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Abstract

In this paper we study some properties of vector measures with values in various topological vector
spaces. As a matter of fact, we give a necessary condition implying the Pettis integrability of a
function f: § — E, where S is a set and E a locally convex space.

Furthermore, we prove an iff condition under which (Q, E) has the Pettis property, for an algebra
Q and a sequentially complete topological vector space E.

An approximating theorem concerning vector measures taking values in a Fréchet space is also
given.

1980 Mathematics subject classification (Amer. Math. Soc.): 38 B 05.

Notations and terminology

We denote by S a non void set, Q (resp. Z) an algebra (resp. g-algebra) of
subsets of S and E a real Hausdorff locally convex space.

A function p from the algebra Q to E is said to be a finitely additive vector
measure (or simply a vector measure) if u(4; U 4,) = p(A4,) + p(A4,), whenever
A,, A, are disjoint members of Q.

If in addition pU_,4,) = X% ,n(4,) for all sequences (A4,) of pairwise
disjoint members of Q withU®_, 4, € Q in the topology of E, then g is called a
o-additive vector measure. We say that p is strongly bounded (s-bounded) iff
lim, n(A,) = O for every sequence (4,,) of mutually disjoint sets from Q.
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If p is an E-valued vector measure on ¢ and P a seminorm on E, we shall
define the P-semivariation P(p) by P(p)(A4) = sup{ P(L}_ia,n(4)))}, 4 € Q,
where the supremum is taken over all disjoint sets A4,,..., 4, from Q with
A=A4,U --- UA, and all scalars a,,...,a, with |a,| <1 (i=1,2,...,n). We
say that the function f: § — E is weakly A-summable with respect to measure A:
Q —[0,00)if [,| x'f|d\ < oo forall x’ € E’, A in Q. f is called A-summable or
Pettis integrable if it is weakly A-summable for every 4 in Q and there exist an
element [, fdA, of E, such that

x'/AfdA=fo’fd>\, (x' € E).

A locally convex space E has the Bessaga-Pelczynski property (shortly (B-P)-
property), if for every sequence (x,) from E with X%  |x'(x,)| < oo for all
x’ € E’, there exists x € E such that x = Y¥_,x,, where the series converges
unconditionally.

Finally, a sequence {x,} in E is a Schauder basis if every x € E has a unique
representation in the form x = £, ,a,x,, where {a,} is a sequence of scalars.
For each n € N the nth coefficient functional f, on E is defined by f,(x) = a,,
for all x € E and so M(A) = Znean(M(A))X,, = ZneNM"(A)X,,, A in Q

I. On Pettis integral

The purpose of this section is to extend a result of ([13], Theorem 1) to the case
of vector measures which take values in a locally convex space E. This is given in
4. Theorem below.

1. LemMa ([9], Proposition 1). Let A: £ — [0, + 00) be a measure and let p.:
3 — E be a s-bounded vector measure with x'n < A, for every x’ € E'. Then
B <A

2. LEMMA. Let f: S — E be a vector function, v: = — E a vector measure and
(s, Z, A) a finite non negative measure space. We denote by H the set H = {x’ € E":
(1) x’f € Ly(X) and (ii) x'ov(A) = [, x'fd\ A in Z}. Then, for every x’ € H,
there exist a continuous seminorm P, on E such that

fA Ix'fld\ < P.(»)(4), (4inZ).
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PROOF. If x’ov = pu, then p(A) = [, x'fdX and Wp, 4) = [, |x'f|dX (where
W, 4) < ||p)i(A4) (where ||p]| denotes the semivariation of p), for if 4,,..., 4,
are pairwise disjoint sets of 2, then there exist complex numbers a,, ..., a, with
la;]=1(i=1,...,n)such that

¥ ()| -

i.:lail"(Ai)

<[rl(4).

On the other hand,

_i ai.“(Ai)

= <

< P.(v)(4)

| Z(A)) P( Z(A))

for some continuous seminorm P on E, thus ||p|(A4) < P.(v)(A). The results
now follows. )

3. LEMMA. Let f: S —» E, A: 2 = [0, + o0) a o-additive measure and v: 3 - E
a A-continuous s-bounded vector measure. Then the set

H= {x’ € E": (i) x'fe L(X) and (ii) x' o v(A4) =/ x’fd)\}
4
is weak* sequentially closed.

PrROOF. 2. Lemma implies that, for every x” € H, there exists a continuous
seminorm P on E such that

(1) [ I¥flax < P.(v)(4), (4in3Z).

4
Suppose {x,}%_; in H and x,(x) — x'(x) (for all x € H). Since » < A we have
that P.(v) < An=12....

In virtue of equality (1), we have lim, 4 _, f4 [x,f|dA =0 uniformly in
n € N. Vitali’s convergence theorem now says that x’f € L,()), hence

f xX'fdA =f lim (x;f) dA = lim [ x;fd\ = limx,»(4) = x'»(4)
A A n n Y4 n
and so x’ € H.
4. THEOREM. Let f: S > E, A\: E - [0, + ) a o-additive measure and v:
2 — E a finite additive vector measure. Assume that:
(1) H is a weak* sequentially dense subset of E,
(i) x’f € Ly(A) (forall x’ € H),

(iii) x'v(A) = [, x'fd\ (forall A € T and for all x' € H).
Then f is Pettis A-integrable and

v(4) = (P)Lfdx (4€3)
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PROOF. Assumption (iii) implies x'v << A, for every x’ € H. Since H is a weak*
sequentially dense subset of E’, we have that x'» < A, for every x” € E’. Hence,
x'v is o-additive for every x’ € E’ and thus » is o-additive by the Orlicz-Pettis
theorem. Since X is a g-algebra » is also a s-bounded vector measure and from 1.
Lemma we have that » << A. 3. Lemma now implies that H is weak* sequentially
closed and so H = E’. Hence we have that

x'v(A4) =L x'fd\, foreveryx’' € E’,

which proves the assertion.

I1. The Pettis property

If Q is a Boolean algebra and X is a Banach space, we shall say that the pair
(Q, X) has the Pettis property if every weakly countably additive set function pu:
Q — X is o-additive. It is proved by [7] that a pair (Q, X) has the Pettis property,
for every algebra Q, if and only if X 2 ¢,. A generalization of this is 5. Theorem
below for the case of a sequentially complete topological vector space.

5. THEOREM. Let Q be an algebra of sets and let E be a q sequentially complete
topological vector space. Then the following propositions are equivalent:
(1) (Q, E) has the Pettis property,
(ii) E has the ( B-P)-property.

PROOF. (i) = (1). We suppose that E does not have the (B-P)-property. Then,
there exists a sequence (x,) on E such that ¥%_;|x'(x,)| < oo, for every x’ € E’

n=1
and the series ¥%_,x, does not converge. From ([14], Theorem 4) now we have
that ¢, is isomorphic to a subspace of E. But there exists a vector set function u:
Q — ¢, which is weakly o-additive but not o-additive ([11}, example 7).

(i1) = (i). Let p: Q — E be weakly o-additive and (A4,) a disjoint sequence of
sets in Q@ with U?,,4, € Q. Then xuU® 4,) = X2 x'u(A4,) (the series
converges unconditionally) for all x” € E’. Hence X%_,jx'n(4,)| < 0. Since E
has the (B-P)-property, the series X°_,u(A,) converges unconditionally and so,
for x’ € E’, we have x'(X2_u(4,) = X3 xn(4,) = x'plUF_4,) and
Loom(4,) = plUr. 4,).

However, in the case of locally convex space with a Schauder basis, the
o-additivity of the measure, with respect to the topology, is equivalent to the

o-additivity of the real measuresp, = f, o u, where the f, are the functionals
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associated to the basis. As a matter of fact, one obtains

6. PROPOSITION ([8], PROPOSITION 2). Let E be a locally convex space with a
Schauder basis (x,, f,) and p: Q - E a vector measure. Then the following are
equivalent:

(1) p is a o-additive,
(1) p, is 0-additive, (n € N).

III. An approximation theorem for vector measures

Let E be a Fréchet space,  a fundamental system of neighbourhoods of zero
in E (consisting of closed and absolutely convex sets) and (P,), c 4 the family of
the Minkowski functionals.

The function f: S — E is called A-integrable with respect to the measure A:
3 - [0, +o0), if f is strongly measurable and, for every v € %, we have
[, P,(f)d\ < c0. We denote L'(S,A, E) the quotient space ZL(S,A, E)/n,
where £1(S, A, E) is the space of all A-integrable functions f:L S — E and
n={f€ LS, A\, E) such that ¢,(F) =0, v € ). Note that L'(S,\,E)is a
Fréchet space with the topology defined by the family of seminorms ¢, v € %,
where ¢,(f) = [, P,(f)dA. Let p: £ > E be a vector measure. We say that p is
of bounded variation if

V(ip,v)(S) = sup{ Y P(p(S)), S €3,8,c Sdisjoint} <
i=1
foreveryve %.

We define the measure A (S)= [, fdX, for all fe L'(S,A, E), satisfying

V(A vXS) = [, P(f)dA.Itis a measure of bounded variation and satisfies ([3],
page 372)

P(A,(5)) < fP(f)d)\

We are able to state and prove the second main theorem.

7. THEOREM. Let (S,Q,A) be a finite ( positive) measure space, E a Fréchet
space with the Radon-Nikodym property and p: Q — E an additive vector measure
of bounded variation with p << X\. Then, there exist a sequence {¢,} of simple
functions ¢,: S — E such that

Pv(fA ¢, dN — u(A)) =0

forevery A € Q and forallve %.
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PROOF. By Stone’s theorem ([5], Theorem 1) there exists a totally disconnected
compact Hausdorff space K, for which the algebra Q of all open-closed subsets of
K is isomorphic to the algebra Q. LFt ¢ be the above isomorphism. We define j:
Q - E by u(¢(4)):= p(4) and A: @ = [0, +00) by A(¢(4)):= A(4). A is
regular ([1], Theorem 2); therefore, A is o-additive ([6], Theorem 13, page 138),
Hahn’s extension theorem now implies that exists a unique extension of A
(denoted also by A) to the o-algebra 2, generated by 0. We consider the
standard metric on 2, d(E,, E,) = A(EAE,) and we denote the resulting metric
space by Z,(A). Recall that Q is then a dense subset of Z,(X) ([10], {13],
Theorem D). Therefore, the function fi: Q — 2 () — E is continuous (since
p << A implies i < A) and it has an extension, denoted also by fi, fi: ,(A) - E.
Now, from Radon-Nikodym’s theorem, there exists f € L,(}, Z,, E) such that

ﬁ(A)=/ fd\ (forall 4 € 3,).
A

(This is denoted by & = fA.) Hence there exists a sequence ¢, of simple functions
converging to the function f , that is,

(1) qv(é,,—f")=va(6>,,—f)dX—>0 forallve @.
We also have that

L}
(2) N-n(S) = [ (b= F)dh = (b, ~ HA(S)

is a vector measure of bounded variation.
From (1) and (2) we obtain

PN, (9) = B[ [ (b= D) aA) < [ 2.(b = b

Hence P,(X; _7(A4)) - 0, for all 4 € Q, therefore P,[(¢, — f)A(4)] - 0. So
P,[,A(4) = fA(4)] > O and

P,[¢,A(A4 — p)(4)] >0, forall A€ Qandv e %.
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