A series of ‘“cut’ Bessel functions
By E. T. Copsoxn and W. L. FERRAR.
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§1. Introduction.

1-1. In Kottler’s theoretical discussion! of the diffraction of a plane-
wave of monochromatic light of wave-length 2#/k by a black half-
plane, the function

— l Sm tkr cosht sin 6 .
Fir, 0)_277 06 cosht—}-cos@dt’ (111

where (r, 8, z) are cylindrical coordinates, plays an important part.
In particular it is necessary to have asymptotic formulae for f(r, 6),
valid when » is either very large or very small compared with the
wave-length.
Kottler obtains these asymptotic formulae by showing that
1
&
where, in the usual notation2?, H{) (A) denotes the Bessel function
J, (A) + Y, (A) of integral order », and then making use of the known
properties of H{!' (). Whilst this method gives correct results, it is
difficult to place it on a sound basis.

g+icosef= —}sin@H(()l) (kr), (1-12)

1'2.  The asymptotic formula valid as r-> 4 o may be obtained by
a direct method, well-known in the theory of Bessel functions. For
if we make the substitution cosh? =1 + ¢ and then rotate the path
of integration through a right-angle, we obtain

o sin 6 dv )
(1 4 cos 8 + )/ (2v + w?)’
and an application of Watson’s Lemma (W., 236) gives the required

expansion. There does not appear to be any corresponding very
simple way of obtaining the expansion valid when r is small.

f(r, 0)= 2l exp {¢ (kr + }7)} jwe—kﬂ
. 0

Y Ann. der Phys. T1 (1923), 457-508 (in particular, pages 496 and 499). We have
found it convenient to change the sign of i throughout.

2G. N. Watson, 4 treatise on the theory of Bessel functions (Cambridge, 1922), 73.
In later references, this work is cited as W.

https://doi.org/10.1017/50013091500008439 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500008439

160 E. T. Corsoxn aAND W. L. FERRAR

1'3. The form of the differential equation (1-12) suggests another
line of approach. If we substitute in this equation the formal series

fF(r, ) = La, HY (kr),
1

where a, is independent of r, and use the recurrence formula
(W., 74 (4))
dH) (kr)
2Ty = Holi (er) — Hy (kr),
we find that
1 = .
fir, 8) = 55 S et HY (kr) sin nf (1-31)
= 1

is a particular solution of (1'12).

The series (1°31) is not easy to handle near r = 0 because H® (kr)
is of the order of »~" as r tends to zero; some other representation is
needed. In the present note we use a series (viz. (2:12) ¢nfra) which
is derived from (1-31) by omitting from each of the functions H{" (kr)
all negative powers of . The sum of this series is discontinuous at
6 = 4 4w, and we are obliged to consider separately the two ranges
|0 <im and in<|0| <. »

The proofs of our results are less easy than one might expect,
though the difficulty is perhaps due to the line of proof we have
adopted.

Our methods can also be applied to obtain the expansion of a
second integral considered by Kottler, viz.

g(r, 0) = _l_j cos 30 cosh 3¢ i

eilcrcosl.t
m Jo cosh? 4 cos§
as a series of ‘“cut’” Bessel functions, in this case of order »n + 1.
The discussion of this is omitted as no essentially new ideas are
involved.

(1-32)

§2. Enunciation of the main theorem: preliminary lemmas.
2'1. Let A (A) denote the function obtained from the expansion of
HQ (2) in the neighbourhood of A = 0 by omitting all the terms that
involve negative powers of A. It is usual to call a function of this
sort a cut Bessel function.

We shall prove

‘THEOREM 1. Let

_1 ® A cosht sin § 9.
F(/\)—%Le cosht—i-cos&dt' (2:11)
Then if A>0 and — 3w < 0 < i,
F)=o % e-imih® () sinn. (2:12)
21 p=1
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The proof rests on certain subsidiary lemmas which are given in
the following sub-sections. Apart from Lemma 1, these lemmas are
of some analytical interest; the reader will need only the results of
Lemmas 2 and 3 in order to follow the proof of Theorem 1.

We suppose throughout that A>0 and, in $§2 and 3, that
—dn<b<in.
2:2. LemMma 1. If Za, is a bounded series, then X a,z" is uniformly

bounded in 0 < x =< 1; moreover, X a,z" is convergent when 0 <z < 1,
and its sum s (x) s bounded in this open interval.

Let On=20g+ a1+ ....+ a,.
Then g+ +ax®+ ... +a,x”
=(1—x)(op+oyx+o522+ .... + 0y 2" 1) + o0, 2"

But |o,| < K for all »; hence, if 0 <z <1,
lag + a2+ .... +a,2"| <K (1 —2") + Ka" = K.
This proves the first part of the lemma,.
By Dirichlet’s test, the series Za,2" is convergent when
0 <z < 1; it follows at once that |s () | < K in this open interval.

Lemma 2. Let Za, be a bounded series, s (z) the sum of Za, x" when
0=z<1; let

E (), z) = exp {3iX (z + z~1)} (z > 0).
Then ﬁs @) E )\ z)dz = Za, r 2 B (A, z) dz.
0

The proof of this lemma might almost be taken for granted. But
the fact that s (1)and E (), 0) are not defined raises minor difficulties,
and we have thought it desirable to set out the proof.

Let s, (x) =ay+ a1z + .... 4+ a,z*. Take an arbitrary positive
number e. Then, by Lemma 1 and the fact that | £ (A, 2)| = 1 when
0 <z <1, there exists a positive number & such that, whenever
0<d <86,

»
[T e@—a@E0aa
1-8

<le (2-21)

8
L {8 (z) — s, (2)} E (A, 2) de <ZLe, (2-22)
independently of the value of n. Hence

jl {s(z) — s, (2} B (A, 2)dx = jl F, (A, z)dz,
0 0
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.say, is defined as an improper integral. Moreover

”Z F,(\, z)de

1 .
+ Hl ) F,(\, 2)dz | < %e,

independently of the value of n.
But, by the uniform convergence of £a, " in (3, 1 — 8) and the
boundedness of Z (A, z), there exists an integer N such that, whenever

n =N,
1—

8 ,
Fo(\2)do! <te
8 |

It now follows that

lim jl {s(x) — s, ()} B (A, z) dx = 0. (2-23)
n=>wo V0

Again, a modification of the argument used above shows that
-each of the integrals

1 1
j s (z) B (A, z) dz, j 2" B (A, z) dx
0

0
is defined as an improper integral. Hence, by (2-23),

1 1
j s(x) B (A, z)de = lim _‘- sn (%) B (A, ) de,
0 n=—>0w0 0
and so the lemma is proved.

2'3. As a preliminary to our next lemma, we note that, by W., 78 (8),
with z = — 4}, and W., 80(15), the terms in the expansion of H{ (})
near A == 0 which involve negative powers of A are given by

—_ m—m-2) __*g
T mEO m! (A)r-2m p n (A),

where S, (\) is Schlifli’s polynomial, as defined, for example, in
'W., 285(1). Hence the ‘“cut ” Bessel function A{) () is given by

AD Q) = HP () + = 8, (). (2:31)
w
Now, by W., 288(2) with o =0, we have
Sn (A) — j {enl? —_ e—n(rri+8)} e—)\sinhﬂ de
0
i+ o0 .
= 2e‘4”’”'J- sinh neg et os2é g,
i
on writing 6 = ¢ — ini. Moreover, by W., 180, (8),

7w

2 . [Amit o
HO ) = = e'*”’”". "% cosh nd et s qd (2:32)
0
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From (2:31) and (2-32) follows
Lemma 3. The cut Bessel function b} (A) is given by

L i . it .
1ni etnmi B (X)) = J cosh ng et cosb ¢ dd +j e~ gihcoshd gop,
Y i

§3. Proof of Theorem 1.

3'1. If in the definition (2'11) we put e-‘=2 and use the
notation E (A, z) of Lemma 2, we obtain

111 sin 6
F A = —J .
@) o OE(/\’x)x2+2xcos0+1dx
But when 0z <1,
sin @ @
—_— n-1 oy .
2242z cos 4+ 1 ,E_lx sin (n6 + nm);

moreover, for any fized value of 6,
2 sin (n6 + nm)

is a bounded series. Hence, by Lemma 2,

@0 1
F(A)=— 1 2 (— 1)* sin nej E (A, z)an-1 da,
T n=1 0
or, on restoring the original variable of integration,
F)=—L1 S (=1)sin nﬂj gircamht gt fy (3-11)
T n=1 0

. 32. Now if n = 0, we have, by Cauchy’s theorem,

© dri
j 67)‘ cosh ¢ e—nz dt — j 67')‘ cosh ¢ e—nt dt + j-

0 0
The integral over (31, 7 + o ) in (3:21) tallies with that in Lemma, 3,
whereas that over (0, 4ni) does not. We discuss the integral over
(0, 7¢) in the next sub-section.

Axit o .
gircosht g—nt gt (3-21)

i

3'3. Let us consider the integral® -

LA % sin 8
I — j iA cos y d .
0 ¢ cosy + cos 0 y (3:31)
LA 10 —i6
= j gircosy - € - — = € — dy
0 el 4 e ev 4 e~

. i0 —i6
— hm I ei)\cosy .e . .e ] d . -39
~>1-0o {rew T revyeif Y (3:32)

1The device used here was suggested by a more lengthy proof of the theorem on
different lines.
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The last step is justified by the fact that the integrand in (3-32) is a
continuous function of both variables » and y on account of the
restriction — 47 < § < 4n. Expanding in powers of 7, we have

dr ©
I= lim _[ greosy F (— 24 sin nb) (— r)" e dy
r~>1-0J0 n=1

® b
= lim (~2¢) £ (—r)*sin nBj gih %Y gniy (g
re>1-0 n=1 0

The series obtained by putting =1 is convergent, as an integra-
tion by parts beginning with
1 (. ‘
—_ j em [ d (enw)
nt Jg

will show. Hence, by Abel’s theorem on the continuity of power

series,
® i )
I=—2; % (—1)sin nBj gih cosy gniy dy
n=1 . 0
o At
= —22X (—1)sin nBI gircosht gnt gf (3:33)
n=1 0

But we also have

% sin 6 . et e~
——— = lim {— o — — —t
cosy +cosf ,—51 |re W £ e re~w4 e~
and so we can carry out the previous transformations with e~% in
place of ¢%. It then follows that

© b
I=—23 (—1)sn 'n.Bj " gincosht gt it (3-34)
0

n=1

Combining (3-33) and (3-34), we have

@ i
% (= 1)?sin nﬁj gir coshi g—mit (g

n=1 0
@ drt
= X (—1)* sin nd j gireshi oogh nt di. (3:35)
n=1 0
3-4. By (3:11), (3-21) and (3'35), we now have
FQAQ)= — 1 s (— 1)* sinnf G (n, A),
T n=1

4ar Ywiteo
gircosbt oosh nt dt + gircosht g—nt gy

0
But, by Lemma 3,

where G (n,A) = _‘.

dmi

@ (n, A) = }mi enmi B ().
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Hence
F) =L 3 e~tmmi 4O ()) sin nf.
27‘ n=1

But this is the required equation (2:12), and so Theorem 1 is proved.

§4. Euxtensions of Theorem 1.

4'1. The argument of §3-3 fails when 6 = + (7 —a) and O<a <3,
since the integral (3-31) exists only as a Cauchy principal value on
account of the singularity at ¥ = a; moreover this principal value is
not equal to (3-32) or to the corresponding limit with re~% replacing
re?. It turns out that equation (3:35) no longer holds and has to be
replaced by the identity of

Levma 4. If kn < |0| <=, then

» e
— Z (—1)"sin nﬁj gihcoshit g—nt gt
n=1 0

© 4t
= 4 dme~rew8 _ ¥ (— 1)* sin nGI gttt cosh mt df,  (4°11)
n=1 0

where the upper or lower sign is taken according as 6 ts positive or
negative.

Let us suppose first that § =7 — a where 0 <a < {7, and consider

j‘ ei)\ cosz ? S a dZ
co8zZ — Cosa

along two paths both beginning at z = 0 and ending at z =4n. The
first of these paths, I'; say, lies in the lower half-plane, the other, I';
say, in the upper half-plane. Then, by Cauchy’s theorem of residues,

j - j = 271 (residue at z = a) = 2me™ 2, (4'12)
r, Jr,

Now the integral along I'; is equal to

el e—ia.
lim | eihcosz. — — L dz
re>1-0JT, reiz — gia rez — g—ta

o
= lim 9geirc0sz 3 g eniz gin na dz
r=>1-0J1, n=1

@ .
= lim X 27"sinna j gihcos z gniz (o
r~—>1-0 n=1 T,

term-by-term integration being valid since [re?| <=7 on I;. An
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application of Cauchy’s theorem enables us to replace I'; by a segment
of the real axis, and so

o« pid
j = lim X 277" sin na j gircos T gniz o
T. r—>1-0 n=1 0

) ® bri
= lim X 27*sin na j gitcosh t gnt gy
r—>1-0 n=1 0

Hence, by Abel’s theorem on the continuity of power series,!

~

) di
= X 2 sin na -‘- giheosht gnt gy (4'13)
JI, n=1 0

By a similar argument, it follows from the identity

(* 1a ~-1a
— lim gircos 2 { '6 _ — .e ’ _ ] dz
Jr, res>1-047, re—iz _ gia re— — e—’LaJ
that
[ ® i
= 2 2 ginna j gihoosht g—nt gy (4-14)

T, n=1 0
From equations (4-12), (4'13), (4'14), we easily obtain (4-11) for the
case 3w < 6 <7. The result when — 7 < § < — } follows by changing

the sign of 6.

4.2. If we repeat the argument of § 3, using (4'11) instead of (3-35),
we obtain

THEOREM 2. Let

1™ gin @
—_ dhcosh ¢ T " .
F(M_27TL € cosh ¢ + cos 6 dt. (2:11)
Then if A>0and 37 <|0]| < m,
. l =» )
F(A\) = 4 Leiroost 4 2; 2 e AP () sin n 6, (4-21)
n=1

where the upper or lower sign ts taken according as 0 is positive or
negative.

4-3. By Lemma 3, we have

2 nw . 1
(1) - = i —inwi . 4
B () 008 o e +0<n2> (4:31)
for any fixed value of \. Hence the series
5 e~ 4D ()) sin n0 (4-32)
n=1

1 §f. the argument which gave equation (3.33).
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converges for all values of 8. But the integral (2-11) is a continuous
function of § when |8|<w; a comparison of (2'12) and (4'21) then
shows that the sum of the series (4'32) is discontinuous at 8 = 4 4.
Now by (431) and the Riesz-Fischer Theorem,! (4'32) is the
Fourier series of an odd function ® (6) of the class L%, and evidently
o0)=F (0 <8 < 3n),
=F — Je ?osf (dg <0 <),

But since (4°32) is convergent,

Y e—inmi B (A) sin 28 = lim 5 et D (}) sin nd
n=1 r—>1—-0 n=1
. 1 2m 1 — 72
= Jm g | TR 9

=3{DP 040+ DO —0)}
whenever the latter limit exists.?
In particular, putting 6 = - =, we obtain
THEOREM 3. IfA>0and 6 = £ 3m,
F() =k iemdont . 3 emwwr 40 () sin nf,
¥ n=1
where the upper or lower sign is taken according as 6 is positive or
negative.

§5. The behaviour of F (A) when A— 0 or o .

5'1. From Lemma 3, we have

nmw

lim A (X) = i cos — e ¥,
nmt

A=>0 ™
Hence it follows from Theorem 1 that, if | 8] < =,

lim F(\) = — {sin 20 — } sin46 4+ } sin 60 — .. ..},
A=>0 2

and so

Hm F(X) =

0 .
Jim 7 (5-11)

1See, for example, Titchmarsh, Theory of Functions (Oxford, 1932), 423-4.

2 We have used here two well-known results in the theory of Fourier series. See,
for example, Titchmarsh, loc. cit., 440, Exx. 6, 7.
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That the equation (5°11) holds in the wider range |§| <= may be
proved by means of Theorems 2 and 3, or, more directly, from the
integral definition of F (1) by means of the calculus of residues.

Having obtained (5°11), we can show from the expansion of
B (X) near A = 0 that, if |8 <,
¢ 8in 6

AlogA 4+ O(A)
27

)
FN =g, —
as A = 0.

52. For completeness we observe that, if || < m,
27 F (A) ~ +/(37/A) tan 10 et +7/4)
as A—> w , a result best proved by the method of §1-2.

UxiversiTy COLLEGE, DUNDEE.
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