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§ 1. Introduction.

r i . In Kottler's theoretical discussion1 of the diffraction of a plane
wave of monochromatic light of wave-length 2-rr/k by a black half-
plane, the function

f(r, 6) = ^-\ e*"°sh< r ^ -adt, (1-11)
JX ' ' 27TJ0 cosh t + cos 6 ' v '

where (r, 6, z) are cylindrical coordinates, plays an important part.
In particular it is necessary to have asymptotic formulae for f(r, 6),
valid when r is either very large or very small compared with the
wave-length.

Kottler obtains these asymptotic formulae by showing that

~ dl + i cos 8f = - i sin 6 H$> (kr), (M2)

where, in the usual notation2, H^ (A) denotes the Bessel function
Jn (A) + * Yn (A) of integral order n, and then making use of the known
properties of H^ (A). Whilst this method gives correct results, it is
difficult to place it on a sound basis.

12. The asymptotic formula valid as r-> + oo may be obtained by
a direct method, well-known in the theory of Bessel functions. For
if we make the substitution cosh t = 1 + iv and then rotate the path
of integration through a right-angle, we obtain

f{r. 6)=- expfr (kr + fr

and an application of Watson's Lemma (W., 236) gives the required
expansion. There does not appear to be any corresponding very
simple way of obtaining the expansion valid when r is small.

1 Ann. der Phys. 71 (1923), 457-508 (in particular, pages 496 and 499). We have
found it convenient to change the sign of i throughout.

2 G. N. Watson, A treatise on the theory of Bessel functions (Cambridge, 1922), 73.
In later references, this work is cited as W.
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160 E. T. COPSON AND W. L. FERRAR

13. The form of the differential. equation (T12) suggests another
line of approach. If we substitute in this equation the formal series

f(r, 6)=ianH^(kr),
1

where an is independent of r, and use the recurrence formula
(W., 74(4))

d(kr)
we find that

f(r, 6) = i - S e - ^ ^ 1 1 (kr) sin n6 (1-31)

is a particular solution of (1"12).
The series (1'31) is not easy to handle near r = 0 because H^ (kr)

is of the order of r~n as r tends to zero; some other representation is
needed. In the present note we use a series (viz. (2-12) infra) which
is derived from (1*31) by omitting from each of the functions H™ (kr)
all negative powers of r. The sum of this series is discontinuous at
6 = ± \f, and we are obliged to consider separately the two ranges
| 9 | < |TT and \-n < \ 6 \ < TT.

The proofs of our results are less easy than one might expect,
though the difficulty is perhaps due to the line of proof we have
adopted.

Our methods can also be applied to obtain the expansion of a
second integral considered by Kottler, viz.

g {r, 6) = -I [V^^osjgcosh^
y v ' 77 Jo cosh<+ cos0 V '

as a series of " cut" Bessel functions, in this case of order n + \.
The discussion of this is omitted as no essentially new ideas are
involved.
§ 2. Enunciation of the main theorem: preliminary lemmas.
2-1. Let h£i (A) denote the function obtained from the expansion of
H^ (A) in the neighbourhood of A = 0 by omitting all the terms that
involve negative powers of A. It is usual to call a function of this
«ort a cut Bessel function.

We shall prove

THEOREM 1. Let

î (A)=— [V""1' J^l dt. (2-11)
' 2T7J0 cosh* + cos0 V ;

if A > 0 and — %v < 8 < \n,

F (A) = -L £ e-*** A£> (A) sin nO. (2-12)
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The proof rests on certain subsidiary lemmas which are given in
the following sub-sections. Apart from Lemma 1, these lemmas are
of some analytical interest; the reader will need only the results of
Lemmas 2 and 3 in order to follow the proof of Theorem 1.

We suppose throughout that A > 0 and, in §§ 2 and 3, that
— ^TT < 6 < \lT.

2-2. LEMMA 1. If ~Zan is a bounded series, then S a n i " is uniformly
bounded in 0 ̂  x 5S 1; moreover, 2 anx

n is convergent when 0 < x < 1,
and its sum s (x) is bounded in this open interval.

Let an = a0 + a1+ .... + an.

Then a0 + «i x + o2 £
2 + • • • • + «n #n

= (I - X) (aQ + alX + a2x
2 + .. .. + an_! a;""1) + an x

n.

But |an | < K for all n; hence, if 0 < x < 1,

| a0 + a± x + + an x
n \ < K (1 - xn) + Kxn = K.

This proves the first part of the lemma.
By Dirichlet's test, the series Sa f l j " is convergent when

0 < x < 1; it follows at once that | s (x) \ ^ K in this open interval.

LEMMA 2. Let T>an be a bounded series, s (x) the sum of 2 an x
n when

Ogjxl; let

Then [ s(x)E (A, x) dx = 2 an [ xn E (A, x) dx.
Jo Jo

The proof of this lemma might almost be taken for granted. But-
the fact that s (1) and E (A, 0) are not defined raises minor difficulties,,
and we have thought it desirable to set out the proof.

Let sn (x) = a0 + a1 x + .. .. + an x
n. Take an arbitrary positive

number e. Then, by Lemma 1 and the fact that | E (A, x) \ = 1 when
0 < x < 1, there exists a positive number 8 such that, whenever
0 < S' < 8,

n-s'

l - a
{s(x)-sn(x)}E(X,x)dx (2-21)

if: {s (x) - sn (a:)} E (A, x) dx I < ̂  e, (2-22>

independently of the value of n. Hence

{s (x) - sn {x)} E (A, x) dx = f Fn (A, x) dx,
Jo
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say, is denned as an improper integral. Moreover

1 — 5

independently of the value of n.
But, by the uniform convergence of 2 an x

n in (8, 1—8) and the
boundedness of E (A, x), there exists an integer N such that, whenever

\{ * Fn(X,x)dx\<\-e.
s

It now follows that

lim [ {s (x) - sn (x)} E (A, x) dx = 0. (2-23)
n—3»°o Jo

Again, a modification of the argument used above shows that
each of the integrals

f1 s (x) E (A, x) dx, f xn E (A, x) dx
Jo Jo

is defined as an improper integral. Hence, by (2-23),

" I s (x) E (A, x) dx = lim sn (x) E (A, x) dx,
JO n —>oo J o

and so the lemma is proved.

2-3. As a preliminary to our next lemma, we note that, by W., 78(8),
with z = — iX, and W., 80 (15), the terms in the expansion of H^ (A)
near A = 0 which involve negative powers of A are given by

i [*.<«-DJ (TO- ro- 1)| _ i

where ^(A) is Schlafli's polynomial, as denned, for example, in
W., 285 (1). Hence the " cut " Bessel function h™ (A) is given by

)+±SnW. (2-31)
77

Now, by W., 288 (2) with a = 0, we have

Sn(X) = \ {en<> — e-n^+oi} e-Xsinbe d6
Jo

= 2e-4«" sinh n<f> e^00811* dd>,
Jin

•on writing 9 = <f> — ̂ 7rt. Moreover, by W., 180, (8),

jyu) (A) = _ e^""1 coshw^ e^00^ d<f>. (2-32)
7T^ J o

https://doi.org/10.1017/S0013091500008439 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500008439


A SERIES OF " CUT " BESSEL FUNCTIONS 163

From (2-31) and (232) follows

LEMMA 3. The cut Bessel function h^ (A) is given by

\nic*""*' h™ (A) = cosh n</>eiKcosh<'' d<j> + \~ e~n* eiXC08h'*> d<f>.

§ 3. Proof of Theorem 1.

3 1 . If in the definition (211) we put e~l = x and use the
notation E (A, x) of Lemma 2, we obtain

F(X) = — [ E{\, x) -z S-^—n dz.
•n J o x2 + 2x cos 6 + 1

But when 0 ^ a; < 1,
sin 6 = - S2 5 = S

x2 + 2a; cos 0 + 1 m==1

moreover, for any fixed value of 6,

S sin (n6 +

is a bounded series. Hence, by Lemma 2,

F (A) = — — S ( - 1)» sin nd f .67 (A, x) a;""1 dx,
•n1 « = i Jo

or, on restoring the original variable of integration,
1 °° P

Jf'(A)=— — S ( - l ) n s i n ? i 0 ettC08h« e~nt dt. (3-11)
7T n = i Jo

3-2. Now if n ^ 0, we have, by Cauchy's theorem,

r fjiri fjiri + co

Jo •* Jri

l coshj „— «i

' 0 J0 J in

The integral over (fai, \ni + oo ) in (3"21) tallies with that in Lemma 3,
whereas that over (0, \ni) does not. We discuss the integral over
(0, \ni) in the next sub-section.

3 3 . Let us consider the integral1 •

7 = [ * > - . is™e dy (3-31)
Jo cosy + cos a

~ Jo \eiv + eie ~ el» + e~iej V

= hm el\™»v\ : .X dy. (3-32)

1 The device used here was suggested by a more lengthy proof of the theorem on
different lines.
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The last step is justified by the fact that the integrand in (332) is a
continuous function of both variables r and y on account of the
restriction — \n < 6 < \n. Expanding in powers of r, we have

I = lim I eiK cosv £ ( - 2i sin nd) (— r)n e"iv dy
r—>1— o J o n = l

= lim (— 2i) S (—r)"sinw0f ei*co°v eniv dy.
r—=>l-0 n = l Jo

The series obtained by putting r = 1 is convergent, as an integra-
tion by parts beginning with

1
ni

J' d(eniv)

will show. Hence, by Abel's theorem on the continuity of power
series,

/ = — 2i S (— I)71 sinn0 "e^^v e
ni" dy

«=i. Jo

= _ 2 S (— l ) n sin n0 f "e^00811' ent dt. (3-33)

But we also have

i sin 0
= lim

cos ?/ + cos 6 r -»i \ re-^ + eie re~* + e

and so we can carry out the previous transformations with e~iv in
place of eiv. It then follows that

/ = — 2 S (— 1)" sin w.0 [ "teiKcmht e~nt dt. (3-34)
n = l Jo

Combining (3-33) and (334), we have

£ (— 1)» sinraef "eiAcosh« e~nt dt
n = l Jo

= S (— l)n sinwfl I n
e
iKcoaht coshntdt. (3"35>

n = l Jo

3-4. By (311), (3-21) and (3"35), we now have

F(X) = — — £ (— l)n sinnfl O(n, X),
T* » = 1

Ch"i rjiri+oo

w h e r e 0 (n, A) = ciA cosh« c o s h nf d< + e*C08h ' e " 1 " ctt.
Jo J if i

But, by Lemma 3,
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Hence

1 °°
F (A) = — 2 e"4*" M" (A) sin nd.

2j

But this is the required equation (2-12), and so Theorem 1 is proved.

§4. Extensions of Theorem 1.

4-1. The argument of §3-3 fails when 8= ± (77 — a) and 0<a<|77,
since the integral (3"31) exists only as a Cauchy principal value on
account of the singularity at y = a; moreover this principal value is
not equal to (3"32) or to the corresponding limit with re~iv replacing
reiy. It turns out that equation (3-35) no longer holds and has to be
replaced by the identity of

LEMMA 4. / / £77 < | 8 \ < 77, then

— S (—1)" sin nd VXc08lw e~nt dt
«=i Jo

00 Mirt

= ± \Tre-iXcme — S (— 1)" sin 7i5 e
iAcosh< cosh nt dt, (4-11)

n = X *̂  0

where the upper or lower sign is taken according as 8 is positive or
negative.

Let us suppose first that 8 = it — a where 0 < a < £77, and consider

f iXc032 i sin a ,
I p i " COS 2 ft y

J cosz — cos a
along two paths both beginning at z = 0 and ending at 2 = £77. The
first of these paths, 1^ say, lies in the lower half-plane, the other, F2

say, in the upper half-plane. Then, by Cauchy's theorem of residues,

[ — \ = 2ni (residue at z = a) = 277eUcO8\ (4-12)
Jr, Jr2

Now the integral along F2 is equal to

lim eiXc0*M—£ £ £ =ra\dz

r >̂ 1—0 J F 2 v J

r 00

= Km 2ieiX cos z S rn eniz s in no. dz
r->l-0Jr. n=\

= lim £ 2i rn sin no. eikm'z eniz dz,
r->l-0 n = l Jr.l — 0 n = l

t e r m - b y - t e r m i n t e g r a t i o n be ing va l id s ince | r e i z | ^ r o n F 2 . A n
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application of Cauchy's theorem enables us to replace P2 by a segment
of the real axis, and so

oo rjir

eiK cos * e™* dx
f oo rjir

= lim S 2i rn sin na eiK

J r . r—>1—0 m = l Jo
oo fi«

= l im S 2rn sin «.a eiX eosh ' e"* eft.
r—>1— 0 » = 1 Jo

Hence, by Abel's theorem on the continuity of power series,1

= E 2 sin na eikcoaht ent dt. (4"13)
Jr. «=i Jo

By a similar argument, it follows from the identity

f

Jr. = 4?-othat

= S 2 sin MO eiKcosht e~nt dt. (4-14)
J I \ n = l J0

From equations (4-12), (4-13), (4"14), we easily obtain (4"11) for the
case \it < 6 < IT. The result when — n < 9 < — \n follows by changing
the sign of 6.

4.2. If we repeat the argument of §3, using (4#11) instead of (3-35),
we obtain

THEOREM 2. Let

J?l£i dt. (2-11)
0 cosh t + cos 6

Then if A > 0 and J v < \ 9 \ < TT,

1 oo
- ^ S e-^"^^) sin »S, (4-21)

where the upper or lower sign is taken according as 9 is positive or
negative.

43. By Lemma 3, we have

for any fixed value of A. Hence the series

S e-*B«^1)(A) sinnfl (4-32)

n = l

] Q/1. the argument which gave equation (3.33).
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converges for all values of 0. But the integral (2-11) is a continuous
function of 0 when | 0 | < T T ; a comparison of (2-12) and (4-21) then
shows that the sum of the series (4-32) is discontinuous at 0 = ± \""-

Now by (4-31) and the Riesz-Fischer Theorem,1 (4'32) is the

Fourier series of an odd function <J> (0) of the class L2, and evidently

Q(6)=F (0 < 9 < \TT),

= F — ±e-
iKcme (ITT<6< n).

But since (4*32) is convergent,

S e-*"«/#>(A) sin n0 = Km 2 rne-*"**h™ (\) sin nd

whenever the latter limit exists.2

In particular, putting 6 = ± JTT, we obtain

THEOREM 3. If A > 0 and 6 = ± |T7,

-P (A) = ± ie-iAc08() + —. S e"i«" ^'1( (A) sin n0,
2in = l

•where the upper or lower sign is taken according as 9 is positive or

negative.

% 5. The behaviour of F (A) when A -=» 0 or co .

5"1. From Lemma 3, we have

lim A«)(A) = — cos ?^e-4»«.
«"* 2

Hence it follows from Theorem 1 that, if | 01 < \TT,

lim F (A) = -!- {sin 20 - \ sin 40 + \ sin 60 — },

and so

lim F{X) = £.

1 See, for example, Titchmarsh, Theory of Functions (Oxford, 1932), 423-4.
2 We have used here two well-known results in the theory of Fourier series. See,

for example, Titchmarsh, loc. dt., 440, Exx. 6, 7.

https://doi.org/10.1017/S0013091500008439 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500008439


168 E. T. COPSON AND W. L. FERRAR

That the equation (5-ll) holds in the wider range |0|<77 may be
proved by means of Theorems 2 and 3, or, more directly, from the
integral definition of F (A) by means of the calculus of residues.

Having obtained (5"11), we can show from the expansion of
h™ (A) near A = 0 that , if | 6| < n,

_ , , . 8 i sin 6. , . « . . .
( * = 2̂  —2^r g + w

as A -> 0.

5*2. For completeness we observe that, if | 6 | < n,

2T7 F (A) - V ( ^ A ) t » n i* e^^"/4)

as A-#- oo , a result best proved by the method of §1*2.
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