − µr = 0 or else

µ2r − µr = max
r≤k≤2r−1

(log dim Lk)

k
− µr.
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Thus in either case,

µ2r − µr ≤
log(n + 1)h

r
+

sc log 2r

r
+
µr

r
+ 3

√
2

r

≤ log n(n + 1)h2

r
+

sc log 2r

r
+ 3

√
2

r

Now replace r by 2ir (0 ≤ i < ∞) in this inequality and sum over i to obtain, for

r ≥ 3, that

µ∞ − µr ≤
( ∞∑

i=0

1

2i

)
log n(n + 1)h2

r
+

( ∞∑

i=0

1 + log 2i+1

2i

)
sc log r

r
+

(
3

∞∑

i=0

√
2

2i

)
1√

r
.

Standard sums and a little calculation give

∞∑

i=0

1

2i
= 2,

∞∑

i=0

1 + log 2i+1

2i
≤ 5, and 3

∞∑

i=0

√
2

2i
≤ 15.

Substitution in the previous inequality then gives the assertion in the proposition.

Corollary Let σ be the critical degree for (∧V, d). Then for r > max(σ, 9),

log index L ≤ max
σ<i<r

log dim Li

i
+

2 log n(n + 1)h2

r
+ 5 22nn3n+5 log r

r
+

15√
r

≤ max
σ<i<r

log dim Li

i
+

1√
r

(
2 log n(n + 1)h2 + 5 22nn3n+5 + 15

)
.

Proof Since dim Li ≤ [2(m + 1)]m+1 for i ≤ σ, we may substitute σ for s and

[2(m + 1)]m+1 for c in Proposition 3.7. Now since m + 1 ≤ n,

sc ≤ (2nn2n+5)
[

2(m + 1)
]m+1 ≤ 2nn2n+52nnn

= 22nn3n+5.

This gives the first inequality, because log index L ≤ supσ<i (log dim Li)/i. Finally,

because r > 9, it follows that 1/
√

r < log r/
√

r < 1. This gives the second inequality.

Lemma 3.8 Let L be the homotopy Lie algebra and let σ be the critical degree of a

simply connected minimal Sullivan algebra satisfying (H). Suppose 0 < s < r are

integers such that r > σ. Then

max
s<i<(m+1)r

log dim Li

i + 1
≤ max

r≤i<(m+1)r

log dim Li

i + 1
+

(m + 1) log 2(m + 1)

s
.
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Proof Let i0 ∈ (s, (m + 1)r) be an integer for which

log dim Li0
− (m + 1) log 2(m + 1)

i0 + 1
= max

s<i<(m+1)r

log dim Li − (m + 1) log 2(m + 1)

i + 1
.

Since r > σ, it follows from Lemma 3.3 that dim Li0
> [2(m + 1)]m+1. Thus, by

Lemma 3.3, i0 extends to an infinite sequence i0 < i1 < · · · for which, in particular,

log dim Liν

iν + 1
≥ log dim Li0

− (m + 1) log 2(m + 1)

i0 + 1
, all ν ≥ 0.

Since iν ≤ (m + 1)(iν−1 + 1) − 2, it follows that some ik satisfies r ≤ ik < (m + 1)r.

Thus it follows from Lemma 3.3 that

max
r≤i<(m+1)r

log dim Li

i + 1
≥ log dim Lik

ik + 1
≥ log dim Li0

− (m + 1) log 2(m + 1)

i0 + 1

= max
s<i<(m+1)r

log dim Li − (m + 1) log 2(m + 1)

i + 1

≥ max
s<i<(m+1)r

log dim Li

i + 1
− (m + 1) log 2(m + 1)

s
.

This establishes the lemma.

Theorem 3.9 Let L be the homotopy Lie algebra and let σ be the critical degree of a

simply connected minimal Sullivan algebra (∧V, d) satisfying (H). Suppose k ≥ 2 and

r are fixed integers for which
log kr

2 log nh
> max(20, k, σ). Then

max
i≥r

( log dim Li

i + 1

)
− n log 2n

r

≤ log index L

≤ max
r≤i<kr

( log dim Li

i + 1

)
+

4 (2n log 2n + log(h + 1) + 1) log nh

log r
.

Corollary The conclusion of Theorem 3.9 holds for k = 2 if log r ≥ 2n+1n2n+5 log nh.

Proof As observed in the remark following the proof of Proposition 3.2, σ <
2nn2n+5.

Proof of Theorem 3.9 Recall from (3.1) that m + 1 ≤ n. Thus for i ≥ r, Lemma

3.3(iii) gives

log dim Li

i + 1
− n log 2n

r
≤ log dim Li − (m + 1) log 2(m + 1)

i + 1
≤ log index L.

To prove the second inequality, let s be the largest integer satisfying s < log kr
2 log nh

. Then

s ≥ k and (nh)2s < kr. Now note that

log index L = lim sup
i

log dim Li

i
≤ sup

s<i

log dim Li

i
.
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By Lemma 3.4(ii) we have dim Lℓ ≤ (nh)ℓ, ℓ ≥ 1. Thus we may use Proposition 3.7

with c = (nh)s to obtain

sup
s<i

log dim Li

i
≤ max

s<i<(nh)2s

log dim Li

i
+

2 log n(n + 1)h2

(nh)2s

+
5s(nh)s log(nh)2s

(nh)2s
+

15

(nh)s
.

Since s ≥ 20 and
log x

x
≤ 1

e
for x > 0, it follows that 2 log n(n + 1)h2 ≤ (nh)s. Thus

2 log n(n + 1)h2

(nh)2s
+

5s(nh)s log(nh)2s

(nh)2s
+

15

(nh)s
≤ 16 + 10s2 log nh

(nh)s
.

Since s ≥ 20 and (by (3.2)) nh ≥ 3, we have 16 < s2 log nh and

11s2 log nh

(nh)s
≤ 11s2

e(nh)s−1
≤ 11s2

es
<

1

s
.

Altogether then, we obtain

log index L ≤ sup
s<i

log dim Li

i
≤ max

s<i<(nh)2s

log dim Li

i
+

1

s
.

Next, for i > s, Lemma 3.3(iii) gives

log dim Li

i + 1
≤ log index L +

(m + 1) log 2(m + 1)

s
,

whence

max
s<i<(nh)2s

log dim Li

i
≤ s + 1

s
max

s<i<(nh)2s

log dim Li

i + 1

≤ max
s<i<(nh)2s

log dim Li

i + 1
+

1

s

[
log index L +

(m + 1) log 2(m + 1)

s

]
.

Since 1
s2 <

1
s
, while 1

s
log index L ≤ 1

s
log(h + 1) by Lemma 3.4(iv), the inequalities

above reduce to

log index L ≤ max
s<i<(nh)2s

log dim Li

i + 1
+

1

s

[
log(h + 1) + (m + 1) log 2(m + 1) + 1

]
.

Finally, since s < (log kr)/(2 log nh) it follows that (nh)2s < kr. Since (cf. (3.2))

nh ≥ 3, we have e2s < kr. A little calculation shows that x2 < e2x for x ≥ 0, and

so, since s ≥ k we have sk ≤ s2 < kr; i.e., s < r. On the other hand, we have
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chosen r so that (log kr)/(2 log(nh)) > σ and since s is the largest integer for which

(log kr)/(2 log nh) > s, we have σ ≤ s < r. Now we may use Lemma 3.8 to obtain

max
s<i<(nh)2s

log dim Li

i + 1
≤ max

s<i<kr

log dim Li

i + 1

≤ max
r≤i<kr

log dim Li

i + 1
+

(m + 1) log 2(m + 1)

s
.

Indeed, if maxs<i<kr (log dim Li)/i + 1 = (log dim Li0
)/(i0 + 1) with r ≤ i0 < kr

then the inequality is trivially true. Otherwise,

max
s<i<kr

log dim Li

i + 1
=

log dim Li0

i0 + 1

with s < i0 < r. Then

max
s<i<kr

log dim Li

i + 1
= max

s<i<(m+1)r

log dim Li

i + 1
,

and we apply Lemma 3.8. But because s is the greatest integer less than
log kr

2 log nh
, it

follows that

s ≥ log kr − 2 log nh

2 log nh
.

On the other hand, by the choice of r, 2 log nh < log kr
k

. Thus, because k ≥ 2,

s ≥ k − 1

k

log kr

2 log nh
≥ log r

4 log nh
.

Thus since k ≤ s < r, substitution in the inequality above yields the second inequality

of the theorem.

4 The Asymptotic Formula

In this section we again consider the homotopy Lie algebra L of a simply connected

minimal Sullivan algebra (∧V, d) that satisfies (H). In particular, we introduce the

following additional notation:

αL = log index L,

λ(n, h) = 4
(

2n log 2n + log(h + 1) + 1
)

log nh.

We have from Lemma 3.4(iv) that 0 < αL <∞.

The depth of L is the least integer, k, (or ∞) such that Extk
U L(Q,U L) 6= 0, and

we recall from [6, Theorem 35.13] that depth L ≤ m, where, as set out in (H), m =

cat(∧V, d).
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Lemma 4.1 Let L be the homotopy Lie algebra of a simply connected minimal Sullivan

algebra (∧V, d) satisfying (H). There is then an infinite sequence r0 < r1 < · · · and a

sub Lie algebra E ⊂ L such that

(i) for i ≥ 0, 2ri ≤ ri+1 < (m + 1)ri ;

(ii) E is generated in degrees ri , i ≥ 0, and for i ≥ 0

1

2
e

(αL− 2λ(n,h)
log ri

)ri ≤ dim(E/[E, E])ri
≤ e

(αL− 2λ(n,k)
log ri

)ri .

Proof We first use Theorem 3.9 to construct infinite sequences (ri) satisfying (i) and

such that

(4.1)
log dim Lri

ri

≥ αL −
2λ(n, h)

log ri

, i ≥ 0.

Indeed, let r ≥ n be any integer such that

(log(m + 1)r)

(2 log nh)
> max(20,m + 1, σ),

where σ is the critical degree of (∧V, d). Then choose r0 ∈ [r, (m + 1)r) to maximize

(log dim L j)/( j + 1) for r ≤ j < (m + 1)r. Then Theorem 3.9 with k = m + 1 yields

log dim Lr0

r0
≥ log dim Lr0

r0 + 1
≥ αL −

λ(n, h)

log r
≥ αL −

2λ(n, h)

log r0
.

(The last inequality follows because m ≤ n/2, and so r0 < (n/2 + 1)r, and hence

log r0 < log(n/2 + 1) + log r < 2 log r.)

Next suppose by induction that the r j , j ≤ i, have been constructed. Since ri > r0

we may apply Theorem 3.9 exactly as above to find ri+1 ∈ [2ri , (m + 1)ri) and such

that (4.1) holds.

We complete the proof by applying Lemma 2.4, and for this we shall suppose that

the initial r above was chosen so that

2(log 2)λ(n, h)

log x log 2x
≥ 3 log 2x

x

for x ≥ r. To obtain this lemma from Lemma 2.4 it is sufficient, in view of (4.1), to

show that for i ≥ 0,

2λ(n, h)

[
1

log ri

− 1

log ri+1

]
≥ 2

log(ri + 1)

ri

+
log 3

ri+1
.

Since 2ri ≤ ri+1 < (m + 1)ri , it is enough to show that

2 log 2λ(n, h)

log ri log 2ri

≥ 3 log 2ri

ri

,

and this is exactly our additional hypothesis above on r.
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We will use the Hochschild–Serre spectral sequence in the next proposition. We

refer the reader to [7] for the notation and properties of the spectral sequence, noting

that since char lk = 0, ∧U = ΓU , the free divided powers algebra on U , for any

graded vector space U = {Ui}i≥1. We denote by sU the graded vector space defined

by (sU )i = Ui−1. Then for each sub Lie algebra E ⊂ L, we write I = [E, E], and

observe that the proof of (X4) in [7, §4] implies that

(4.2) Ext∗U (E/I)

(
TorU I

p (lk,Γqs(L/E)),U (E/I)
)
6= 0

for some p + q = s ≤ m.

In fact, the Hochschild–Serre spectral sequence converging from

Exti
U E

(
∧qs(L/E),U L

)

to Ext
i+q
U L (lk,U L) gives Exti

U E(∧qs(L/E),U L) 6= 0 for some i + q ≤ m, because

depth L ≤ m. Since U L is U E-free, this implies that Exti
U E(∧qs(L/E),U E) 6= 0). Now

the proof of [8, Lemma 4.2] applies verbatim to give Exti
U E(∧qs(L/E),U E/I) 6= 0.

On the other hand there is a Hochschild–Serre spectral sequence converging from

Ext
i−p

U (E/I)
(TorU I

p (lk,∧qs(L/E)),U (E/I)) to Exti
U E(∧qs(L/E),U (E/I)). Formula (4.2)

follows.

Finally [7, Proposition 1, §2] asserts that if F is an abelian Lie algebra, M is an

F-module, and ExtU F(M,U F) 6= 0, then for some x ∈ M and some r the map

U (F≥r) → M, a 7→ a · x is injective. This, together with (4.2), shows that for any sub

Lie algebra E of L, for some integer λ and some ω ∈ TorU I
p (lk,∧qs(L/E)), the natural

action of U (E/I) satisfies

U
(

(E/I)≥λ
)
−→ U

(
(E/I)≥λ

)
· ω is injective.

Proposition 4.2 Let L be the homotopy Lie algebra of a simply connected minimal

Sullivan algebra satisfying (H). There is then an integer R such that for all r ≥ R,

max
r<i<r+

√
r−1

log dim Li

i
≥ log index L − 9λ(n, h)

log r
.

Proof Let (ri) and E ⊂ L satisfy the conditions of Lemma 4.1, and write [E, E] = I.

There is thus some integer λ and some ω ∈ TorU I
p (lk,∧qs(L/E)) for which p + q =

s ≤ m and

(4.3) U ((E/I)≥λ) −→ U ((E/I)≥λ) · ω is injective.

Write W = sI⊕ sL/E and represent ω by a cycle z ∈ ∧s(W≤N ), some N. Then choose

i0 ≥ 0 so that ri0
> N.

We will impose a number of conditions on R. To begin, we require that

√
R

(m + 2)2
> λ and

√
R > ri0

+ N.
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Now let r ≥ R be any integer. Then ri0
+ N <

√
r, and so there is a greatest integer

i such that ri + N <
√

r. Clearly then ri <
√

r < r. Let k ≥ 2 be the least integer for

which rik ≥ r. Since (k− 1)ri < r we have kri + N = (k− 1)ri + ri + N < r +
√

r − 1;

i.e.,

[kri , kri + N] ⊂ [r, r +
√

r − 1).

Next, let {u j} ⊂ Eri
represent a basis of (E/I)ri

and denote the adjoint represen-

tation of E in ΓW by ” ◦ ”. Further, for ℓ ≥ 1, denote by Aℓ ⊂ U E the linear span

of the elements u j1
· · · u jℓ with j1 < · · · < jℓ. Note that Aℓ+ℓ ′ ⊂ Aℓ · Aℓ ′ . Since i

is the largest integer for which ri + N <
√

r, we have (m + 2)ri = (m + 1)ri + ri ≥
ri+1 + ri0

> ri+1 + N ≥ √
r. Thus,

ri >

√
r

m + 2
≥

√
R

m + 2
> λ.

It therefore follows from (4.3) that for any ℓ ≥ 1, Aℓ → Aℓ ◦ z is injective.

Now recall that z ∈ Γ
s(W≤N ), where s ≤ m. Set K = dimΓ

≤m(W≤N ). As in the

proof of (X4) in [7, §4], we have

Aℓ ◦ z ⊂
s∑

t=1

∑

ℓ1+···+ℓt=ℓ
ℓ1≤···≤ℓt

(Aℓ1 ◦W≤N ) · · · (Aℓt ◦W≤N )Γs−t (W≤N ).

When ℓ = ks, we have ℓt ≥ ks
t
≥ k (because s ≥ t). Since Aℓ+ℓ ′ ⊂ AℓAℓ ′ , and since

ℓt ≥ k, it follows that Aℓt ◦W≤N ⊂ Aℓt−k◦Ak◦W≤N . Since s ≤ m, dimΓ
s−t (W≤N ) ≤

dimΓ
≤m(W≤N ) = K. Thus, since Aks → Aks ◦ z is injective, we obtain

dim Aks ≤
s∑

t=1

∑

ℓ1+···+ℓt=ks
ℓ1≤···≤ℓt

(K dim Aℓ1 ) · · · (K dim Aℓt−1 ) dim Aℓt−k dim(Ak ◦W≤N )K.

Next, write di = log index L − 2λ(n,h)
log ri

and set

d = max
r< j<r+

√
r−1

log dim L j

r
.

Now recall that Ak is the linear span of the elements u j1
· · · u jk

with j1 < · · · < jk.

Thus the elements of Ak have degree kri . Since [kri + 1, kri + N] ⊂ (r, r +
√

r − 1), it

follows that

dim Ak ◦W≤N ≤
kri +N∑

j=kri +1

dim W j ≤ N · max
r+1≤ j≤r+

√
r−2

dim L j ≤ Nedr.

On the other hand (Lemma 4.1) dim(E/I)ri
≤ edi ri , and so for any ℓ, dim Aℓ ≤ edi riℓ.

Denote by ρ the number of partitions of ks. Then, because t ≤ s ≤ m, the inequalities

above yield

(4.4) dim Aks ≤ ρKmedi ri (s−1)kNedr.
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If x ≥ l are respectively a real number and a strictly positive integer, we write
(

x

ℓ

)
=

x(x − 1) · · · (x − ℓ + 1)

ℓ!

and note that
(

x
ℓ

)
≥ ( x

ℓ )ℓ. We now require the following further condition on R: for

any y ≥ R, (
log index L − 2λ(n, h)

log y

)
y > log

(
4m(m + 2)2 y

)
.

Then, with this condition satisfied, we establish the inequality

(4.5) dim Aks ≥
(

1
2

edi ri

ks

)
≥

( edi ri

2ks

) ks

.

In fact, since (Lemma 4.1) we have dim(E/I)ri
≥ 1

2
edi ri , it is sufficient to show that

edi ri ≥ 2ks. But since (k − 1)ri < r and ri < r, it follows that kri < 2r. Moreover,

as observed earlier in the proof, ri >
√

r
m+2

. It follows that k < 2(m + 2)
√

r, and so

2ks ≤ 2km < 4m(m + 2)
√

r < 4m(m + 2)2ri . Since ri ≥ R, our hypothesis above

on R implies that diri > log(4m(m + 2)2ri) > log(2ks), i.e., edi ri > 2ks. Thus (4.5) is

established.

Now recall, as observed in the proof of Lemma 3.5, that ρ < e3
√

ks. Recall also that

r ≤ rik and that s ≤ m. With these observations, combine the inequalities (4.4) and

(4.5) and take logs to obtain

dr ≥ dir − km log(2km) − 3
√

km − m log K − log N.

It follows that for some c depending only on m,K, and N that

dr ≥ dir − ck log k.

But k < 2(m + 2)
√

r, and so

d − di ≥ −2c(m + 2)√
r

log
(

2(m + 2)
√

r
)
.

We now impose one final requirement on R, namely that for y ≥ R,

2c(m + 2)
√

y
log

(
2(m + 2)

√
y
)
<
λ(n, h)

log y
.

Then, because r ≥ R, we have

d ≥ di −
λ(n, h)

log r
= log index L − 2λ(n, h)

log ri

− λ(n, h)

log r
.

Finally, as observed earlier, ri >
√

r
m+2

and so log ri >
1
2

log r − log(m + 2). But

r ≥ R > (m + 2)4 j2
0 and so log(m + 2) < 1

4
log r. Thus log ri >

1
4

log r and

d ≥ log index L − 9λ(n, h)

log r
.
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Theorem 4.3 Let L be the homotopy Lie algebra of a simply connected minimal Sul-

livan algebra satisfying (H). Then, given ε > 0, there is an infinite sequence of even

integers q0 < q1 < · · · and a constant C0 ≥ 0 such that

qi+1 − qi <
√

qi + C0, i ≥ 0,

and

log dim Lqi

qi

≥ log index L − (9 + ε)λ(n, h)

log qi

, i ≥ 0.

Proof As in the proof in [7, §4] that (X4) ⇒ (X3), there are finitely many elements

y1, . . . , yr of odd degree in L such that for ℓ odd and sufficiently large there is some

µ(ℓ) ∈ [1, r] for which dim Lℓ+deg yµ(ℓ)
≥ 1

r
dim L.

Next, recall from Proposition 4.2 that if an integer q is sufficiently large, then for

some ℓ ∈ (q, q +
√

q − 1),

log dim Lℓ

ℓ
≥ log index L − 9λ(n, h)

log q
.

Define k by

k =

{
ℓ if ℓ is even,

ℓ + deg yµ(ℓ) if ℓ is odd,

and write C0 = max1≤i≤r deg yi . Then k is even and q < k < q +
√

q + C0, whether

ℓ is even or odd.

In the case ℓ is odd we have

log dim Lk

k
≥ log dim Lℓ

k
− log r

k

=
log dim Lℓ

ℓ
− 1

k

(
deg yµ(ℓ)

log dim Lℓ

ℓ
+ log r

)
.

(4.6)

It follows from Lemma 3.4(iv) that the set { log dim Lℓ
ℓ | ℓ ≥ 1} has a finite upper

bound, and so for sufficiently large q,

(4.7)
1

k

(
deg yµ(ℓ)

log dim Lℓ

ℓ
+ log r

)
<
ε/2λ(n, h)

log k

Moreover, whether ℓ is even or odd we have k ≤ 2q, and so

log k

log q
≤ log q + log 2

log q
= 1 + δ,

where for q sufficiently large δ < ε/2. Then

log dim Lℓ

ℓ
≥ log index L − 9λ(n, h)

log q

≥ log index L − (9 + ε
2
)λ(n, h)

log k
.

(4.8)
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Formula (4.8), combined with (4.6) and (4.7) when ℓ is odd, establishes the in-

equality
log dim Lk

k
≥ log index L − (9 + ε)λ(n, h)

log k
,

always provided q ≥ Q for some fixed Q. For such q set k = q0 and then iterate the

construction to obtain the sequence (qi).

Proposition 4.4 Let L be the homotopy Lie algebra of a simply connected minimal

Sullivan algebra satisfying (H). Then, given ε > 0, there is a constant C > 0 such that

for k ≥ C,

max
k+2≤i≤k+n

log dim Li

i
≥ log index L − (9 + 3ε)λ(n, h)

log(k + 1)
.

Proof The principal step in the proof is to show that for some d ≥ n,

(4.9) max
ℓ≤i≤ℓ+d

log dim Li

i
≥ log index L − (9 + 2ε)λ(n, h)

log ℓ
,

if ℓ is sufficiently large. We establish this by showing that the hypothesis that (4.9)

fails leads to a contradiction, and we do so following the general idea of the proof of

[7, §3, Thm. 2].

To begin, recall that we set αL = log index L, and remark that, by Lemma 3.4(i),

since dim L = ∞, we have αL > 0. Now simplify notation by writing

c = (9 + 2ε)λ(n, h).

Then if (4.5) is false, we may find an infinite sequence 0 < ℓ0 < ℓ1 < · · · such that

for r ≥ 0,

(4.10) max
ℓr≤i≤ℓr+r

log dim Li

i
< αL −

c

log ℓr

.

Moreover, by choosing a subsequence if necessary, we may also arrange that for r ≥ 0,

(4.11) αL −
c

log ℓr

> 0,

and for r ≥ 0 and x ≥ ℓr+1,

(4.12)
c

log ℓr

− 6 log(ℓr + 1)

ℓr

>
c

log x
.

For the last equation, remark that when ℓr > 5, c
log ℓr

− 6 log(ℓr+1)
ℓr

> 0, so we can find

ℓr+1 so that this quantity is bigger than c
log ℓr+1

.

Recall next from Theorem 4.3 that there is a constant C0 and an infinite sequence

2 ≤ q0 < q1 < · · · of even integers such that for j ≥ 0,

(4.13)





q j+1 < q j +
√

q j + C0

log dim Lq j

q j

≥ αL −
(9 + ε)λ(n, h)

log q j

.
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By beginning the sequence at a sufficiently large q0 we may also arrange that for j ≥ 0,

(4.14) αL −
(9 + ε)λ(n, h)

log q j

> 0 and q j +
√

q j + C0 < 2q j .

In particular, comparing (4.10) with (4.13) we find that for all j, r ≥ 0,

(4.15) q j 6∈ [ℓr, ℓr + r].

We now construct an infinite sequence (zi) of elements of L and a strictly increas-

ing infinite subsequence (si) = (ℓri
) of the sequence (ℓr) such that the following holds

for i ≥ 0:

(C1) zi 6= 0, deg zi is even, and deg zi > deg zi−1.
(C2) The sub Lie algebra, E(i), generated by z0, . . . , zi together with the subspaces

L[s j ,s j +r j ], 0 ≤ j ≤ i, satisfies

dim(U E(i)) j ≤ e
(αL− c

log si+1
) j
, j ≥ 0.

(C3) The subspace (U E(i − 1))+ ◦ zi is finite dimensional and concentrated in odd

degrees, where “◦” denotes the adjoint representation.

Remark In interpreting (C1)–(C3) for i = 0, we set E(−1) = 0, and z−1 = 0 ∈ L0.

Now once the sequence si = ℓri
and zi are constructed, we will use the same ideas

as in the proof of [7, Theorem 2, §3] to yield a contradiction and hence establish

(4.9). Thus first we will recall how to obtain a contradiction from (4.9), and then we

will construct these two sequences by induction on i.

Recall first that an L-module M is weakly locally finite if M is the increasing union

of finite dimensional subspaces M(1) ⊂ M(2) ⊂ · · · such that M(k) is preserved

by L≤k. Then the weak depth of L, w-depth L, is the least k (or ∞) such that

Extk
U L(M,U L) 6= 0 for some weakly locally finite L-module, M.

Now set E = ∪rE(r). Since (L/E)i = 0 for i ∈ [s j , s j + r j], L/E is a weakly locally

finite L-module, and so, by [7, Lemma 5], w-depth E ≤ w-depth L ≤ m.

The relation (C3) clearly implies that for any r, and any i > 0, [E(r), zr+i] is finite

dimensional and concentrated in odd degrees.

Let w-depth E = k, and let Z(r) ⊂ E(r) be the sub Lie algebra of elements that

commute with each zr+i , 0 < i ≤ k. Since [E(r), zr+i] is finite dimensional and

concentrated in odd degrees it follows that E(r)/Z(r) is also finite dimensional and

concentrated in odd degrees. By [7, Lemma 8], the restriction morphism

ExtU E(r)(M,U E) −→ ExtU Z(r)(M,U E)

is injective for any E-module M.

On the other hand, since w-depth E = k, there is a weakly locally finite E-module

M such that Extk
U E(M,U E) 6= 0. Moreover, since E = ∪rE(r), for some r the re-

striction morphism Extk
U E(M,U E) → Extk

U E(r)(M,U E) is non-zero. Hence also the

composite

Extk
U E(M,U E) −→ Extk

U Z(r)(M,U E)
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is non-zero.

Since each [E(i), zi+1] is concentrated in odd degrees, it follows that [zi , z j] = 0,

0 ≤ j < i < ∞. Thus Z = ⊕k
i=1lkzr+i is an abelian Lie algebra commuting with

Z(r). Because Z(r) → E factors as Z(r) → Z(r) + Z → E, the restriction map

Extk
U E(M,U E) → Extk

U Z(r)(M,U E) factors through Extk
U (Z(r)+Z)(M,U E). Since U E

is a free U (Z(r) + Z)-module, it follows that w-depth(Z(r) + Z) ≤ k. Since Z is

an ideal in Z(r) + Z, there is a Hochschild-Serre spectral sequence converging from

Ext
p

U ((Z(r)+Z)/Z)
(lk, Ext

q
U (Z)( · , · )) to Ext

p+q
U (Z(r)+Z)( · , · ). It follows that w-depth Z ≤ k.

But Z is finitely generated, so [7, Lemma 5] asserts that depth Z ≤ k. On the other

hand, since Z is abelian and concentrated in even degrees, [6, Theorem 36.4] asserts

that depth Z = dim Z = k + 1, and we have the desired contradiction.

Now we proceed to the construction of the sequences si and zi . To begin, we

set r0 = 0 so that s0 = ℓ0, and we let z0 be any non-zero element in some Lq j
with

q j > ℓ0, noting that (4.13) and (4.14) imply that this space is non-zero. Thus, because

E(−1) = 0 and z−1 = 0 ∈ L0, (C1) and (C3) are trivially satisfied for i = 0.

Moreover, since E(0) is generated by Lℓ0
+ lkz0 it follows from (4.10) and (4.11) that

dim
( E(0)

[E(0), E(0)]

)

j
≤ e

(αL− c
log ℓ0

) j
, j ≥ 1.

Also, since E(0) j = 0 for j < ℓ0, we have from Lemma 2.2 that

dim U E(0) j ≤ e
(αL− c

log ℓ0
+

log(ℓ0+1)

ℓ0
) j
, j ≥ 1.

Now apply (4.12), noting that whatever the choice of s1 we will have s1 ≥ ℓ1, to obtain

that E(0) satisfies (C2).

Next, suppose s0, . . . , sp and z0, . . . , zp have been selected so that (C1)–(C3) hold.

Set

d(p) = 1 + max(sp + rp, deg zp),

and choose q to satisfy the following three conditions:

(i) q > d(p);

(ii) for x ≥ q,
log x

log(x+
√

x+C0)
> (9+1.5ε)

(9+2ε)
;

(iii) for x ≥ q, αL
2
√

x+2C0

x
+

log d(p)
x

< .5ε
q+2ε

c
log x

.

Then choose rp+1 and sp+1 = ℓrp+1
so that for some qi > q,

rp+1 > d(p) and sp+1 > qi > q.

Because of (4.15), no q j is in the interval [sp+1, sp+1 + rp+1]. It follows that for some

(unique) q j > q,

[sp+1, sp+1 + rp+1] ⊂ [q j , q j+1).

Now dualize the adjoint representation of U E(p) in L to linear maps

θi : Lq j
→ Li ⊗ (U E(p)i−q j

)# ,

https://doi.org/10.4153/CJM-2012-050-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-050-x


110 Y. Félix, S. Halperin, and J.-C. Thomas

where # denotes vector space dual. From (4.10) and (C2) we find that for i ∈
[sp+1, sp+1 + rp+1],

dim Li ⊗ (U E(p)i−q j
)# ≤ e

(αL− c
log sp+1

)i
e

(αL− c
log sp+1

)i−q j
.

From (4.13) we have sp+1 + d(p) < sp+1 + rp+1 < q j+1 ≤ q j +
√

q j + C0. Substitution

in the inequality above yields

dim Im θi ≤ e
(αL− c

log sp+1
)(q j +2

√
q j +2C0)

.

for sp+1 ≤ i < sp+1 + d(p). Thus,

1

q j

log

( sp+1+d(p)−1∑

i=sp+1

dim |IMθi

)
≤ αL −

c

log sp+1
+ αL

2
√

q j + 2C0

q j

+
log d(p)

q j

.

But
c

log sp+1
>

c

log(q j +
√

q j + C0)
=

c

log q j

log q j

log(q j +
√

q j + C0)
.

Thus, since q j > q, it follows from our conditions above on q that

1

q j

log

( sp+1+d(p)−1∑

i=sp+1

dim Im θi

)
≤ αL −

(9 + ε)λ(n, h)

log q j

<
log dim Lq j

q j

.

This implies in turn that for some non-zero z ∈ Lq j
,

θiz = 0, sp+1 ≤ i < sp+1 + d(p).

Equivalently, where, as usual, “◦” denotes the adjoint representation,

(4.16) U E(p)i ◦ z = 0 for i ∈
[

sp+1 − q j , sp+1 − q j + d(p)
)
.

But since d(p) > sp + rp and d(p) > deg zp, it follows from the definition of E(p)

that this sub Lie algebra is generated by elements of degree< d(p). Thus from (4.16)

we obtain

U E(p)i ◦ z = 0, i ≥ sp+1 − q j ;

i.e., U E(p) ◦ z is finite dimensional. Moreover, z ∈ Lq j
is a non-zero element of

even degree in U E(p) ◦ z. Let zp+1 be a non-zero element of maximal even degree

in U E(p) ◦ z. Then deg zp+1 ≥ deg z = q j > d(p) ≥ deg zp, and so (C1) holds for

i = p + 1. Obviously (C3) holds by the very choice of zp+1. Finally, note that E(p + 1)

is generated by E(p) together with

W = L[sp+1,sp+1+rp+1] + lkzp+1.
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In particular, it follows from (4.10) and (4.11) that for all j ≥ 1, dim W j ≤
e

(αL− c
log sp+1

) j
.

Furthermore, since deg zp+1 ≥ q j and sp+1 ≥ q j , we have Wi = 0, i < q j . Thus in

view of (C2) for i = p and Lemma 2.3(ii), we may conclude that for any j ≥ 1,

log dim U E(p + 1) j

j
≤ αL −

c

log sp+1
+

3 log(q j + 1)

q j

.

Since q0 ≥ 2 and
log(x+1)

x
decreases as x increases for x ≥ 2, we obtain from (4.14)

that

3 log(q j + 1)

q j

=
6 log(q j + 1)

2q j

≤
6 log(q j +

√
q j + C0 + 1)

q j +
√

q j + C0
<

6 log(sp+1 + 1)

sp+1
.

Finally, apply (4.12) to obtain that for all j ≥ 0 that

log dim U E(p + 1) j

j
≤ αL −

( c

sp+1
− 6 log(sp+1 + 1)

sp+1

)
≤ αL −

c

log x
,

whenever x ≥ ℓrp+1
+ 1. Since any choice of rp+2 will satisfy rp+2 > rp+1 + 1, we will

have sp+2 ≥ ℓrp+1+1, so (C2) follows for i = p + 1. This completes the induction, and

with it the proof of (4.9).

It remains to deduce the proposition from (4.9). Thus we suppose (4.9) holds for

ℓ ≥ C1, some C1 > 0. Then, because dim Lk = dim V k+1 (all k ≥ 1) with (∧V, d) a

minimal Sullivan algebra satisfying dim Hi(∧V, d) ≤ h, all i ≥ 0, and Hi(∧V, d) = 0,

all i > n, we may apply [14, Corollary 7]. This asserts that for some C2 > 0 and any

integer ℓ ≥ C2 there is an integer i ∈ (ℓ, ℓ + n) for which

dim Li ≥
1

nh
dim Lℓ.

It follows that if k + n− d ≥ C2, then for any ℓ ∈ [k + n− d, k + n] there is an integer

i ≥ ℓ such that i ∈ [k + 2, k + n] and

dim Li ≥
( 1

nh

) d−n+2

dim Lℓ.

Now suppose k + n− d ≥ C2 and k + n− d ≥ C1 and choose ℓ ∈ [k + n− d, k + n]

so that
log dim Lℓ

ℓ
= max

k+n−d≤ j≤k+n

log dim L j

j
.

Then because of (4.9), we will have for the i ∈ [k + 2, k + n] above that

log dim Li

ℓ
≥ log dim Lℓ

ℓ
− (d − n + 2) log nh

ℓ

≥ αL −
(q + 2ε)λ(n, h)

log(k + n − d)
− (d − n + 2) log nh

ℓ
.
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Next, choose C3 > 0 so that for k ≥ C3,

(4.17)

{
log(k+1)

log(k+n−d)
≤ 9+2.5ε

9+2ε ,
dαL+(d−n+2) log nh

k+2
≤ .5ε λ(n,h)

log(k+1)
.

Set C = max{C1,C2,C3}. Then for k ≥ C the i ∈ [k + 2, k + n] above satisfies

log dim Li

i
≥

(
αL −

(9 + 2ε)λ(n, h)

log(k + n − d)

)(
1 − i − ℓ

i

)
− (d − n + 2) log nh

i

≥ αL −
d

i
αL −

(9 + 2ε)λ(n, h)

log(k + n − d)
− (d − n + 2) log nh

i

= αL −
(9 + 2ε)λ(n, h)

log(k + 1)

log(k + 1)

log(k + n − d)
− (d − n + 2) log nh + dαL

k + 2
.

In view of (4.17) this yields

log dim Li

i
≥ αL −

(9 + 3ε)λ(n, h)

log(k + 1)
,

and since i ∈ [k + 2, k + n], the proof of Proposition 4.4 is complete.

Next, recall the notation

β(n, h) = 40(2n log n + log(h + 1) + 1) log nh,

γ(n, h) = n log(h + 1) + 2n log 2n

from the introduction. In particular, β(n, h) = 10λ(n, h).

Theorem 4.5 Let L be the homotopy Lie algebra of a simply connected minimal Sulli-

van algebra that satisfies (H). Then the homotopy log index αL satisfies 0 < αL < ∞.

Moreover, for some K ≥ 0 and for all k ≥ K,

e(αL− β(n,h)
log(k+1)

)(k+1) ≤ max
k+2≤i≤k+n

dim Li ≤ e(αL+ γ(n,h)
k+1

)(k+1).

Proof It follows from Lemmas 3.3(i)(ii), and 3.4(iv) that 0 < αL < log(h + 1).

Moreover, the first inequality follows from Proposition 4.4, provided that K ≥ C

and 3ε < 1. On the other hand, the first inequality of Theorem 3.9 implies that for

an appropriate K, and for all k ≥ K,

max
k+2≤i≤k+n

log dim Li

k + n + 1
≤ max

k+2≤i≤k+n

log dim Li

i + 1
≤ αL +

n log 2n

k + 2
.

Therefore, for i ∈ [k + 2, k + n], we have dim Li ≤ e(αL+
n log 2n

k+2
)(k+n+1). Since by

Lemma 3.4(iv) αL ≤ log(h + 1), the second inequality of the theorem follows, pro-

vided that k + 2 ≥ n.
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5 Topological Results

We begin by proving Theorem 1.2.

Lemma 5.1 Let Y be a simply connected n-dimensional CW complex such that for

some k, maxk+2≤i≤k+n rkπi(Y ) <∞. Then rkπk+1(Y ) <∞.

Proof We may assume that Y has a single zero cell and no 1-cells, and that the attach-

ing maps for all the cells preserve base points. We shall assume rkπk+1(Y ) = ∞ and

deduce a contradiction. Indeed, given any subcomplex i : W ⊂ Y , consider based

maps f : Sk+1 → Y for which f ∨ i : Sk+1 ∨W → Y extends to a map Sk+1 ×W → Y ,

also denoted by f . This property depends only on the homotopy class [ f ] ∈ πk+1(Y ),

and the homotopy classes in πk+1(Y ) with this property form a subgroup Gk+1(W,Y )

first introduced by Gottlieb in [11].

Now suppose Z ⊃ W is a second subcomplex of Y obtained by the addition of

a single cell: Z = W ∪g Dq. Given a map f : Sk+1 × W → Y , we let π : Dk+1 →
Dk+1/Sk

= Sk+1 and ρ : Sk × Z → Z be the projections and form

f (π × id) ∪ ℓρ : (Dk+1 ×W ) ∪ (Sk × Z) −→ Y,

where ℓ : Z → Y is the inclusion. The obstruction O( f ) to extending this to a map

Dk+1 × Z → Y is the obstruction to extending

f̃ : Dk+1 × Sq−1 ∪ (Sk × Dq) −→ Y

to Dk+1 × Dq; i.e., it is an element of πk+q(Y ).

Lemma 5.2 The correspondence f 7→ O( f ) defines a linear map

Gk+1(W,Y ) −→ πk+q(Y )

whose kernel is Gk+1(Z,Y ).

Proof Recall first the classical definition of the addition in πk+q(Y ). Denote by H

the hyperplane x1 = 0 in Rk+q+1. Then the pinch map ∇ : Sk+q → Sk+q ∨ Sk+q is

the quotient by the subspace Sk+q ∩ H, and the sum of two elements h1 and h2 is the

composition

Sk+q
∇
−→ Sk+q ∨ Sk+q

h1∨h2−→ Y.

The map ∇ decomposes as follows

(Dk+1 × Sq−1) ∪ (Sk × Dq) →
[

(Dk+1
+ ∨ Dk+1

− ) × Sq−i
]
∪
[

(Sk
+ ∨ Sk

−) × Dq
]
=

[
(Dk+1

+ × Sq−1) ∪ (Sk
+ × Dq)

]
∨
[

(Dk+1
− × Sq−1) ∪ (Sk

− × Dq)
]
,

where Dk+1
+ denotes the quotient of {(x1, . . . , xk+1) ∈ Dk+1 | x1 ≥ 0 } by the subspace

Dk+1 ∩ H. We use similar definitions for Dk+1
− , Sk

+ and Sk
−. Clearly Sk

− ∼= Sk
+
∼= Sk and

Dk+1
− ∼= Dk+1

+
∼= Dk+1.
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Now let f , g ∈ Gk+1(W,Y ). The extension of f + g to Sk+1 ×W is the composition

(Sk+1 ×W )
∇×id
−→ (Sk+1

+ ∨ Sk+1
− ) ×W = (Sk+1

+ ×W ) ∪({∗}×W ) (Sk+1
− ×W )

f∪g

−→ Y.

Since the projection ρ : Sk × Dq → Dq is the composition

Sk × Dq ∇×id→ (Sk
+ ∨ Sk

−) × Dq
= (Sk

+ × Dq) ∪({∗}×Dq) (Sk
− × Dq)

ρ∪ρ→ Dq,

the maps f̃ + g and f̃ + g̃ coincide.

Since 2 ≤ q ≤ n, πk+q(Y ) ⊗ Q is finite dimensional, it follows that the image of

Gk+1(Z,Y ) ⊗ Q has finite codimension in Gk+1(W,Y ) ⊗ Q .

A trivial induction now shows that for finite subcomplexes W ⊂ Z of Y the image

of Gk+1(Z,Y ) ⊗ Q has finite codimention in Gk+1(W,Y ) ⊗ Q .

Next, given a based map g : Sp → Y , we denote by [g] ⊗ 1 the corresponding

element of πp(Y ) ⊗ Q . Similarly if ϕ : W → Y is the inclusion of a subcomplex we

denote by πp(ϕ) ⊗ Q the induced maps between the rationalized homotopy groups.

We shall construct a sequence pt = W (0) ⊂ W (1) ⊂ · · · of finite subcomplexes of

Y together with maps f (i) : Sk+1 ×W (i) → W (i + 1) such that

[
f (i)| Sk+1×pt

]
⊗ 1 6∈ Imπk+1

(
f (i)| pt×W (i)bigr) ⊗ Q.

Indeed, first note that Gk+1(pt,Y ) ⊗ Q = πk+1(Y ) ⊗ Q is supposed infinite di-

mensional, so we may choose for f (0) any representative of a non-zero element of

πk+1(Y )⊗Q . Then if W (0) ⊂ · · · ⊂ W (ℓ) and f (0), . . . , f (ℓ) are constructed, we let

W (ℓ+1) be any finite subcomplex of Y that contains IM f (ℓ). Then πk+1(W (ℓ+1))⊗
Q is finite dimensional and so has finite dimensional image in πk+1(Y )⊗Q . Since the

image of Gk+1(W (ℓ + 1),Y ) ⊗ Q has finite codimension in the infinite dimensional

space Gk+1(pt,Y ) = πk+1(Y ) ⊗ Q , we may find f (ℓ + 1) : Sk+1 ×W (ℓ + 1) → Y such

that

[
f (ℓ + 1)| Sk+1×pt

]
⊗ 1 6∈ Im

[
πk+1(W (ℓ + 1)) ⊗ Q) → πk+1(Y ) ⊗ Q

]
.

In particular, for each ℓ ≥ 1 we have the maps

ϕ(ℓ) : Sk+1 × · · · × Sk+1

︸ ︷︷ ︸
ℓ

→ Sk+1 × · · · × Sk+1

︸ ︷︷ ︸
ℓ−1

×W (1) → Sk+1 × · · · × Sk+1

︸ ︷︷ ︸
ℓ−2

×W (2)

→ · · · → W (ℓ + 1)

with each πk+1(ϕ(ℓ)) ⊗ Q injective.

Finally, let F → W (ℓ + 1) → B be the Postnikov fibration in which πi(B) = 0,

i ≥ k + 1, and πi(F) = 0, i < k + 1. Then ϕ(ℓ) is homotopic to a map ψ(ℓ) : Sk+1 ×
· · ·×Sk+1 → F. The restriction of ψ(ℓ) to the (k+1)-spheres are linearly independent

elements of πk+1(F)⊗Q = Hk+1(F; Q). Label these spheres Sk+1
1 , . . . , Sk+1

ℓ . Then there

are cohomology classes γ1, . . . , γℓ ∈ Hk+1(F; Q) such that

〈
Hk+1(ψ(ℓ))γi, [Sk+1

j ]
〉
=

〈
γi , [ψ(ℓ)| Sk+1

j
]
〉
= δi j .
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(Here 〈 · , · 〉 denotes the pairing between cohomology and homology.) It follows

that

Hℓ(k+1)(ψ(ℓ))
ℓ∏

i=1

γi =

ℓ∏
i=1

Hk+1(ψ(ℓ))γi 6= 0,

and thus γ1 · · · γℓ 6= 0.

But since π∗(F)⊗Q → π∗(W (ℓ+1))⊗Q is injective, it follows from the Mapping

Theorem [4] that the rational category, cat0, satisfies cat0F ≤ cat0(W (ℓ + 1)) ≤
dim W (ℓ + 1) ≤ n. In particular the product of n + 1 classes in Hk+1(F; Q) vanishes,

which contradicts the above assertion for ℓ = n + 1.

Proof of Theorem 1.2 Let X̃ be the universal cover of the n-dimensional CW com-

plex X. If for some k, maxk+2≤i≤k+n rkπi(X) <∞, then Lemma 5.1 applied to Y = X̃,

also asserts that rkπk+1(X) <∞. It follows that

rkπi(X) <∞, 2 ≤ i ≤ k + n.

Hence (cf. (1.1)) Hi(X̃; Q) is finite dimensional for i ≤ k + n, and so (since X̃ is n-

dimensional), H∗(X̃; Q) is finite dimensional. This implies in turn that rkπi(X) is

finite for all i and thus that X is not π-rank infinite.

Proof of Theorems 1.1 and 1.6 Theorems 1.1 and 1.6 deal with the ranks of a ratio-

nally hyperbolic n-dimensional connected CW complex X. Thus in proving these

theorems we may replace X by its universal cover; i.e., we may restrict to the case

where X is simply connected. Since rkπi(X) < ∞ for i ≥ 2, the Betti numbers of X

are finite. We can thus suppose that X is a finite complex.

In this case we let (∧V, d) be the minimal Sullivan model of X ([6]). Then

H(∧V, d) ∼= H∗(X; Q) and V ∼= π∗(X) ⊗ Q . It follows that (∧V, d) satisfies (H)

with n = dim X and h = maxi dim Hi(X; Q). Moreover the homotopy log index,

αX , satisfies

αX = lim sup
k

log dimV k

k
= lim sup

k

log dim Lk

k
,

where L = {Lk} is the homotopy Lie algebra of (∧V, d). In particular, in the termi-

nology of Sections 3 and 4, αX = log index L = αL.

With these translations the first assertion of Theorem 1.1 coincides with Theo-

rem 4.5, while Theorem 1.6 coincides with the corollary to Theorem 3.9. It remains

to prove the second assertion of Theorem 1.1. In fact, the right-hand inequality in

the first assertion of Theorem 1.1 implies that for some fixed c > 0, rkπi(X) ≤ ceαX i

for all i ≥ 2. Now suppose for some k that rkπk(X) > max{1, (2n)n

eαX
} · eαX k. Then

dim V k > (2n)n ≥ [2(m + 1)]m+1, where m = cat(∧V, d). Thus, as in Lemma 3.3,

k extends to an infinite sequence k = k0 < k1 < · · · such that for each i ≥ 1,

ki = ℓiki−1 − 1, some 2 ≤ ℓi ≤ m + 1, and also

dim V ki ≥
[ 1

2(m + 1)

]m+1(
dim V ki−1

) ℓi
.
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Now write dim V ki = λie
αX ki , i ≥ 0. Then with i = 1 this inequality gives

λ1eαX (ℓ1k0−1) ≥
[ 1

2(m + 1)

]m+1[
λ0eαX k0

] ℓ1
.

Thus

λ1 ≥
[ 1

2(m + 1)

]m+1

eαXλℓ1

0 .

Since n ≥ m + 1 and since by hypothesis λ0 = σ(2n)ne−αX for some σ > 1, we

may write λ1 = σλℓi−1
0 . But we also supposed that λ0 ≥ 1, and thus λ1 ≥ σλ0.

In particular λ1 > σmax{1, (2n)ne−αX}. We may now iterate to obtain λi+1 >
σi max{1, (2n)ne−αX}. Since σ > 1, this gives λi → ∞ in contradiction with our

earlier observation that λi ≤ c for all i.

Proof of Theorem 1.7 We are given a number α ∈ (0,∞) and a sequence δk → 0

of nonnegative numbers, and we have to construct a rationally hyperbolic simply

connected wedge of spheres X such that αX = α and such that for any c, d > 0 there

is an infinite sequence kℓ for which

max
kℓ≤i≤kℓ+d

rkπi(X)

kℓ
< α− cδkℓ .

First recall from [6] that if Y is any finite wedge of spheres of dimension ≥ 2, then

the Poincaré series ΩY (z) =
∑∞

i=0 dim Hi(ΩY ; Q)zi is given by

ΩY (z) =
1

1 − fY (z)
,

where fY (z) =
∑

j≥1 dim H j+1(Y ; Z)z j . Thus the log index αY is the unique number

such that 1 − fY (e−αY ) = 0.

We construct X as the union of an increasing sequence of spaces X(ℓ) such that

X(1) =
r1∨

j=1

S
q1+1
j and X(ℓ + 1) = X(ℓ) ∨

rℓ+1∨
j=1

Sqℓ+1+1.

Here (rℓ) and (qℓ) are sequences to be determined, and the S
qℓ+1
j are all copies of the

(qℓ + 1)-sphere.

To begin, set r1 = 2 and choose q1 so large that 1 − 2e−αq1 > 0. Then αX(1) < α.

Next, suppose X(ℓ) has been constructed with αX(ℓ) < α and, for simplicity, denote

X(ℓ) by Y : αY < α. Suppose then that Z = Y ∨∨r
j=1S

q+1
j for some q and r and define

fY (z) and ΩY (z) as above. Then αZ is determined by the equation

1 − fY (e−αZ ) − re−αZ q
= 0.

Next, choose an integer pℓ so that the following conditions hold:

(i)
log rkπ j(Y )

j
< αY +

pℓ

pℓ + ℓ

α− αY

3
for j ≥ pℓ;
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(ii) ℓδ j <
α− αY

3
for j ≥ pℓ;

(iii)
ℓ

pℓ
αY <

α− αY

3
.

Then for j ∈ [pℓ, pℓ + ℓ] we have

(5.1)
log rkπ j(Y )

pℓ
< α− ℓδ j .

Indeed,

log rkπ j(Y )

pℓ
<

pℓ + ℓ

ℓ

log rkπ j(Y )

j
<

pℓ + ℓ

ℓ
αY +

α− αY

3

< αY +
α− αY

3
+
α− αY

3
= α− 1

3
(α− αY )

< α− ℓδ j .

Now, given q, choose r = r(q) to be the least integer satisfying r > e
1
2

(α+αY )q. The

log index of ∨r
j=1S

q+1
j is then greater than 1

2
(α + αY ) and so, trivially,

(5.2) αZ >
1

2
(α + αY ).

Moreover, we have, for sufficiently large q, that

(5.3) αZ < α.

Indeed, since r − 1 ≤ e
1
2

(α+αY ), it follows that

1− fZ(e−α) = 1− fY (e−α)− (r−1)e−αq − e−αq ≥ 1− fY (e−α)− e−
1
2

(α−αY )q − e−αq.

Thus for q sufficiently large, 1 − fZ(e−α) > 0, and (5.3) follows.

Now choose qℓ+1 so that (5.3) holds for q = qℓ+1 and also so that qℓ+1 > pℓ + ℓ.
Then set rℓ+1 = r(qℓ+1); thus X(ℓ + 1) = Z and by (5.3), αX(ℓ+1) < α. We may thus

iterate the construction to produce the infinite sequence X(1) ⊂ X(2) ⊂ · · · and we

set X = ∪ℓX(ℓ).

To complete the proof we observe first that (5.2) implies that

αX(ℓ+1) > α− 1

2
(α− αX(ℓ)), ℓ ≥ 1.

Since αX ≥ αX(ℓ) for all ℓ, it follows that αX ≥ α. Moreover, by construction there is

some fixed λ such that dim Hi+1(X; Q) ≤ λi for all i ≥ 0. As stated in [7, Theorem

4] this implies that αX <∞ and, for some integer s,

max
k≤i≤k+s

log rkπi(X)

k
→ αX as k → ∞.
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In particular this holds for the subsequence kℓ = pℓ + ℓ− s:

(5.4) max
kℓ≤i≤kℓ+s

log rkπi(X)

kℓ
→ αX.

Since for ℓ > s we have pℓ < kℓ ≤ kℓ + s = pℓ + ℓ, it follows from (5.1) that the limit

in (5.4) is at most α; i.e., αX ≤ α. Thus αX = α.

Finally let c > 0 and an integer d > 0 both be arbitrary, and choose any integer

ℓ > max(c, d). Then πi(X) = πi(X(ℓ)) for i ≤ qℓ+1, and so since qℓ+1 > pℓ + ℓ, we

have from (5.1) that

max
pℓ+ℓ−d≤i≤pℓ+ℓ

rkπ j(X)

pℓ + ℓ− d
≤ max

pℓ+ℓ−d≤i≤pℓ+ℓ

rkπ j(X(ℓ))

pℓ

< αX − ℓδpℓ+ℓ−d < αX − cδpℓ+ℓ−d.

Now the sequence kℓ = pℓ + ℓ− d goes to ∞ with ℓ, and we have

max
kℓ≤i≤kℓ+d

rkπ j(X)

kℓ
< α− cδkℓ .
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