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Abstract. Recently, Ballester-Bolinches [1 and 2], Pedraza-Aguilera [2] and Perez-
Ramos [2] have studied circumstances under which certain injectors and projectors,
which are always pronormal, must be normally embedded. In this note we give a scheme
for describing a minimal counterexample to a conjecture of the form: a subnormally
embedded subgroup with properties α1, α2, . . . , αn is normally embedded, where α1,
α2, . . . , αn satisfy certain conditions. We then show contradictions in certain cases
involving finite solvable groups.
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The concept of normal embedding of a subgroup is powerful and interesting. Any
normally embedded subgroup of a finite solvable group is an injector [3, VIII(3.8)],
and there are a variety of known results showing that two weaker properties combined
imply normal embedding in a finite solvable group. For example a subgroup is normally
embedded if it is subnormally embedded and locally pronormal [3, p. 261]; if it is
locally pronormal and a CAP subgroup [3, I(7.13)]; and if it is locally pronormal and
system permutable [3, I(7.13)]. Recently, Ballester-Bolinches [1, 2], Pedraza-Aguilera
[2], and Perez-Ramos [2] have studied circumstances under which certain injectors and
projectors, which are always pronormal, must be normally embedded. In this note we
give a scheme for describing a minimal counterexample to a conjecture of the form: a
subnormally embedded subgroup with properties α1, α2, . . . , αn is normally embedded,
where α1, α2, . . . , αn satisfy certain conditions. We then show contradictions in certain
cases, proving:

COROLLARY 1. If G is a finite solvable group, and U is a subgroup of G that is
S-quasinormally embedded and pronormal in G, then U is normally embedded in G.

This implies:

COROLLARY 3. If G is a finite solvable group, and U is a subgroup of G that is
permutably embedded and pronormal in G, then U is normally embedded in G.

Each of these two results generalizes a result found in [1] or [2], as described below.
We also prove:

THEOREM 3. If G is a finite solvable group, and U is a subgroup of G that is
subnormally embedded and is Frattini on intersections in G, then U is normally embedded
in G.
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The reason that these results appear as corollaries rather than theorems is that
the methods we apply generalize from analysis of Sylow subgroups to analysis of
H-projectors, where H is a solvable Schunck class. We discuss some of the implications
of this fact below.

All groups in this paper are finite and solvable, and the notation used is that of
Doerk and Hawkes’ book Finite Soluble Groups [3]. Here are some definitions required
below. In these definitions, r is a prime, and H is a Schunck class of solvable groups, so
that any solvable group has a unique conjugacy class of H-projectors by [3, III(3.21)].

A subgroup A is permutable in G if for every subgroup B of G, AB is a subgroup
of G.

A subgroup A is S-quasinormal in G if, for every Sylow subgroup B of G, AB is
a subgroup of G. Hence a subgroup is S-quasinormal if and only if it permutes with
every Hall subgroup of G. Also, by [3, I(4.21)(a)(b′)], an S-quasinormal subgroup is
subnormal.

A subgroup A is pronormal in G if for each g ∈ G, A is conjugate to Ag by an
element of 〈A, Ag〉.

A subgroup A is abnormal in G if for each g ∈ G, g ∈ 〈A, Ag〉.
By [3, I(6.21)(a)], the normalizer of a pronormal subgroup is abnormal. This

implies that A is abnormal in G if and only if A is both pronormal and self-normalizing
in G.

A subgroup A of G satisfies the Frattini argument in G if for every normal subgroup
L of G with A ≤ L, G = LNG(A). This is equivalent to the property that for each normal
subgroup L of G, all conjugates of A in G are conjugate to A in L.

A subgroup A is Frattini on intersections in G if, whenever K is subnormal in G,
A ∩ K satisfies the Frattini argument in K .

A subgroup A is pronormalizing in G if for every subnormal subgroup L of G that
contains A, NL(A) is abnormal in L. By [3, I(6.3)(a) and I(6.21)(a)], if A is pronormal
in G then A is pronormalizing in G.

The subnormal closure 〈A..G〉 of A in G is the unique smallest subnormal subgroup
of G containing A.

The normal closure AG of A in G is the unique smallest normal subgroup of G
containing A.

We will use a (possibly subscripted) α to denote a subgroup property, as follows:
UαG will indicate that U is a subgroup of G having some property, for example, U is
subnormal in G. We say a subgroup A is H-α-ly embedded in G if each H-projector of
A is an H-projector of a subgroup X of G such that XαG. For example, a subgroup A
is H-normally embedded in G if each H-projector of A is an H-projector of a normal
subgroup of G.

Note that if H = R, the Schunck class of r-groups for some prime r, then the
R-projectors are the Sylow r-subgroups, so R-normally embedded means r-normally
embedded as in [3, I(7.1)(a)], so a subgroup is normally embedded [3, I(7.1)(b)] if and
only if it is R-normally embedded for each prime r. Similarly, a subgroup is subnormally
embedded [3, p. 261] if and only if it is R-subnormally embedded for each prime r,
S-quasinormally embedded [2, p. 244] if and only if it is R-S-quasinormally embedded
for each prime r, and permutably embedded [1, p. 1] if and only if it is R-permutably
embedded for each prime r.

The theorems below are stated and proved in terms of these generalized embedding
properties, and the corollaries apply to the more standard embedding properties. Thus
the reader who is interested in the corollaries but not the more general theorems is
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encouraged to substitute Sylow r-subgroup for H-projector in the proofs below, and
ignore the few statements that become tautologies.

We need one easy lemma for our induction arguments.

LEMMA 1. If XαG implies XN/NαG/N for N normal in G, then if U is H-α-ly
embedded in G, UN/N is H-α-ly embedded in G/N.

Proof. Suppose B/N is an H-projector of UN/N, where U is H-α-ly embedded
in G. Let C be an H-projector of U , so by [3, III(3.3)], CN/N is an H-projector of
UN/N, and by [3, III(3.21)], B/N = (CN/N)xN , where x ∈ U . Let A = Cx, so A is an
H-projector of U and B = AN. Thus A is also an H-projector of X , where XαG. Then
B/N is an H-projector of XN/N by [3, III(3.3)], and XN/NαG/N by assumption.
Hence UN/N is H-α-ly embedded in G/N, as claimed.

Now we prove the following theorem.

THEOREM 1. Suppose that α1 . . αn are properties such that for any group G, if K is
normal in G, then for i = 1 . . n, UαiG implies UK/KαiG/K. Let G be a finite solvable group
of minimal order having a subgroup U with H-projector A such that U is H-subnormally
embedded in G and UαiG for i = 1 . . n, but U is not H-normally embedded in G. Then G
satisfies the following conditions:

(a) coreG(A) = 1;
(b) there exists a minimal normal subgroup N of G, such that AG = AN and AG is an

elementary abelian p-group, which implies A is subnormal in G;
(c) NG(U) ≤ NG(A);
(d) A ∈ Sylp (U ).

Proof. Suppose G and U satisfy the hypotheses, and let N be a minimal normal
subgroup of G, so N is an elementary abelian p-group for some prime p. Then AN/N
is an H-projector of UN/N by [3, III(3.3)].

By Lemma 1, UN/N is H-subnormally embedded in G/N, and UN/Nα1G/N,
UN/Nα2G/N, . . . UN/NαnG/N by assumption, so by minimality of G, UN/N is H-
normally embedded in G/N. Hence AN/N is an H-projector of some normal subgroup
J/N of G/N. Now if coreG(A) > 1, A contains such an N, so A/N is an H-projector
of J/N, so by [3, III(3.7)], A is an H-projector of the normal subgroup J of G, a
contradiction establishing (a).

Now let K = 〈A..G〉, so A is an H-projector of K , because K is contained in any
subnormal subgroup of G that contains A, and A is an H-projector of one of these
because U is H-subnormally embedded in G. Now A is not an H-projector of AG

because U is not H-normally embedded in G, so K < AG. Let N be a minimal normal
subgroup of G contained in AG. Then AN/N, being an H-projector of some normal
subgroup J/N of G/N, is pronormal in G/N. For if x ∈ G/N, (AN/N )x is an H-
projector of (J/N)x = J/N, so AN/N and (AN/N)x are both H-projectors of their join
〈AN/N, (AN/N)x〉≤ J/N; hence they are conjugate in that join.

Thus 〈(AN/N)..G/N〉= (AN/N)(G/N) [3, p. 261]. Now (AN/N)(G/N) = ((AN)G)/
N = AG/N, so 〈(AN/N)..G/N〉= AG/N. But KN/N is subnormal in G/N and contains
AN/N, so AG/N = 〈(AN/N)..G/N〉≤ KN/N ≤ AG/N; hence KN = AG. Therefore, KN
is normal in G.

Then K is core free, for if K contains any minimal normal subgroup of G we
may choose that subgroup to be N, implying K = KN = AG, a contradiction. Now
K , being subnormal in G, is normalized by every minimal normal subgroup of G
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by [3, A(14.3)], so K is normal in KN. Thus K contains Op(AG), because KN/K is
a p-group, so Op(AG) = 1 and AG is a p-group. And by [3, A(9.6)], K contains AG’s
Frattini subgroup, which is normal in G and therefore trivial because K is core free, so
AG is elementary abelian. Thus A is normal in AG, and therefore subnormal in G, so
K = A and AG = AN. This establishes (b).

Now A is pronormal in U because it is an H-projector of U , and A is subnormal
in U because it is subnormal in G, so A is normal in U by [3, I(6.3)(d)]. Thus A is
the unique H-projector of U . Now suppose x ∈ NG(U). Then Ax is an H-projector of
Ux = U , so Ax = A. Hence NG(U) ≤ NG(A), establishing (c).

Let π be the characteristic of the Schunck class H [3, II(1.2)(b)]. Because A
is a p-group, A has a homomorphic image of order p, which is in H because A is
by [3, III(2.7)]. Thus p ∈ π . Then U/A = NU (A)/A is a π ′-group by [3, III(4.8)], so
A ∈ Sylp(U), completing the proof of (d).

We are now in position to prove:

THEOREM 2. If G is a finite solvable group and H is a Schunck class, and U is a
subgroup of G that is H-S-quasinormally embedded and pronormalizing in G, then U is
H-normally embedded in G.

This immediately yields:

COROLLARY 1. If G is a finite solvable group, and U is a subgroup of G that is S-
quasinormally embedded and pronormalizing in G, then U is normally embedded in G.
Thus if U is S-quasinormally embedded and pronormal in G, then U is normally embedded
in G.

Ballester-Bolinches, Pedraza-Aguilera, and Perez-Ramos have given examples of
subnormally embedded pronormal subgroups in finite solvable groups that are not
normally embedded [2, Theorem 4]. Thus if every pronormal subgroup with properties
α1, . . . , αn is normally embedded, together properties α1, . . . , αn must be stronger, at
least when combined with pronormality, than subnormal embedding. Corollary 1
shows that S-quasinormally embedded is a sufficiently strong property.

Proof of Theorem 2. If U is pronormalizing in G and K is normal in G, it
is easy to see that UK/K is pronormalizing in G/K: If UK/K ≤ L/K and L/K
is subnormal in G/K , then U ≤ L and L is subnormal in G, so if xK ∈ L/K ,
so x ∈ L, we have x ∈ 〈NL(U), NL(U)x〉 because NL(U) is abnormal in L. Hence
xK ∈ 〈NL(U), NL(U)x〉K/K ≤ 〈NL/K (UK/K), NL/K (UK/K)xK〉, and NL/K (UK/K) is
abnormal in L/K . Hence UK/K is pronormalizing in G/K . And if U is H-S-
quasinormally embedded in G and K is normal in G, then UK/K is H-S-quasinormally
embedded in G by Lemma 1, using the easily proved fact that if X is S-quasinormal in
G, then XK/K is S-quasinormal in G/K .

Because an S-quasinormal subgroup is subnormal, an H-S-quasinormally
embedded subgroup is H-subnormally embedded. Thus if we consider a minimal
counterexample to Theorem 2, the hypotheses of Theorem 1 apply, with n = 2 and
properties α1 and α2 being pronormalizing and H-S-quasinormally embedded. Hence
we have the conclusions of Theorem 1, with G, U , and A as contained therein.

Thus A is an H-projector for some S-quasinormal subgroup X of G, and A is
subnormal in G by Theorem 1(b). Then A ∈ Sylp(X ) by the same argument used in the
proof of Theorem 1(d) to show that A ∈ Sylp(U). Let W be any Hall p′-subgroup of
G. Then XW is a subgroup of G because X is S-quasinormal, and A ∈ Sylp(XW ). But

https://doi.org/10.1017/S0017089502008972 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502008972


SUBGROUPS OF SOLVABLE GROUPS 49

A is subnormal in G, so it is subnormal in XW , and A is pronormal in XW , so it is
normal in XW .

Thus A is normalized by every Hall p′-subgroup of G, so A is normalized by Op(G),
the join of all Hall p′-subgroups of G. But A is normal in AG, so the normal subgroup
AGOp(G) of G is contained in NG(A). Because A is not normal in G, AGOp(G) < G. Now
any Hall p′-subgroup of U , say V , is contained in Op(G), so U = AV is contained in
AGOp(G). Similarly, X is contained in AGOp(G). But G/AGOp(G) is a p-group, so there
exists some normal subgroup. L of index p in G that contains AGOp(G) and therefore
U and X .

Because U is pronormalizing in G, U is pronormalizing in L by transitivity of
subnormality. Because X is S-quasinormal in G, and contained in L, it is easy to see
that X is S-quasinormal in L: Suppose Q is a Sylow q-subgroup of L. Then Q ≤ Q0, a
Sylow q-subgroup of G. Then XQ0 is a subgroup of G, so XQ0 ∩ L = X(Q0 ∩ L) = XQ
is a subgroup of L, and X is S-quasinormal in L. (Note that X ≤ L was sufficient –
we did not need the normality of L in G.) Thus U is H-S-quasinormally embedded
in L. Hence by minimality of G, U is H-normally embedded in L. Hence A is an H-
projector of some normal subgroup Y of L. By the argument used in Theorem 1(b) A
is pronormal in L, so A is normal in L. Hence NG(A) = L. But U is pronormalizing in
G, so NG(U) is abnormal and therefore self-normalizing in G by [3, I(6.21) (a) and (b)],
and so is any subgroup that contains it [3, I(6.20) (b) and (c)]. But L = NG(A) contains
NG(U) by Theorem 1(c). Thus L is a proper subgroup of G that is self-normalizing and
normal in G. This contradiction establishes the theorem.

Because H-projectors are pronormal, we immediately obtain the following.

COROLLARY 2 [2, Theorem 2]. If H is a Schunck class and U is an S-quasinormally
embedded H-projector of a finite solvable group G, then U is normally embedded in G.

It is clear from the definitions that a permutable subgroup is S-quasinormal, so a
permutably embedded subgroup is S-quasinormally embedded. Thus we immediately
have:

COROLLARY 3. If G is a finite solvable group, and U is a subgroup of G that is
permutably embedded and pronormal in G, then U is normally embedded in G.

Because F-injectors are pronormal, we immediately obtain the following.

COROLLARY 4. If F is a Fitting set and U is a permutably embedded F-injector of a
finite solvable group G, then U is normally embedded in G.

This result slightly generalizes [1, Theorem 6], which gives the same conclusion,
but is restricted to Fitting classes.

Now we present an example, due to T.O. Hawkes, of a solvable group G with a
pronormalizing subgroup U that is not pronormal in G.

Let S be SL(2, 3), which is easily seen to act irreducibly and faithfully on an
elementary abelian group N of order 9. Let G = NS, the semidirect product of N with
S induced by this action. Then N is the unique minimal normal subgroup of G, and
S contains a subgroup Q that is a quaternion group of order 8, is normal in S, and
is a Sylow 2-subgroup of G. Let U be a Sylow 3-subgroup of S, so NU is a Sylow 3-
subgroup of G. Also, [Q, U ] = Q, and CQ(U) = Z(Q). Thus UQ contains [Q, U ]U = S,
and, being nontrivial, UG contains N, so UG = G. Thus if U ≤ L and L is subnormal in
G, then L = G. It is not difficult to show that Z(Q)U is self-normalizing in G, and it is
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clearly nilpotent, so it is a Carter subgroup of G. Hence NG(U) contains the abnormal
subgroup Z(Q)U , so NG(U) is abnormal in G. Hence U is pronormalizing in G.

But U is not pronormal in G. For if U is pronormal in G, it is also pronormal
in the 3-group NU , in which it is subnormal, so U is normal in NU . But then
[N, U ] ≤ N ∩ U = 1, and U centralizes N, a contradiction. Thus a pronormalizing
subgroup of a solvable group may fail to be pronormal in that group.

Because of the example in [2, Theorem 4], if every subnormally embedded
subgroup with properties α1, . . , αn is normally embedded, together properties
α1, . . , αn must be stronger, at least when combined with subnormally embedded,
than pronormality. Now every pronormal subgroup satisfies the Frattini argument
[3, I(6.3)(b)], so there are subnormally embedded subgroups that satisfy the Frattini
argument that are not normally embedded. On the other hand, in [4] we have proved
that if F is a Fitting set, then a subnormally embedded F-injector is normally embedded.

Note that if F is a Fitting set of G, every F-injector V of G is pronormal in
G [3, VIII(2.14)(a)], and if K is subnormal in G, V ∩ K is an F-injector of K by [3,
VIII(2.6)]. Note that this means that an F-injector of G is Frattini on intersections in
G. Here we strengthen the result from [4] somewhat.

THEOREM 3. If G is a finite solvable group, and U is a subgroup of G that is
subnormally embedded and is Frattini on intersections in G, then U is normally embedded
in G.

We begin with a pair of lemmas.

LEMMA 2. (i) If A is Frattini on intersections in G and K is subnormal in G, then
A ∩ K is Frattini on intersections in K.

(ii) If A is Frattini on intersections in G and N is normal in G, then AN/N is Frattini
on intersections in G/N.

Proof of (i). Suppose A is Frattini on intersections in G and K is subnormal in
G. We need to prove that A ∩ K is Frattini on intersections in K . Let B = A ∩ K , and
suppose J is subnormal in K . We need only show that B ∩ J satisfies the Frattini
argument in J. But J is subnormal in K , which is subnormal in G, so J is subnormal
in G, and B ∩ J = A ∩ K ∩ J = A ∩ J, so to establish (i), we need only note that A ∩ J
satisfies the Frattini argument in J because A is Frattini on intersections in G.

Proof of (ii). Now suppose C is a subgroup that satisfies the Frattini argument
in G, and N is a normal subgroup of G. If CN/N ≤ L/N ≤ G/N, where L/N
is normal in G, then CN ≤ L, which is normal in G. Now G = NG(C)L, so
G = NG(CN)L, and G/N = NG/N(CN/N)(L/N), so CN/N satisfies the Frattini
argument in G/N. Now suppose A is Frattini on intersections in G, and N
is normal in G. Consider AN/N. Suppose K/N is subnormal in G/N. Now
AN/N ∩ K/N = (AN ∩ K)/N = (A ∩ K)N/N. But A ∩ K satisfies the Frattini argument
in K , because K is subnormal in G and A is Frattini on intersections in G, so with
A ∩ K in place of C and K in place of G, the above argument implies that (A ∩ K)N/N
satisfies the Frattini argument in K/N. Hence AN/N is Frattini on intersections in
G/N, establishing (ii).

LEMMA 3. Whenever A is subnormally embedded in G and K is subnormal in G, then
A ∩ K is subnormally embedded in K.

Proof. Suppose r is a prime dividing |A ∩ K|. Then r divides |A|, so if R is a
Sylow r-subgroup of A, R ∈ Sylr(X), where X is subnormal in G. Now X ∩ K is
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subnormal in X by [3, A(14.1) (a)], so R ∩ K ∈ Sylr(X ∩ K) by repeated application of
[3, A(6.4)(a)]. Similarly, R ∩ K ∈ Sylr(A ∩ K). But note that X ∩ K is subnormal in K ,
so a Sylow r-subgroup of A ∩ K is a Sylow r-subgroup of a subnormal subgroup of
K . Hence A ∩ K is subnormally embedded in K . (Note that X ∩ K is also subnormal
in G, so A ∩ K is actually subnormally embedded in G, but we do not need that result
here.)

Proof of Theorem 3. By Lemma 2(ii), we may apply Theorem 1, where n = 1 and
UαG means U is Frattini on intersections in G. Hence a minimal counterexample
to Theorem 3 satisfies the conclusions of Theorem 1. Consider a composition series
of G that contains AG, and let L be the (normal) maximal proper subgroup of G in
that series. Now U ∩ L is Frattini on intersections in L by Lemma 2(i), and U ∩ L is
subnormally embedded in L by Lemma 3. Hence by minimality of G, U ∩ L is normally
embedded in L. Now A ≤ AG ≤ L, so A ∈ Sylp (U ∩ L). Hence A ∈ Sylp(Y ), where Y is
normal in L. But A is subnormal in G, so A is subnormal and pronormal in Y , so it
is normal and therefore characteristic in Y , and normal in L. Hence L = NG(A). But
U ≤ NG(U) ≤ NG(A) by Theorem 1(c), so NG(U) ≤ L and U ≤ L. But U satisfies the
Frattini argument in G, so G = LNG(U). Hence G = L. This contradiction establishes
the theorem.

AN EXAMPLE. We now illustrate the significance of the assumptions of Theorems 2
and 3 with a group with subgroups satisfying the conclusions of Theorem 1, but not
those of Theorems 2 and 3. We construct a group G with subgroups U1 and U2,
each of which is (3-)subnormally embedded but not (3-)normally embedded in G. The
subgroup U1 is neither pronormal nor pronormalizing, but it is 3-S-quasinormally
embedded, i.e. H-S-quasinormally embedded, where H is the Schunk class of 3-
groups. On the other hand, U2 is abnormal as well as pronormal, but it is neither
3-S-quasinormally embedded nor Frattini on intersections. Thus G with U1 illustrates
the necessity of the assumption of pronormalizing in Theorem 2, while G with U2

reveals the necessity of the Frattini on intersections assumption of Theorem 3, as well
as the necessity of the H-S-quasinormally embedded assumption of Theorem 2.

Let L be the extra-special group of order 27 with exponent 3. Then by [3, p. 79],
L = 〈x, y : x3 = 1, y3 = 1, 〈[x, y]〉 = Z(L)〉. Furthermore, by [3, A(20.8)], L has an
automorphism z of order 2 such that xz = x−1 and yz = y, so [x, y]z = [x, y]−1. Let
G be the semidirect product L〈z〉 induced by the action of 〈z〉 on L. Set A1 = 〈x〉,
U1 = A1〈z〉, A2 = 〈y〉, U2 = A2〈z〉, and N = 〈[x, y]〉.

It is not difficult to show that neither A1 nor A2 is normal in G, but each is
subnormal in G. Thus each is (3-)subnormally embedded in G. Obviously 〈z〉 is (2-)
subnormally embedded in G, because it is a Sylow 2-subgroup of G. Hence U1 and U2

are each subnormally embedded in G.
It is clear that N is a minimal normal subgroup of G, and that A1N and A2N are

each normal in L and normalized by z, so AG
1 = A1N and AG

2 = A2N. Hence neither Ai

is a Sylow 3-subgroup of AG
i , so neither Ai is (3-)normally embedded in G, and neither

Ui is normally embedded in G.
Let M1 = A1N〈z〉 = U1N; it is not hard to check that M1 = NG(A1) and that U1

is self-normalizing in G. Note that A1N is normal in G, and z is centralized by y, so
M1 is normalized by y, and M1 is normal in G = M1A2. Thus NG(U1) is not abnormal
in G by [3, I(6.20)], so U1 is not pronormal(izing) in G.

We can see that G, U1, and A1 satisfy the conclusions of Theorem 1, where H is
the Schunck class of 3-groups, so the H-projectors are the Sylow 3-subgroups. In this
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case U1 is H-S-quasinormally embedded means that each Sylow 3-subgroup of U1 is
a Sylow 3-subgroup of a subgroup X of G that permutes with every Sylow subgroup
of G. A check that A1 is S-quasinormal in G is straightforward. Thus this example
reveals the necessity of the pronormalizing condition in Theorem 2; the argument
used in the proof of Theorem 2 breaks down because A can in fact be normalized
by every Sylow 2-subgroup of G, and therefore by O3(G). But here O3(G) ≤ NG(A1),
so U1 ≤ AG

1 O3(G) = M1. The contradiction in Theorem 2 came because NG(U) was
contained in no normal subgroup of G; here NG(U1) ≤ M1, and M1 is normal in G. Note
finally that we have an example here of an S-quasinormally embedded subgroup that
has a Sylow 3-subgroup that is S-quasinormal (not just S-quasinormally embedded)
and not (3-)normally embedded.

We omit the argument that U2 is abnormal (and therefore pronormal(izing)) in G,
but that U2 is neither S-quasinormally embedded nor Frattini on intersections in G; it
follows from the relevant definitions without complication.

It is worth noting that the same sort of construction, using the description of
extraspecial groups and their automorphisms in [3, p. 79], allows the replacement in
these examples of the prime 3 by any odd prime p, and the replacement of the prime 2
by any prime divisor of p − 1.

Finally, it is not difficult to show that if J is defined to be the Schunck class h({S3})
consisting of finite solvable groups none of whose epimorphic images is isomorphic
to the symmetric group on 3 letters, then G is a group minimal with respect to having
subnormally embedded J-projectors that are not normally embedded, and U2 is a
J-projector of G. Thus G is the kind of example described in [2, Theorem 4]. Because
all nilpotent groups are members of J, J-projectors are always self-normalizing by
[3, III(4.9)], so the abnormality of U2 in G is no surprise.
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