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Abstract

In this paper sufficient conditions have been obtained for non-oscillation of non-homogeneous canonical
linear differential equations of third order. Some of these results have been extended to non-linear
equations.
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1. Introduction

In [1] Barrett considered homogeneous third-order linear differential equations of the
form

(H) [ {n @)y + a0y}] + @0 (1)y) =0

where r,,7;,9, and g, € C([a,o0),R), a € R, ri(¢) > 0 and r;(t) > 0. Bya
solution of (H) on [a, o) we mean a function y € C!([a, 00), R) such that r,y’ and
r{(ry) + qy} € C'([a, 00), R) and (H) is satisfied identically. We call (H) the
third-order canonical form. The adjoint of (H) is given by

(H*) [ {2y + 20y}] + () r)y) =0.

We may note that (H*) is obtained from (H) by interchanging r; with r, and q; with ¢,.
The non-homogeneous equations associated with (H) and (H*) are given, respectively,

by

(NH) [0 { ()Y + a1 O¥}] + @0 (O)Y) = fi(¢t)
and

(NH*) [N {20)Y) + @0y} + @) (2()Y) = &)
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21 On non-homogeneous canonical third-order differential equations 139

with f) and g, € C([a, 00), R) such that f,(¢) > 0 and g,(¢t) > O.
Suppose that fa *dt/r(t) = oo. The Liouville transformation s = R(t), x(s) =
y(t), where R(¢) = fa' du/r(u), transforms (NH) into

t) d*x
(1) = [:28 —a (t)x] +r (I)Q2(l)— = ri(t) filt)
witht = R71(s). If fa°° dt/r (t) < oo, then the Kummer transformation s = 1/0(z),
x(s) = sy(t), where p(t) = [ du/r,(u), transforms (NH) into

[rz(l) L0 1()] LnOa®dx n0e® rl(t)

@ r@) ds2 ds 52

fi@®)

with ¢ = p~!(1/s). However, Equation (2) may be written as

2 s
(3) 4 [o(s)d—x + (A(s)—/v(u)du> x]+[u«(s)+fV(u)d ] ax _ Cl(—t)fl( 9]
ds ds? a ds

where o (s) = r(t)s*/r1(1), A(s) = n()qi(t)/s, n(s) = ri(t)gx(t)/s and v(s) =
ri()q(t)/s%.

We may note that x(s) is non-oscillatory if and only if y(¢) is non-oscillatory.
Furthermore, Equations (1) and (3) have the same general form. If fa “dt /() =00
or fa *dt/r,(t) < oo, then (NH*) is transformed into an equation of the type (1) or
(3) which is obtained by interchanging r; with r, and ¢, with g,. Hence it is enough
to study the equations of the form

(E) (r@)y" + p®)y) +q0)y = f(@)

where p,¢g,r and f € C([a, 00), R),r(t) > Oand f(t) > 0.

We recall that a function y € C([a, 00), R) is said to be oscillatory if for every
t > athereexist, and t3 (f; < t, < t3) such that y(,) > O and y() < 0. Itis
said to be of Z-rype if it has arbitrarily large zeros but is ultimately non-negative or
non-positive. A function y(¢) is said to be non-oscillatory if it is neither oscillatory
nor of Z-type. Equation (E) is said to be non-oscillatory if all of its solutions are
non-oscillatory.

Linear non-homogeneous third order differential equations of the type

(4) (r@y") +q®)y + pt)y = £(©)

occur in the study of the entry flow phenomenon in hydrodymics [3]. We note that
Equation (4) is a particular case of (E). Indeed, we may write Equation (4) as

[r(t)y” + (f p(s)dS> y] + (q(t) —/ p(s)dS) y = f@).
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Unlike the second order case, equation (4) cannot be transformed to an equation of
the type
x" 4 c()x' + b(t)x = h(r)

when [“dt/r(t) = coor [Zdt/r(t) < .

The purpose of this paper is to study non-oscillatory behaviour of solutions of (E).
In the process, we obtain a result which generalizes a result in [5]. In Section 2 we
obtain sufficient conditions for non-oscillation of (E). It is interesting to note that this
study is applicable to a class of non-linear equations. Section 3 deals with the relation
between three independent solutions of (E).

2. Non-oscillatory behaviour of solutions

In this section we obtain sufficient conditions for non-oscillation of (E). The same
techniques are then used to obtain non-oscillation results for certain classes of non-
linear equations (see Equations (7) - (11) below).

THEOREM 1. If p(t) < 0 and q(t) < O for large t, then (E) is non-oscillatory.

PROOF. Let y(¢) be a solution of (E) on [a, 00). Let p(t) < 0 and g{(¢t) < O for
t > tp > a. Let y(t) be of non-negative Z-type with consecutive double zeros at ¢,
and 1, (fy < t; < t;). So there exists a b € (1, 1;) such that y'(b) =0, y"(b) < 0 and
y'(t) > Ofort € (¢, b). Integrating (E) from ¢, to b, we get

0 > r(b)y" () + p(B)y(b) — c(t)y"(ty)
b b
= [ fde — f q@®)y'(t)dt >0

because y”(#;) > 0. Suppose that y(t) is a non-positive Z-type solution with consec-
utive double zeros at t; and t, (fy < t; < t,). Then there exists b € (¢, t,) such that
y'(b) =0and y'(¢) > O fort € (b, t,). We note that y"(b) > 0 and y"(s;) < 0. Now
integrating (E) from b to ¢, yields

0> r(n)y"(t;) + r(b)y"(b) — p(b)y(b)
=/2f(t)dt—/zq(t)y'(t)dt > 0,
b b

a contradiction. Hence y(r) cannot be of Z-type.
Suppose that y(r) is an oscillatory solution with consecutive zeros at #,, t, and £

(to <t <t, <tz)suchthat y(t) < Ofort € (,1,) and y(t) > O fort € (1, 13). So
there exist b € (#;, £,) and ¢ € (#,, t3) such that y'(b) = 0, y'(¢) = 0, y'(¢) > 0 for
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t e, t)and y'(t) > Ofort € (1, ¢). If y”(t;) > 0, then integrating (E) from #, to
¢, we obtain

c

0> r(c)y"(c) + pc)y(c) —r(n)y"(t;) = / f@ydr — / q@t)y'(t)dt > 0,

a contradiction because y”(c) < 0. Furthermore, if y”(#,) < O then integrating (E)
from b to t, yields

5]

0> r(t)y" () —r(b)y"(b) — p(b)y(b) =/ f)de —f q@t)y' () dt >0,
b b

a contradiction, because y”(b) > 0. Hence y(¢) cannot be oscillatory. This completes
the proof of the theorem.

THEOREM 1'. If fa' p(@)do < O and q(t) < fa' p(0)do for large t, then Equa-
tion (4) is non-oscillatory.

PROOF. This result follows from Theorem 1.

REMARK. We note that p(t) < O implies fa' p@B)dé < 0 but the converse is
not necessarily true. Furthermore, p(t) — ¢'(t) > 0 implies g(t) < fa' p@)do, if
g(a) < 0. Hence Theorem 1’ improves Theorem 2.1 in {5].

THEOREM 2. If p(t) > 0, q(t) < 0and p(s) + q(t) <0, fort ands € [a, o0) and
p(s) + q(t) # 0 on any subinterval of a, 00), then (E) is non-oscillatory.

PROOF. Let y(t) be a solution of (E) on [a, o0). If y(¢) is of non-negative Z-type
with consecutive double zeros at t;, and t, (@ < t; < 1), then there exists a point
b € (4, 1) such that y'(b) = 0 and y'(t) > O fort € (t,,b). Since y’ > 0 and
y'(b) < 0, then integrating (E) from ¢, to b, we obtain

0> r(b)y"(b) — rty)y" ()
b

—p(b)y(b) —/Q(t)y'(t)dt

h

v

v

b
—f [g(®) + pB)y'(t)dt > 0,

a contradiction. If y(¢) is of non-positive Z-type with consecutive double zeros at ¢,
and 1, (@ < t; < t,), then there exists a point b € (¢, t;) such that y'(b) = 0 and
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y'(t) > Ofort € (b, 1;). Clearly y"(b) > 0 and y"(#,) < 0. So integrating (E) from b
to t, yields

0> r(&)y" () — rb)y"(b)

7]

> pb)y(b) —f q)y' @) dt

b
> —/ [g(t) + p(B)1 Y (t)dt > 0,
b

a contradiction. Hence y(¢) cannot be of Z-type.

Suppose that y(¢) is oscillatory. Let ¢,4,8; (@ < t; < t, < t;) be consecutive
zeros of y(¢) such that y'(r;) < 0 and y'(t;) > 0 and y'(#3) < 0. So there exist
be (t,t) and c € (1, ;) such that y'(t) > Ofort € (b, 1,) and ¢ € (1;, ¢). Clearly,
y'(b) = 0and y'(c) < 0. If y”(t;) > 0, then integrating (E) from ¢, to ¢, we obtain

0> r(©)y"(©) —r)y" (%)

c

> —p(c)y(c) —fq(t)y/(t)dt

7]

v

—/ [q(®) + p(O)ly' @) dt >0,

a contradiction. If y”(#,) < 0, then integrating (E) from b to 1,, we get

0> r(t)y’(t) — r(b)y"(b)

3

> p(b)y(b) / a0y () di
b

> f [q@) + p(B)] y'(1) dt > 0.
b

This contradiction completes the proof of the theorem.

REMARK. The condition p(s) + q(¢) < O for ¢t and s € [a, 00) is equivalent to
p(s) < |g@)]. Hence 0 < p(s) < K < |q(@)|fort and s € [a, 00), where K > Oisa
constant, implies that p(s) + g (¢) < 0.

THEOREM 2. If [/ pw)du > 0, q@t) < [ pwdu and [ pw)du <

fa' pu)du — q(t), then Equation (4) is non-oscillatory.

This follows from Theorem 2.

EXAMPLE. Consider

1t +4) >
(t+2)%° -

1 7
5 283y + ——y | — 4ty = 412
3 ( y +t+2y) y +
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Clearly p(s) = 1/(s +2) < 1/3 < 4t = |q(@)| for s,t = 1. From Theorem 2 it
follows that Equation (5) is non-oscillatory. In particular, y(¢) = ¢ is anon-oscillatory
solution of the equation. Note that Equation (5) may be written as

/ 1 1 1t+4)
2wy — (4 - —— )y - =42 LT
(2°y") ( t+2>y «+2)2 T T

Clearly, Theorem 2’ cannot be applied to (5). We note that

/' 1 1 |
- du= —— — -
1 (u +2)? t+2 3

However Theorems 2 and 2’ can be applied to the equation

(5t%y" +2y) — 8y’ = 40 — 121, r>0,
which admits the non-oscillatory solution y(t) = 2.

The proofs of the following two resuits are similar to the proofs of Theorem 2 and
2" and hence will be omitted.

THEOREM 3. If p(t) < 0,q(t) = 0and p(t) + q(s) <0 fort ands € [a, o0) such
that p(t) + q(s) # 0 on any subinterval of [a, 00), then (E) is non-oscillatory.

THEOREM 3. If [ pw)du < 0, q(t) > [ pwdu and [ pu)du <
f: p(u)du — q(s), then Equation (4) is non-oscillatory.

Our last non-oscillation result for linear equations is contained in the following
theorem

THEOREM 4. Let p(t) > 0 and q(t) > 0. If lim, f(¢)/(p(s) +q@)) = o0
uniformly for s > a, then every solution of (E) whose first derivative is bounded is
non-oscillatory.

PROOF. Let y(¢) be a solution of (E) on [a, 0o) such that |y'(t)| < L for ¢t > a.
From the given hypothesis it follows that there exists a T > a, independent of s, such
that f(¢) > L(p(s) + q(¢)) fort > T. _

Suppose that y(¢) is of non-negative Z-type with consecutive double zeros at #; and
t, (T <t < t;). Then there exists b € (¢, ;) such that y'(b) = 0 and y'(t) > O for
t € (#;, b). Now integrating (E) from ¢, to b, we get

0> rB)y'®) — re)y'(t)
b b
= —pb)y(b) — f 2Oy () di + f £ di
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b b
= —/ [g(t) + p(b)] y’(t)dt+/f(t)dt

b
z/[ﬂﬂ—uﬂn+mwﬂm>a

a contradiction. Similar contradiction may be obtained in case y(¢) is non-positive
Z-type or oscillatory. Hence the theorem is proved.

REMARK. The Liouville transformation transforms

(6) [0 (1YY + @1 ®)y*)] + @)1 (DY) = fi(0),

where gy, g2, 11, r» and f; are as in (NH) and each of @ > 0 and 8 > 0 is a quotient
of odd integers, to an equation of the type

@) (r®Y" + p@y) + a0 = F ).
However, the Kummer transformation fails to do so.
THEOREM 5. If p(t) < 0 and q(t) < 0, then (7) is non-oscillatory.

The proof of this theorem is similar to that of Theorem 1 and hence is omitted.

REMARK. Theorems 1-5 all remain true if the condition, ‘ f(¢#) > 0’ is replaced by

‘fio)y<0.
Equations of the type
®) Y +yy +A[1- )] =0

arise in boundary layer theory in fluid Mechanics cite[p. 520]2. The particular case
of (8), ¥+ yy” = 0, is known as the Blasius equation. In the following we study the
non-oscillatory behaviour of solutions of the non-homogeneous Blasius equation

) Y'Yy = @)

where f € C([a, 00), R) is such that f(¢) > 0.
THEOREM 6. All solutions of Equation (9) are non-oscillatory.
PROOF. Equation (9) may be written as

10) '+ 3T =)+ fO).

Let y(¢) be a solution of (10) on [a, 00). Proceeding exactly as in Theorem 1, one
may show that y(¢) cannot be of Z-type or oscillatory. Hence y(¢) is non-oscillatory.
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The following examples illustrate the theorem.

EXAMPLES.

1"

(i) The equation y” + yy” = 0 admits both positive and negative solutions
() =tand y,(t) = —t,
(ii) The equation y” + yy” = 8/t* t > 1, admits the positive bounded solution
y@) =4/t,
(ili) y(r) = —e™ is a bounded negative solution of

" 2t

Y +yy'=et+e", t >0,

The asymptotic behaviour of solutions of Equation (8) has been studied by Hart-
man [2]. Equation (8) with A = 1/2 is often called the Homann differential equation.
In the following we obtain a theorem concerning non-oscillatory behaviour of solu-
tions of non-homogeneous equation associated with Equation (8), that is,

(11) Y +yy +A[1=- )] = fO,

where f € C([a, o0), R) is such that f(¢) > 0.

THEOREM 7. If —1 < A < Othen all solutions of Equation (11) are non-oscillatory.
Ifh > 0andlim,_, o, f(t) = 00, then all solutions of Equation (11) are non-oscillatory.
If A < —1 and lim,_,, f(t) = o0 then all solutions of Equation (11) whose first
derivatives are bounded are non-oscillatory.

PROOF. The equation (11) can be written as
(" +yy) = A+ + f(0) — 1.

In each case we see that the right-hand side of the above identity is positive for
sufficiently large ¢. Then proceeding as in Theorem 1 we may show that all solutions
of (11) are non-oscillatory. Hence the proof of the theorem is complete.

EXAMPLES.
(1) All solutions of

Y'+yy =[1- )] =6 -1, t>1,

are non-oscillatory. In particular, y(¢) = ¢* is a non-oscillatory solution of
the equation.
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(ii) The equation
" I 7
Y +yy 41 (y)2]=1+t—4, t>1,

is non-oscillatory with a particular non-oscillatory solution y(t) = —1/t¢.
(iii)) The equation

y///+yyr/+[1_(y/)2]:1+et, IZO,
is non-oscillatory. In particular, y(t) = €' is a non-oscillatory solution of the
equation.

3. Relation between linearly independent solutions

In this section we study the relation between three linearly independent solutions
of (E). Let y,(¢), y(¢) and y;(¢) be solutions of (E) with initial conditions

»n@ = 0 @ = 1 yi@ = 0
@ = 1 y@a = 0 y@) = —q(a)/r(a)
»@ = 0 »@ = 0 i@ = 1/r(a)

THEOREM 8. If p(t) <0, q(t) < 0and q'(t) = 0, then y,(t) cannot meet y,(t) in
the strip la, t,), where t, is given by

cstveso [ ([ fo)a

PROOF. From Theorem 1 it follows that y,(¢) and y,(¢) are non-oscillatory. Suc-
cessive integrations yield

y,(:):(t_a)+/'(f( /f(e)de)ds>du

( —(p(s) + g (N (s) ds) du

( ( q' )y, (6) de) ds) du
and

yz(t)sz(a)/:( [a5)as+ [([ ([ r@ao)as)au
( / (S)+q(s) z(s)ds) .
(/ ( 4 (9)YZ(9)d9> )du.
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Ift, > aisthe first point where y, (t) meets y,(z), then y,(¢;) = y»(t;) and y,(¢) < y»(¢)
fort € [a, 1)). Thus y,(t1) > 1+ p(@) [ ([ du/rw)) ds + yi(t;) — (t — a), that is,

t121+a+P(d)/“ (/s%—))ds

Hence the theorem is proved.

REMARK. The conclusion of Theorem 8 holds if
(1) p(t) = 0,q(t) <0, suchthat p(¢) + q(t) <0and ¢'(¢) > 0;
(ii) p(¢) £0,49(t) = Osuchthat p(t) + g(t) <0and ¢'(t) > 0

However, if p(z) > 0, g(¢) = 0 and q¢'(t) < 0, then y,(¢) cannot meet y,(¢) in the
strip [a, t,), where ¢, is given by

t151+a+p(a)f|(/s%)ds

THEOREM 9. If p(t) <0, q(t) < 0and q'(t) = 0, then y;(t) cannot meet y\(t) in
the strip (a, t,), where t, is given by

o[ ([ 25)e

and y;(t) cannot meet y,(t) in the strip [a, t,), where t, is given by

n s d
15(1—p(a))/ (] T:))‘“

The proof of this theorem is similar to that of Theorem 8 and hence is omitted.

REMARK. The conclusion of the above theorem remains true if
(i) p(¢) =2 0, q(#) <0, such that p() +q(t) <Oandq'(t) > 0,
(ii) p(t) <0,q(@t) = Osuch that p(r) + ¢q(¢) <0andg'(t) 2 0.
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