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Abstract

In this paper, we improve the Rosenbloom’s fixed-point theorem and prove a related normality criterion.
We also consider the corresponding unicity theorem for transcendental entire functions.
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1. Introduction and the main results

Let f (z) be a nonconstant meromorphic function in the whole complex plane. We
use the following standard notations of value distribution theory,

T(rf),m(r,f), N(r,f),N(r, f), ...
(see Hayman [5]). We denote by S(r, f ) any function satisfying
S(r, f) = ofT(r, )},

as r — 400, possibly outside a set of finite measure.
A meromorphic function a(z) is called a small function related to f (z) if T(r, @) =

S(r, f).

Let S be a set of complex numbers. Write

ES =izl f@-a=0}

aes
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where a solution to f (z) — a = 0 with multiplicity m is counted m times in the above
set.
In 1952, Rosenbloom [6] proved the following theorem.

THEOREM 1. Let P(z) be a polynomial with deg P > 2, f (z) a transcendental
entire function. Then

im N 1/(PG) — 2)) >
r—00 T(r,f)

In 1995, Zheng and Yang [12] proved

(1.1) 1.

THEOREM 2. Let P(z) be a polynomial with deg P > 2, f (z) a transcendental
entire function, and a(z) a nonconstant meromorphic function satisfying T(r,a) =
S(r, ). Then

(1.2) T(r,f) < kﬁ( ) + S(r, f).

1
"PH -«
Here k = 2/(deg P — 1) if P'(z) has only one zero; otherwise k = 2.

Naturally, we ask what is the best possible & in (1.2). In this paper, we have obtained
such a k by proving the following result.

THEOREM 3. Let P(z) be a polynomial with deg P > 2, f (z) a transcendental
entire function, and «(z) a meromorphic function satisfying T(r,a) = S(r, f). If
«(z) is a constant, we also require that there exists a constant A # « such that
P(z) — A has a zero of multiplicity at least 2. Then

(1.3) T(r, f) 5k17< )+S(r,f).

r, ———
P(f)—«
Here k = 1/(deg P — 1) if P'(z) has only one zero; otherwise k = 1.

Obviously, Theorem 3 improves Theorem 2 and implies the following corollary.

COROLLARY 1. Let P(z) be a polynomial with deg P > 2, f (2) a transcendental

entire function, and «(z2) a nonconstant meromorphic function satisfying T(r,a) =
S(r, ). Then

= N 1/(PG) —e)

(19 oo TG, f) =

1.

The following examples show that the condition in Theorem 3 when «(z) is a
constant is necessary and the number £ in Theorem 3 is sharp.
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EXAMPLE 1. Let f(z) = ¢* — 1, P(2) = (z + 1)" + 1, where n > 2 is a positive
integer, and @ = 1. Thus P(z) —a = P(z) — 1 = (z+ 1)", P(f) — a = €™. Hence
(1.3) does not hold. Obviously, « is the only constant A such that P(z) — A has a zero
with multiplicity > 2.

EXAMPLE 2. Let f(2) = ¢+ 2, P(2) =z, a(z) = z. Thus P(f) —a = ¢ and
(1.3) does not hold.

EXAMPLE 3. Let f (z) = €%, P(z) = (z + 1), where n > 2 is a positive integer,
ande =1 Thus P(f)— 1= (&+ )" -1 =¢ H:’;ll(ez + 1 —¢;), where e¢; # 1is
adistinct zeroof 2" — 1 (i =1,2,...,n — 1). Thus we have

1 — 1
T(i‘,f) = —N (I’, W) +S(r,f)

n—1

Hence k = 1/(deg P — 1) = 1/(n — 1) is sharp in Theorem 3.

EXAMPLE4. Let f(z) = e+ 1,P(z) = z(z ~ 1)> and @ = 0. Thus P(f) =
(¢* + 1)e* and

T(r,f)=N (r, F%) + S(r, f).

Thus k = 1 is sharp in Theorem 3.

We know that for the second Nevanlinna fundamental theorem there exists a cor-
responding Montel’s normality criterion [5] and for Hayman’s inequality there exists
Gu’s normality criterion (see [3]). Naturally, we ask whether there exists a correspond-
ing normality criterion for inequality (1.3). The following theorem gives a positive
answer to this question.

THEOREM 4. Let & be a family of analytic functions in a domain D, P(z) a polyno-
mial with deg P > 2. Suppose that a(z) is either a nonconstant analytic function or a
constant function such that P(z) —a has at least two distinct roots. If P(f (2)) # a(z)
Joreach f (z) € &, then & is normal in D.

The following two examples illustrate that the conditions in Theorem 4 are neces-
sary.

EXAMPLE 5. Take P(z) = z, f.(2) = z + €™, D = {|z] < 1}. Itis easy to see that
P(f.(2)) # z in D and the analytic family {f,(z)} is not normal in D.
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EXAMPLE 6. Let P(z) = z* + 1, where k > 2 is a positive integer, f,(z) = €%,
a(z) = 1, D = {|z] < 1}. It is easy to see that P(f,(z)) # 1 and that f,(z) are
analytic in D. But {f,(z)} is not normal in D.

Theorem 4 implies the following corollary.

COROLLARY 2. Let & be a family of analytic functions in a domain D, P(2) a
polynomial with deg P > 2. If P(f (z)) # z for each f (z) € &, then & is normal
in D,

By the second fundamental theorem, Nevanlinna obtained the five-valueunicity
theorem. Naturally, we ask whether there exists a corresponding unicity theorem for
inequality (1.3). In this paper, we prove the following result.

THEOREM 5. Let f (z) and g(z) be two transcendental entire functions, a(z) % 0
a common small function related to f (z) and g(z), and P(z) = %z - 1). If
P(f (2)) —a(z) and P(g(2)) — a(z) have the same zeros (counting multiplicity), then
f @) =g@.

REMARK 1. Let f (z) = €%, g(z) = e7%, P(z) = z°(z—1) and a(z) = 0. Obviously,
P(f (z)) — a(z) and P(g(z)) — a(z) have the same zeros (counting multiplicity). But
f(z) # g(2). Hence, a(z) # 0 is necessary in Theorem 5.

From Theorem 5, we can easily obtain the following corollaries.

COROLLARY 3. Let f (z) and g(z) be two transcendental entire functions, and
P(z) = 2%z = 1). If P(f (2)) — z and P(g(z)) — z have the same zeros (counting
multiplicity), then f (2) = g(2).

Note that P(z) = z8(z — 1), and that P(f (z)) — 1 and P(g(z)) — 1 have the
same zeros (counting multiplicity) if and only if E(S, f) = E(S, g), where § = {z |
z%(z — 1) = 1}. Thus Theorem 5 implies.

COROLLARY 4. Let S = {z | 2%(z — 1) = 1}, f (2) and g(z) be two transcendental
entire functions. If E(S, f) = E(S, g), then f (z) = g(2).

Note that Corollary 4 gives a positive answer to a question of Gross (see Gross [2],
Yi [9)).

2. Proof of Theorem 3

In order to prove Theorem 3 we need the following lemmas.
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LEMMA 2.1 (see [1, 5]). Let f (z) be a meromorphic function. If there exist two
Junctions a;(z) such that T(r,a;) = S(r, f), i = 1,2, then

T(r,f)fﬁ(r,f)+17(r, L )+1V(r, ! )+S(r,f).
f—a f—a

LEMMA 2.2 ([10]). Let
P(2) =a"+a,12" '+ + aiz + a,

where a,(# 0), a,_i, ... , ay, are constants.
If f (z) is a meromorphic function, then

T(r,P(f)) =nT(r f)+S(rf).

Next we prove Theorem 3.

PROOF. We consider two cases.

Case 1. a(z) is a constant function. Then by the assumpion in Theorem 3 we can
choose a constant A such that P(z) — A has a zero (say a) with multiplicity m > 2.
Let ay, ay, ... , a,_m be the other zeros of P(z) — A, where n = deg P. Then from
Lemma 2.1, we have

— 1 — 1
T(r,P(f))<N (", m) +N (r, P_(f_)_—-z) + 8(r, P(f))

1 — 1 == — 1
(r, —P(f)—a>+N(r’f _a)+;N<r,f _ai)+S(r,f)
Q.1 517(r, #—_—;)+ﬁ<r,fl_a)+(n—m)T(r,f)+S(r,f).
On the other hand, by Lemma 2.2 we have

(2.2) T(r, P(f))=nT(r,f)+ S(r,f)
If P'(z) has only one zero, then m = n. Thus we deduce from (2.1) and (2.2) that

1 — 1
0 S o=V (r, 5 _a) + (. f).

Otherwise, n — m < n — 2. Hence we deduce from (2.1) and (2.2) that

)+S(r,f).

1A
Z|

— 1
T(r,f) =< N(r, P—(f)'_—_—a—

Case 2. a(z) is a nonconstant meromorphic function satisfying T(r, f) = S(r, f ).
In this case we can also choose A such that P(z) — A has a zero (say a) with multiplicity
m > 2. Using the same argument as in Case 1, we obtain (1.3). The proof of Theorem 3
is complete. t
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3. Proof of Theorem 4

For the proof of Theorem 4, we need the Zalcman’s Lemma [11].

LEMMA 3.1. Ifa family F of functions analytic on the unit disc D is not normal at
2 = 0, then there exist a number 0 < r < 1, a sequence of complex numbers z, — 0,
a sequence of functions f,(z) € F, a sequence of positive numbers p, — 0 such that

gn(E) = fn(zn + png) - g(S)
uniformly on any compact subset of C, where g(£) is a non-constant entire function.

Now we prove Theorem 4.

PROOF. First, we prove the case when «(z) is a nonconstant analytic function in
the domain D. We consider two cases.

Case I. P(z) — a(0) has at least two distinct zeros a and b.
Suppose that # is not normal in D. Without loss of generality, we assume that &
is not normal at z = 0. By Lemma 3.1, there exist 0 < r < 1,z, > 0, f, € &,
0n — 07 such that

gn(g) ='fn(zn +pn§) - g(&)

uniformly on compact subsets of C, where g(£) is a non-constant entire function.
Hence

3.1 P(fn(zn + pud)) — a(za + pu§) — P(8(5)) — a(0)

uniformly on any compact subset of C. Since P(f,(z, + 0.§)) — a(z, + p.&) # 0,
using Hurwitz’s theorem for (3.1), we get P(g(&)) # «a(0). Thus g(§) # a, b. Noting
that g(£) is an entire function, we deduce that g(£) is a constant (Picard’s theorem),
which is a contradiction.

Case 1. P(z) — «(0) has only one zero.
We can write P(z) — ¢ (0) = (az — b)" (@ # 0, n > 2). Obviously, there exists a
neighbourhood (denoted by U) of point z = O such thata(z) # «(0) forallz € U\{0}.

We claim that & is normal at zo(# 0) € U. In fact, if & is not normal at z,, then by
using the similar argument as in Case I, we obtain P(g(£)) # a(zo), thatis, (ag(§) —
b)" # a(zy) — a(0). Therefore, g(£) is not equal n distinct values (1/a)({(z0) —
a(0)}/" + b). This means that g(§) is a constant, which is a contradiction.

Next we prove & is normal at zp = 0. For any f,(z) € F and C, = {z : |z| =
r} C U, we know {f,(z)} is normal in C, by the former conclusion. Thus there exists
a subsequence f,, such that

f"k(z) - g(z),

https://doi.org/10.1017/51446788700001415 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700001415

[7] On Rosenbloom’s fixed-point theorem and related results 327

uniformly on C,.
If g(z) #£ oo, then g(z) is analytic on C,. Hence there exist an integer N and a
positive number M such that

lfu(@| <M,

forall k > N, z € C,. By the maximum modulus theorem, we have

fn (@) =M,
forallk > N, |z| < r. Hence {f,,(z)}isnormal in {z : |z| < r} by Montel’s normality

criterion (see [5]). Thus there exists a subsequence of f,, (z) (which we continue to
denote by f,, (z)) such that

3.2) fn(2) — 8(2),
uniformly on {z : |z| < r}.

If g(z) = oo, then there exist an integer N and a positive M > M(r, a(z)) such
that

|P(fr, () = M,
forallk > N, z € C,, where M (r, @) = max,,{la(z)]}. Thus
[P(fr (D) —a()| =2 M — M(r,a) > 0,

forallk > N, z € C,. Note that P(f,,(z)) — a(z) has no zeros in {z : |z| < r}, and
thus we have

[P(fr(2)) —a(@)| =M — M(r,a),
forall k > N, |z| < r by the minimum modulus theorem. This means that
(3.3) Sfn(2) > 00
uniformly on {z : |z| < r}. Thus we deduce from (3.2) and (3.3) that .# is normal at
z = 0. Therefore, £ is normal in D in the case when ¢(z) is a nonconstant analytic
function in D.

If a(z) is a constant, then by using the same argument as in Case I, we can prove
& is normal in D. Thus the proof of Theorem 4 is complete. O
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4. Proof of Theorem 5

In order to prove our result, we need the following lemma.

LEMMA 4.1. Let f (z) be a meromorphic function. Then

1 f(k)
T(r, 7 —a) =T f)Y+ 0Q); T(r, 76) = S(r, ),

where k, | are two integer satisfying k > 1 > 0; and
g 1
(q—l)T(ryf)sN(rvf)'*_ZN rv_—)_N](ryf)+S(raf)’
i=1 f — aq;
where a; (i = 1, ..., q) are distinct constants and
1
Ni(r,f)=N (r, 77) +2N(r,f)—N(f).

PROOF (of Theorem 5). In the proof we use the following notation.

Nuo(r,1/(f — a)) is the counting function which includes only multiple zeros
of f(2) — a, ﬁ(z(r, 1/(f — a)) the corresponding reduced counting function, and
No(r, 1/(f — a)) = N(r,1/(f — a)) + No(r,1/(f — a)), Ny(r,1/(f —a)) =
N 1/(f —a)) = Nao(r, 1/(f - a)).

Set
P P
F(2) = (f(z)), and G() = (g(z))'
o(z) a(z)

It follows from assumptions of Theorem 5 that
@1 N(r—)=n(r = ) + 50, 1)

' "F-1)" """ n.
4.2) No(r, FYy = Ny(r, G) = S(r, f).
If 7y is a zero of F(z) and not a pole of «(z), then o is eithera zero of f (z) or f (z) — 1.
Thus
(4.3) Ny <w(rni)+w L) 4500

. r, F = r, f r, f ~1 r, .

If z, is a multiple zero of F(z) and not a pole of a(z), then z; is a zero of f (z) or a
multiple zero of f (z) — 1. Hence

— 1 — 1 — 1
(4.4) N(z (r, F) < N (r, 7) + N(z (r, f_——l) + S(r,f).
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Thus we deduce from (4.2), (4.3), (4.4), Lemma 4.1, and Lemma 2.2 that
% (v5) =7 (F) + o+ 5)
F F F
< 2ﬁ<r, l) +1V(r, —1—) + N (r, ! )+S(r, F)
f f-1 f-1

<2N (r, %) +N <r, ﬁ) + S(r, F)
<3T(r.f)+ S F)

4.5) < (; + 0(1)) T(r, F).

In the same manner we obtain that

1 3
(4.6) N, (r, 5) < (7 + o(l)) T(r, G).
Therefore, we deduce from (4.5) and (4.6) that

1 1 6
4.7 N, (r, F) + N, (r, 5) < (7 + 0(1)) T(n),

where T(r) = max{T(r, F), T(r, G)}.
We claim that either F(z) = G(z) or F(z2)G(z) = 1. Set
_F@ _, F@ R ., GG
F'(2) F(2)—-1 G G(z) -1
and suppose that ®(z) # 0. Obviously, m(r, ®) = S(r, F) + S(r, G).
If z, is a common simple 1-point of F(z) and G(z), substituting their Taylor series
at z, into (4.8), we see that z, is a zero of ®(z). Thus by Lemma 4.1 we have

1 1 — 1
N1)<r, F_1)=N1)(r, G__l) _<_N(r,$>

4.9) <TrHr®)+00) <N, )+ S, F)+ S(r, G).

4.8) ®(z)

It is easy to show that ®(z) is analytic at a simple pole or a multiple 1-point of F(z)
or G(z). Hence if z; is a pole of ®(z) and not a multiple pole of F(z) or G(z), then
23 is a zero of F'(z) or G'(z). Note that z; is not a simple 1-point of F(z) or G(z),
so if z; is also not a multiple zero of F(z) or G(z) then F'(z3) = 0, F(z3) # 0, 1 or
G'(z3) =0, G(z3) # 0, 1. Thus we have

— — — — 1
N(r, ®) < No(r, F) + Na(r, G) + N (r, f)
+ N, ! + N, ! + N, 1
~ r, — rn—=it,
el\h G 0 F 0 G
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where Ny(r, 1/F’) is the counting function which only counts those zeros of F’ but
not those of F(F — 1).
Substituting the above inequality into (4.9) and noting (4.2), we have

— 1 — 1 — 1 — 1
Ny (", o 1) <N (r, f) + Nq (", 5) + N (", _F_’>

(4.10) + No (r, —Gl-) + S(r, F) + S(r, G).

By the second fundamental theorem and (4.2), we have

(4.11) T(r,F)<N (r, %) +N (r, F—l_—l) — No (r, %) + 8(r, F),
(4.12) T(r,G) <N (r, é—) +N (r, e 1_ 1) - No (r, %) + 8(r, G).

Therefore, we deduce from (4.10), (4.11) and (4.12) that

— 1 — 1 1
T(r’ F)+T(r’ G)SN(", F)'*‘Nl) (ra F_—_l> _N()(r, F>+S(rv F)
— 1 — 1 — 1
N\l —= Nir, N , ————
+ (r G)+ (r G—1)+ (2(7‘ G—-l)
—No(r, é)"'S(T, G)

1 1 1
<N » N s T N )
= 2(’ F)+ ( G)+ (’c_1>

(4.13) + S(r, )+ 8(r, G).

Without loss of generality, we assume that T(r, G) < T(r, F) for r € I whichis aset
of infinite measure. Thus, (4.13) implies

T(r) < N; (r, %) + N, (r, —é—) + S(r, F) + S(r, G),

for r € I, contradicting (4.7). Hence ®(z) = 0, that is,

F"(z) ’ F'(2) _G"(z)_2 G'(2)

4.14 - = .
(4.14) F'(2) F(z)—-1 G'(2) G(z) -1

Solving (4.14), we have

_(®0+)G@+@-b-1)

(4.15) F(2) bG@) + (a—b) ,
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where a(# 0) and b are two constants.
Ifb+1#0,a—b—1%#0,then

/1 — 1
(4.16) N ('~ ;) =N (" G+(@—b-1)/(b+ 1))'

By Lemma 2.2 and Lemma 4.1, and (4.15) we deduce that

4.17) T(r, F) = T(r, G) + O(1).
Thus by the second fundamental theorem, we get from (4.2), (4.16) and (4.17) that
T(r)=T(r, G)+ 0(1)

_ A !
<N(r G)+N(” 5)+N(” G+(a—-b-1/(b+1)

_ 1 — 1
<N (r, 5) + N (r, F) + S(r, G),

which contradicts (4.7). Hence either b5+ 1 =0Qora—b—1=0.
If b+ 1 = 0, then (4.15) becomes

) + 8(r, G)

a

"O=Go+ar1

Clearly,

— — 1
N(r,F)=N(r,m>.

Using the same argument as in the former case, we can deduce that @ = —1, which
implies F(2)G(z) = 1.
Ifa—b—1=0,then (4.15) becomes

aG(2)
F = —
@ =360 +1
If b # 0, then we have
Nr,F)=N{rh——.
(r. F) (’ G+1/b)

Using the former method once more, we can obtain a contradiction. Hence b = 0 and
then @ = 1 which implies F(z) = G(z). Hence we deduce that either F(z)G(z) = 1
or F(z) = G(2).

Now we prove f (2) = g(2).
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If Gz)F(z) = 1, that is

(4.18) @D @) - D@8 — 1) =’ (2),

then from (4.18) and the conditions of Theorem 5 we know that any zero or 1-point
of f (z) must be a zero of @(z). By the second fundamental theorem, we have

Tmf)sﬁvj)+ﬁ(n%)+ﬁ(nfil

§N(r, £)+S(r,f)=S(r,f),

)+S(r,f)

which is a contradiction. It shows that F(z)G(z) # 1. Hence F(z) = G(2), that is,

@U@ -1 =g)ER - .

If f(z) # g(2), then h(z) = f(2)/g(z) # 1. Substituting h(z) into the above
equation, we have

1+h+- +h
1+h4--+hS

g(2) =

If h(z) is not a constant function, then by Picard’s theorem we deduce that 1 + 7 +
-+ -+ h® has zeros. Hence g(z) has poles. Thus we obtain that g(z) is either a constant
or has poles but this is impossible. Hencp f(z) = g(2). The proof of Theorem 5 is
complete. O
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