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IMAGES OF CLASS-¢ SPACES

BY
THOMAS W. RISHEL(})

ABSTRACT. In this paper the author characterizes images of class-C
spaces (as defined by Ishii, Tsuda and Kunugi, Proc. Japan Acad. 44,
(1968), 897-903) under almost-open maps, bi-quotient maps, pseudo-
open maps and quotient maps.

1. Introduction. In this paper all spaces are T,, all maps are continuous and
onto. Ishii, Tsuda and Kunugi [3] have recently defined a new class of spaces,
called @-spaces, somewhat smaller than the class of M-spaces introduced in [6] by
Morita. €-spaces are countably productive, and the product of a class-€ space with
an M-space is an M-space.

DEerINITION 1.1. Y is of class-C€ iff Y has a sequence of open covers %;, %, . . .
such that

O U>UTSUSUS> -+ - ;
(if) any point-sequence {y;}, where y, € St(y,%,) for all i=1,2,... and for
some fixed y € Y, has a subsequence whose closure is compact.

The next result is from [1] and [12].

THEOREM 1.2. The following are equivalent:

(a) X is of class-C;

(b) X is M and weakly-k (given F < X, F is closed if F N\ C is finite for every C
compact in X);

(c) Xis M and k, (every sequence which clusters has a subsequence whose closure is
compact).

(d) X is M and weakly-para-k (F is closed in X if F N P is finite for every closed
paracompact P in X).

Characterizations of continuous images of various spaces have already been
carried out. Some of these results have been summarized in [5] and [11]. For such
results on M-spaces, see [1], [7], [9] and [10]. In this paper images of class-C
spaces under some continuous maps will be characterized.

Received by the editors May 17, 1971 and, in revised form, October 13, 1971.

() Partially funded by National Research Council Grant A-3999. Part of this work appears
in the author’s Doctoral Dissertation, written under Professor J. Nagata at the University of
Pittsburgh.

323

https://doi.org/10.4153/CMB-1973-052-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1973-052-4

324 THOMAS W. RISHEL [September

2. Characterizations.

DEFINITION 2.1. A map f:X—Y is said to be almost-open iff for any ye ¥
there exists an x € f~1(y) having a basis of open sets such that the image of each
member of the basis is open.

DEFINITION 2.2. A sequence {U;, Us,, . . .} of sets in a topological space is said to
form an ry-sequence iff any point-sequence of the form {y,:y, € U} has a subse-
quence {y;,; whose closure is compact.

DerFINITION 2.3. A topological space Y is said to be an ry-space iff for every
y € Y there exists an ry-sequence {U;, U,, . . .} of neighbourhoods of y.

THEOREM 2.4. A regular space Y is an ry-space iff it is the almost-open image of a
space X € §.

Proof. Let Y be a regular ry-space, and let y be any point of Y. Then there
exists a decreasing ry-sequence {U;, U, ...} about y. Put K=N{ClU,:i=1,
2, ...}. Then each point sequence in K has a subsequence whose closure is compact,
so K € €. Also, {U,} forms a countable base for K. To show this, let ¥ 2 K be an
open setin Y and assume that V' 3 U, fori=1, 2, ....Then choose a sequence of
points {y;} such that y,e U;—V for all i=1,2,.... Because {U;} is an ry
sequence, {y;} has a subsequence {y;(, } which has a cluster point p. Then ob-
viously p € K. Since p ¢ V, K & V. Contradiction. Then {U,} is a countable base
for K. Consequently there exists a cover {K,:« €} of Y by sets having the
property that every point sequence in K, has a subsequence with compact closure,
and each K, has a countable neighbourhood base which forms an ry-sequence.

Now for each « € Q, let Y, be the set Y with the topology in which the open sets
are the sets of the form U U V where U is open in Y and V is any subset of
Y—K,. Y is regular so Y, is clearly regular. So let {Vii=1,2,...} be a count-
able base for K, in Y, such that CIV:** < V! for each i, and {V}:i=1, 2,...} is
an r-sequence. Forall i=1,2, ..., put #i=[{V.}, {y:y € Y,—V.}]. Then {# i
i=1,2,...} is a normal sequence of open covers in Y, satisfying the point
sequence condition of class-€ spaces. So Y, is regular and belongs to class €.
Thus the discrete sum X of the Y,’s also has these properties.

Define f: X—Y by taking f| ¥,: ¥,—Y as the identity map; then f is clearly
onto and continuous. Now let y € Y. Then it is necessary to show that there is an
x € f7Y(y) having an open neighbourhood basis % such that f(U) is open in Y for
each Ue. Let ye K, and let % be an open neighbourhood basis of y; then
B={f(U)N Y,:Ue} is an open neighbourhood basis of x=f"1(y) N ¥,
in X and (V) is open for each V' € #4.
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To prove necessity, let X be an ry-space and f an almost-open map of X onto Y.
It suffices to show that the almost-open image of an ry-space is an rg-space. Let
y € Y; then there is an x € f~1(y) having a neighbourhood base % of open sets such
that f(U) is open in Y for each U € %. Since X is r,, % contains an ry-sequence
{U.}. We claim the neighbourhoods f(U;) of y form an ry-sequence about y. To see
this, let y, € f(U;) and choose x, € U, such that f(x;)=y, for i=1, 2,.... Then
{x;} has a subsequence {x;,} whose closure is compact, since {U;} is an ry-
sequence. But then {y;,)} < f[CHx;n}] © CHYin} and f[Cl{x;,,}] is closed, so
CH{pim}=fICl{x;n}] is compact. Hence {f(U,)} is an ry-sequence about y as
asserted.

DerInNITION 2.5. Call a set C proto-compact iff every point sequence in C which
accumulates has a subsequence whose closure is compact.

DEFINITION 2.6. Y is said to be a proto-k space iff the following condition holds:
V < Yisopeniff ¥ N Cisrelatively open in C for every proto-compact C < Y.

THEOREM 2.7. Y is proto-k iff there exists a regular class-C space X and a quotient
map f: X—Y.

Proof. Let f: X— Y be a quotient map from a regular class-C€ space X. Let I be
nonopen in Y. Thus there exists x € f~1(V)—Int f~1(V). Since X is €, there is
an ry-sequence {U;, U, ...} of neighbourhoods of x. By regularity, we may
assume that U,,, < U, for all n=1,2,.... Now U, N (X—f(V))# 2 for
all n=1,2,.... If we put C(x)=N{U,:n=1,2,...}=N{ClU,:n=1,2, ...},
then C(x) is clearly proto-compact.

Consider two cases.

(i) Assume that x € CI[C(x) N (X—f~(V))]. Then f(C(x)) is a proto-compact
set such that f(C(x)) N V)is nonopen in f(C(x)). To show this last, let ¥ be a given
neighbourhood of f(x) € Y. Then f~1(W) is a neighbourhood of x in X, and

W) N Cx) N (X=f2(V)) # 2.
So W Nf(C(x)) N (Y—V)% o in ¥, and

Jx) ef(CHx) NV N Cf(C(x) N (Y=V)].

This last says that f(C(x)) N V) is nonopen in f(C(x)), and Y is then proto-k.

(if) Now assume that x ¢ C1[C(x) N (X—f/2(V)]. (Thus C(x) N [X—f1(V)]
may be empty). Since X is regular, there exists an open neighbourhood U of x such
that

CIU N C(x) N (X—f(V)) # 2.
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Since x € CI[X—f~Y(V)], we can choose x,e (U, N U) N (X—f(V)), for
each n=1, 2, .... The point sequence {x,:n=1, 2, ...} then has a subsequence
{X,;y:j=1,2, ...} whose closure K is compact. If x, is any accumulation point of
{*,5}, then xye ClU N C(x), so that x,ef~(V). Since x,€ K, this implies
f(x0) ef(K) N V. Now take any neighbourhood W of f (x,); f *(W) is a neighbour-
hood of x, in X. Thus, for any n=1, 2, ..., there exists an n(j)>n such that
Xngy €fH(W). This last says that W N f(K) N (Y—V)# & since

W) KN (X—=f7(V) # .
Then f(x,) € CI[ f(K) N (Y—V)], and f(K) N V is nonopen in f(K). This last
says that Y is proto-k.

Conversely, let ¥ be a given regular proto-k space. Then let {K,:o € 4} be the
family of all proto-compact sets of Y. Take X the discrete sum of the K’s. X is
clearly of class-€, and the map formed from the direct sum of natural injections
f.:K,—~Y is a quotient map.

COROLLARY 2.8. For a regular space Y, the following are equivalent:

(@) Y is proto-k;

(b) Y is the quotient of a regular ry-space;

(c) Y is the quotient of a regular class-€ space;

(d) Yisthequotient of a regular locally proto-compact space (i.e., a space in which
every point has a proto-compact neighbourhood).

The next map, originally defined by O. Hajek, has been studied in some detail by
Michael [4].

DEFINITION 2.9. A map f:X— Y is said to be bi-quotient iff: given # a filter-
base in Y, if y € CIB for all B € %, then there exists an x € f~(y) such that x €
Clf~Y(B) for all Be 4.

DErFINITION 2.10. Y is bi-proto-k iff any maximal filter & which converges to
y € Y contains an ry-sequence {F;, F,, Fs, ...} of members of & such that y e
N{Fi=1,2,...}

THEOREM 2.11. Among regular spaces, Y is bi-proto-k iff there exists a class-C
space X and a bi-quotient map f: X—Y.

Proof. Let X € € and let % be a maximal filter converging to y € Y. Then there
exists an x € f~*(y) which is a cluster point of f(%). Now X e, so an rs-
sequence of neighbourhoods {U,, U,, . ..} of x exists such that U, 2 CIU, 2
U, 2 ClU; 2 Uz 2 ---. Since f(U) NG#z for all i=1,2,... and all
G € 9, this says that f(U,) € 9.
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Now let Y be a given bi-proto-k space. Let a={4,, 4,, ...} be an arbitrary
ro-sequence of neighbourhoods in Y with ({4,:i=1,2,...}# @. Then define
C(w)=N{4;:i=1,2, ...}, and define a new topological space Y, by the following:

N(x) € A (x), a neighbourhood basis of x € X if

(@) N(x)=4; N U(x)fori=1,2,...and U(x) a Y-neighbourhood of x € C(«);
(b) N(x)={x}if x e Y,—C().

Let X be the discrete sum of all Y,, « € 4, where A4 is the collection of all ry-
sequences of Y with nonempty intersection. Define an open cover %, of X by

U =UU, 0e Q)
where
U= [{A}, {z:z€ Y,—A;}].

If {x,} is a point-sequence in X such that x, € St(x,, %;), then an « exists such that
Xo € Y,. If xy ¢ C(), x, is a cluster point of {x;}, so the subsequence consisting of
the singleton {x,} obviously has compact closure. On the other hand, if x, € C(«),
then x; € 4; for all i=1, 2, . . .. Thus {x,} has a subsequence which has compact
closure in Y,, and hence in X. Now let f be a map from X to Y defined by taking
/| Y.=f, as the identity map. Then f is clearly continuous and onto since the
topology of each Y, is stronger than that of Y.

So let ¢ be a filterbase in Y and let y be a cluster point of %. Then a maximal
filter %’ exists containing & and converging to y. Now an ry-sequence of neighbour-
hoods exists, call it 4; 2 4, =2 -- -, such that 4,€ ', ye N{4,:i=1,2,...}.
Call a={4,, 4,, .. .}; then f~1(y) N Y, is a single point x,. Let 4; N U(x,) be a
basic neighbourhood of x, € Y,. Now 4, and U(x,) € %', so 4, N U(x,)e ¥ .
Then A4, N U(x,) N G#Z for every G € ¥. This last says that 4, N U(x) N
f(G)# @ in X, in which case x is a cluster point of /(%) in X. Thus f is bi-
quotient, which finishes the proof.

DEFINITION 2.12. A map f:X—Y is pseudo-open iff for every ye Y and for
every neighbourhood U of f~1(y), y € Int f(U).

DerINITION 2.13. Y is said to be singly bi-proto-k iff the following condition
holds: y € C1B for some B < Y iff there exists an ry-sequence {U;, U,, ...} of
subsets of Y such that

(1) ye U, for every i=1,2,...;
(2) y e CI(U;B) for every i=1,2, . ...

The next theorem has a proof essentially the same as that of the theorem in
[10]. The proof will be omitted.
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THEOREM 2.14. Y is singly bi-proto-k iff Y is the image of a class-€ space X by
means of a pseudo-open map.

We have an analog to Corollary 2.1.

COROLLARY 2.15. A regular space Y is singly bi-proto-k iff Y is the pseudo-open
image of a regular ry-space X.

REFERENCES

1. T. Chiba, On g-spaces, Proc. Japan. Acad. 45 (1969), 453-455.

2. J. Dugundji, Topology.

3. T. Ishii, M. Tsuda, and S. Kunugi, On the products of M-spaces I, 11, Proc. Japan. Acad.
44 (1968), 897-903.

4. E. Michael, Bi-quotient maps and cartesian products of quotient maps, Ann. Inst. Fourier
(Grenoble) 18 (1968), 287-302.

5. ——, Images of certain quotient maps, (to appear).

6. K. Morita, Products of normal spaces with metric spaces, Math. Ann. 154 (1964), 365-382.

7. J. Nagata, Mappings and M-spaces, Proc. Japan. Acad. 45 (1969), 140-144.

8. ——, Modern General Topology.

9. ——, Quotient and Bi-quotient spaces of M-spaces, Proc. Japan. Acad. 45 (1969), 25-29.

10. T. Rishel, 4 characterization of pseudo-open images of M-spaces, Proc. Japan. Acad. 45
(1969), 910-912.

11. ——, Nice spaces, nice maps, Proceedings of the Third Prague Symposium, (1971), 375-383.

12. ——, On a subclass of M-spaces, Proc. Japan. Acad. 45 (1969), 544-546.

DALHOUSIE UNIVERSITY,
HALIFAX, NovA ScoTIA

https://doi.org/10.4153/CMB-1973-052-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1973-052-4

