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Abstract

In this paper, we improve the Rosenbloom's fixed-point theorem and prove a related normality criterion.
We also consider the corresponding unicity theorem for transcendental entire functions.
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1. Introduction and the main results

Let / (z) be a nonconstant meromorphic function in the whole complex plane. We
use the following standard notations of value distribution theory,

T(r,f),m(r,f),N(r,f),N(r,f),...

(see Hayman [5]). We denote by S(r,f) any function satisfying

S(r,f) = o{T(r,f)},

as r ->• +oo, possibly outside a set of finite measure.
A meromorphic function a(z) is called a small function related t o / (z) if T(r, a) =

S(rJ).
Let 5 be a set of complex numbers. Write

,f) = \J[z\f(z)-a = O),
aeS
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where a solution to / (z) — a = 0 with multiplicity m is counted m times in the above
set.

In 1952, Rosenbloom [6] proved the following theorem.

THEOREM 1. Let P(z) be a polynomial with degP > 2, f (z) a transcendental
entire function. Then

«•-«> T(r,f)

In 1995, Zheng and Yang [12] proved

THEOREM 2. Let P{z) be a polynomial with deg P > 2, / ( z ) a transcendental
entire function, and ct(z) a nonconstant meromorphic function satisfying T(r,a) =
S(r,f). Then

V' P(f)-a)(1.2) T(r,f)<kNlr, _ ^ I + S(r,f).

Here k = 2/(deg P — 1) if P'(z) has only one zero; otherwise k = 2.

Naturally, we ask what is the best possible k in (1.2). In this paper, we have obtained
such a k by proving the following result.

THEOREM 3. Let P(z) be a polynomial with degP > 2, f (z) a transcendental
entire function, and a(z) a meromorphic function satisfying T(r,a) — S(r,f). If
a(z) is a constant, we also require that there exists a constant A / a such that
P{z) — A has a zero of multiplicity at least 2. Then

(1.3) T(r,f)<kN(r, | _ ) + S(r,f).

Here k = l/(deg P — 1) if P'(z) has only one zero; otherwise k = 1.

Obviously, Theorem 3 improves Theorem 2 and implies the following corollary.

COROLLARY 1. Let P(z) be a polynomial with deg P > 2, f (z) a transcendental
entire function, and a(z) a nonconstant meromorphic function satisfying T(r,a) —
S(r,f). Then

(1.4) Urn' n r f ) > 1 -

The following examples show that the condition in Theorem 3 when a(z) is a
constant is necessary and the number k in Theorem 3 is sharp.
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EXAMPLE 1. Let/(z) = ez - 1, P(z) = (z + 1)" + 1, where n > 2 is a positive
integer, and a = 1. Thus P(z) -a = P(z) - 1 = (z + 1)", P(f) - a = enz. Hence
(1.3) does not hold. Obviously, a is the only constant A such that P(z) — A has a zero
with multiplicity > 2.

EXAMPLE 2. Let / (z) = ez + z, P(z) = z , a(z) = z. Thus P(f) - a = ez and
(1.3) does not hold.

EXAMPLE 3. Let / (z) = ez, P(z) = (z + 1)", where n > 2 is a positive integer,
anda = 1. Thus P(f) - 1 = (ez + 1)" - 1 = ez n^i 'C^ + 1 ~ e.O, where <?,- ^ 1 is
a distinct zero of z" — 1 (/ = 1, 2, . . . , « — 1). Thus we have

Hence ^ = l/(deg P — 1) = l/(n — 1) is sharp in Theorem 3.

EXAMPLE 4. Let /(z) = ez + 1, P(z) = z(z - I)2 and a = 0. Thus P ( / ) =
(e1 -f l)e2z and

Thus )t = 1 is sharp in Theorem 3.

We know that for the second Nevanlinna fundamental theorem there exists a cor-
responding Montel's normality criterion [5] and for Hayman's inequality there exists
Gu's normality criterion (see [3]). Naturally, we ask whether there exists a correspond-
ing normality criterion for inequality (1.3). The following theorem gives a positive
answer to this question.

THEOREM 4. Let & be a family of analytic functions in a domain D, P(z) a polyno-
mial with deg P > 2. Suppose that a (z) is either a nonconstant analytic function or a
constant function such that P{z)—a has at least two distinct roots. IfP(f(z)) # a (z)
for each f (z) € &, then & is normal in D.

The following two examples illustrate that the conditions in Theorem 4 are neces-
sary.

EXAMPLE 5. Take P(z) = z,fn(z) = z + enz, D - [\z\ < 1}. It is easy to see that
P(fn(z)) ^ z in D and the analytic family {fn(z)} is not normal in D.
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EXAMPLE 6. Let P(z) = z* + 1, where k > 2 is a positive integer, fn(z) = e"z,
a(z) = I, D = {\z\ < 1}. It is easy to see that P(fn(z)) ^ 1 and that/n(z) are
analytic in D. But [fn(z)} is not normal in D.

Theorem 4 implies the following corollary.

COROLLARY 2. Let & be a family of analytic functions in a domain D,P(z) a
polynomial with deg P>2.IfP(f (z)) ^ z for each f (z) € &, then & is normal
inD.

By the second fundamental theorem, Nevanlinna obtained the five-valueunicity
theorem. Naturally, we ask whether there exists a corresponding unicity theorem for
inequality (1.3). In this paper, we prove the following result.

THEOREM 5. Let f (z) and g(z) be two transcendental entire functions, a(z) ^ 0
a common small function related to f (z) and g(z), and P(z) = Z6(z — 1). If
P(f (z)) — «(z) and P(g(z)) — ot(z) have the same zeros (counting multiplicity), then
f(z) = g(z).

REMARK 1. Let/(z) = ez,g(z) = e~z,P(z) = z6(z-l)anda(z) s 0. Obviously,
P(f (z)) — a(z) and P(g(z)) — a(z) have the same zeros (counting multiplicity). But
/ (z) ^ g(z). Hence, ar(z) ^ 0 is necessary in Theorem 5.

From Theorem 5, we can easily obtain the following corollaries.

COROLLARY 3. Let f(z) and g(z) be two transcendental entire functions, and
P(z) = z6(z — 1). If P(f(z)) — z and P(g(z)) — z have the same zeros (counting
multiplicity), then f (z) = g(z).

Note that P(z) = z6(z - 1), and that P(f(z)) - 1 and P(g(z)) - 1 have the
same zeros (counting multiplicity) if and only if E(S,f) = E(S, g), where S = [z |
z
6(z - 1) = 1}. Thus Theorem 5 implies.

COROLLARY 4. Let S = {z | Z6(z — 1) = 1}, / (z) and g(z) be two transcendental
entire functions. IfE(S,f) = E(S, g), then f (z) = g(z).

Note that Corollary 4 gives a positive answer to a question of Gross (see Gross [2],
Yi [9]).

2. Proof of Theorem 3

In order to prove Theorem 3 we need the following lemmas.
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LEMMA 2.1 (see [1, 5]). Let f (z) be a meromorphic function. If there exist two
functions at(z) such that T(r, a,-) = S(r,f), i = 1,2,

(r, —
\ f -

) + TV (r,
f -aj \ f -a2

LEMMA 2.2 ([10]). Let

P(z) = anz
n + a^iz"-1 + • • • + alZ + ao,

where an(^ 0), an-\,... , a®, are constants.
Iff (z) is a meromorphic function, then

T(r,P(f))=nT(r,f) + S(r,f).

Next we prove Theorem 3.

PROOF. We consider two cases.
Case 1. a(z) is a constant function. Then by the assumpion in Theorem 3 we can

choose a constant A such that P(z) —A has a zero (say a) with multiplicity m > 2.
Let cii,a.2,... , an-m be the other zeros of P(z) — A, where n = deg P. Then from
Lemma 2.1, we have

n r , , ( , )> < N

(2.1) < N (r,

On the other hand, by Lemma 2.2 we have

(2.2) T(r,P(f))=nT(r,f) + S(r,f).

If P'{z) has only one zero, then m — n. Thus we deduce from (2.1) and (2.2) that

T(r,f) < I ff(r, —\ ) + S(r,f).
degP-1 V P(f)-ocJ

Otherwise, n — m < n — 2. Hence we deduce from (2.1) and (2.2) that

Case 2. a(z) is a nonconstant meromorphic function satisfying T(r, / ) = S(r, f).
In this case we can also choose A such that P (z)—A has a zero (say a) with multiplicity
m > 2. Using the same argument as in Case 1, we obtain (1.3). The proof of Theorem 3
is complete. •
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3. Proof of Theorem 4

For the proof of Theorem 4, we need the Zalcman's Lemma [11].

LEMMA 3.1. If a family & of functions analytic on the unit disc D is not normal at
z = 0, then there exist a number 0 < r < I, a sequence of complex numbers zn —> 0,
a sequence of functions fn (z) 6 &', a sequence of positive numbers pn —>• 0 such that

&.(£)=/..(*» +A.*)-•*(£)

uniformly on any compact subset of C, where g(£) is a non-constant entire function.

Now we prove Theorem 4.

PROOF. First, we prove the case when a(z) is a nonconstant analytic function in
the domain D. We consider two cases.

Case I. P(z) — a(0) has at least two distinct zeros a and b.
Suppose that & is not normal in D. Without loss of generality, we assume that &
is not normal at z — 0. By Lemma 3.1, there exist 0 < r < 1, zn -*• 0, /„ € &',
pn —• 0+ such that

uniformly on compact subsets of C, where g(£) is a non-constant entire function.
Hence

(3.1) PtfniZn + Pn$)) ~ «(Zn + />„£) "> P(*(§)) ~ «(0)

uniformly on any compact subset of C. Since P(fn(zn + pn|)) — ar(zn + pn£) ^ 0,
using Hurwitz's theorem for (3.1), we get P(g(£)) ^ oc(0). Thus g(%) ^ a, b. Noting
that g(%) is an entire function, we deduce that g(f) is a constant (Picard's theorem),
which is a contradiction.

Case II. P(z) — a(0) has only one zero.
We can write P(z) - a(0) = (az - ft)" (a ^ 0, n > 2). Obviously, there exists a
neighbourhood (denoted by LOofpointz = 0 such that a (z) / a(0)forallz e f/\{0}.

We claim that & is normal at zo(^ 0) e f/. In fact, if ^ is not normal at z0, then by
using the similar argument as in Case I, we obtain P(g(£)) ^ ot(zo), that is, (ag(t-) —
b)n ^ cc(zo) — a(0). Therefore, g(§) is not equal n distinct values (l/a)({a(z0) —
a(0)}1/n + b). This means that g(£) is a constant, which is a contradiction.

Next we prove & is normal at zo = 0. For any /n(z) 6 «̂ " and Cr = {z : \z\ =
r} C f/, we know [fn(z)} is normal in CT by the former conclusion. Thus there exists
a subsequence /„, such that
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uniformly on Cr.
If g(z) # oo, then g(z) is analytic on Cr. Hence there exist an integer TV and a

positive number M such that

\fnt(z)\ < M,

for all k > N, z e Cr. By the maximum modulus theorem, we have

\fnt(z)\<M,

for all/: > N, \z\ < r. Hence {/n,(z)} is normal in {z : |z| < r} by Montel's normality
criterion (see [5]). Thus there exists a subsequence of fnt(z) (which we continue to
denote by /nt(z)) such that

(3.2) fnk(z) -* g(z),

uniformly on {z '• \z\ < r).
If g(z) = oo, then there exist an integer N and a positive M > M{r, a(z)) such

that

\P(fnt(z))\>M,

for all k > N, z € Cr, where M(r, a) = maX|2|<r{|a(z)|}. Thus

\P(fnt(z)) ~ «(z)| > M - M(r,a) > 0,

for all k > N, z € Cr. Note that P(fni(z)) — ot(z) has no zeros in {z : |z| < r}, and
thus we have

for all A: > N, \z\ < r by the minimum modulus theorem. This means that

(3.3) fnk(z)^oo

uniformly on {z : \z\ < r}. Thus we deduce from (3.2) and (3.3) that & is normal at
z = 0. Therefore, & is normal in D in the case when a(z) is a nonconstant analytic
function in D.

If a(z) is a constant, then by using the same argument as in Case I, we can prove
& is normal in D. Thus the proof of Theorem 4 is complete. •
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4. Proof of Theorem 5

In order to prove our result, we need the following lemma.

LEMMA 4.1. Let f (z) be a meromorphic function. Then

r/j^j = Sir,/),

where k, I are two integer satisfying k > I > 0; and

iq - l)T(r,f) <N(r,f) + Y,N (r, —^—] - tf,(r,/) + S{r,f),

where a, (i = 1,... ,q) are distinct constants and

Nx{r,f) = N (r, y\+2N{r,f) - N(r,f).

PROOF (of Theorem 5). In the proof we use the following notation.
Na(r, l/(f — a)) is the counting function which includes only multiple zeros

of f (z) — a, N(2(r, l / ( / - a)) the corresponding reduced counting function, and
N2(r, I/if - a)) = N(r, \/(f - a)) + N(2(r, l/(f - a)), N^r, l/(f - a)) =
N(r, I/if -a))-Ni2(r,l/(f -a)).

Set

Fiz) = ——, and G(z) =
ai) cciz)

It follows from assumptions of Theorem 5 that

(4.1) J

(4.2)

If Zo is a zero of Fiz) and not a pole of a (z), then zo is either a zero of/ (z) or/(z) — 1.
Thus

(4.3) N (r, j)<N (r, j \ + N (r, y-LA + S(r,f).

If ?! is a multiple zero of Fiz) and not a pole of aiz), then z\ is a zero of / (z) or a
multiple zero of / (z) — 1. Hence

(4.4) Ni2 (r, 1 ) < N (r, y^j + Ni2 (r, ~^j + Sir, f).
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Thus we deduce from (4.2), (4.3), (4.4), Lemma 4.1, and Lemma 2.2 that

< IN (V, i ) + N (r, j±-^ + N(2 (r, j^j + S(r, F)

< 2N (r, y)+H U y^—) + S(r, F)

<3T(rJ) + S(r,F)

(4.5) " 0
In the same manner we obtain that

(4.6)

Therefore, we deduce from (4.5) and (4.6) that

(4.7) N2

N2 (r, L\<(1 + o(l)\ T(r, G).

(r, j \ + N2 (r, ±\ < (* + o(l)\ T{r),

where T(r) = max{7(/\ F), T(r, G)}.
We claim that either F(z) = G(z) or F(z)G(z) = 1. Set

F'{z) F(z) - 1 G'(z)

and suppose that <J>(z) ^ 0. Obviously, m(r, <t>) = S(r, F) + S(r, G).
If z2 is a common simple 1-point of F(z) and G(z), substituting their Taylor series

at z2 into (4.8), we see that z2 is a zero of 3>(z). Thus by Lemma 4.1 we have

(4.9) < T(r, 4>) + 0(1) < N(r, *) + 5(r, F) + 5(r, G).

It is easy to show that <P(z) is analytic at a simple pole or a multiple 1-point of F(z)
or G(z). Hence if z3 is a pole of <I>(z) and not a multiple pole of F(z) or G(z), then
z3 is a zero of F'(z) or G'(z). Note that z3 is not a simple 1-point of F(z) or G(z),
so if z3 is also not a multiple zero of F(z) or G(z) then F'(z3) = 0, F(z3) ^ 0, 1 or
G'(z3) = 0, G(zi) ^ 0, 1. Thus we have

< N(2(r, F) + iV(2(r, G) (r, j
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where N0(r, 1/F') is the counting function which only counts those zeros of F' but
not those of F(F - 1).

Substituting the above inequality into (4.9) and noting (4.2), we have

(4.10)

By the second fundamental theorem and (4.2), we have

(4.11) T(r, F)<N (r, j)+N (r, y ^ \ - No (r, j ) + S(r, F),r, F)<N (r, j)+N (r, y ^ \ - No (r, j )

(4.12) T{r, G)<N (r, ^)+N (r, -^-j\ - No (r, ± \ + S(r, G).

Therefore, we deduce from (4.10), (4.11) and (4.12) that

T(r, F) + T(r, G) < N (r, j \ + JV,, (r, -^—\ - No (r, y) + S(r, F)

i
- No (r, ± S(r, G)

(4.13) +S(r,F) + S(r,G).

Without loss of generality, we assume that T(r, G) < T(r, F) for r € / which is a set
of infinite measure. Thus, (4.13) implies

T(r) < JV2 (r, j \ + N2 (r, ±\ + S(r, F) + S(r, G),

for r e / , contradicting (4.7). Hence $(z) = 0, that is,

(4,4) £^^L ^ ^
F'{z)

Solving (4.14), we have

(b + l)G(z) + (a - b - I)
(4.15) F(z) =

bG(z) + (a-b)
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where a(^ 0) and b are two constants.
If AH- 1 ̂ 0,a-b- 1 ̂ 0 , then

(4.16)

By Lemma 2.2 and Lemma 4.1, and (4.15) we deduce that

(4.17) T(r, F) = T(r, G) + 0(1).

Thus by the second fundamental theorem, we get from (4.2), (4.16) and (4.17) that

T(r) = T(r, G) + 0(1)

which contradicts (4.7). Hence either b + I = 0 or a — b — 1 = 0 .
If b + 1 = 0, then (4.15) becomes

-G(z)

Clearly,

Using the same argument as in the former case, we can deduce that a = — 1, which
implies F(z)G(z) = 1.

If a — b — 1 = 0 , then (4.15) becomes

F(z) =
bG{z)

If b ^ 0, then we have

Using the former method once more, we can obtain a contradiction. Hence b = 0 and
then a = 1 which implies F(z) = G(z). Hence we deduce that either F(z)G(z) = 1
or F(z) s G(z).

Now we prove / (z) s
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If G(z)F(z) = 1, that is

(4.18) fe(z)(f (z) - l)*6(z)(*(z) - 1) = ccHz),

then from (4.18) and the conditions of Theorem 5 we know that any zero or 1-point
of/ (z) must be a zero of a(z). By the second fundamental theorem, we have

T(r,f) <N(r,f) + N (r, j)+N (r, — | - ^ + S(r,f)

S(r,f) = S(r,f),

which is a contradiction. It shows that F(z)G(z) # 1. Hence F(z) = G(z), that is,

I f / (z ) ^ g(z), then h(z) = f(z)/g(z) ^ 1. Substituting h(z) into the above
equation, we have

1 + A + • • • + h5

If h(z) is not a constant function, then by Picard's theorem we deduce that 1 + h +
1- h6 has zeros. Hence g(z) has poles. Thus we obtain that g(z) is either a constant

or has poles but this is impossible. Hence / (z) = g(z). The proof of Theorem 5 is
complete. •
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