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Summary

A generalised factorial function (z : &)! is defined as an infinite product
similar to the Euler product for z!, but with the sequences of integers
replaced by the roots of F(z) = sin mz-knz. It is proved that, apart from
poles in #(z) < 0, (z:%)! is analytic in both variables, and that F(z)
may be expressed in the form F(z) = nz/(z: k)!(~z: k)!

As |z| - o0, it is shown that the function satisfies a Stirling formula

(z:R)l ~ V2nz 2%,

1. Introduction

Koiter [1] has used certain approximations in order to apply the
Wiener-Hopf technique to mixed boundary value problems associated with
the infinite strip in plane elasto-statics. It has been pointed out by Noble
[2] that it is possible in these cases to obtain an exact solution provided
the function

H(z) = sinh 2+-kz

can be factorised into a product H(z) = zH  (z)H_(z) where H, and H_
are regular and non-zero in the upper and lower half planes, respectively.
However, to apply this method it is necessary to know the asymptotic
behaviour of the factors H, and H_ for large |z|.

In this paper, such a factorisation is obtained in terms of a generalised
factorial function (z: 2)! of two variables, defined by an infinite product
somewhat similar to Euler’s formula for the gamma function. It will be
shown in Theorem 1 that this product represents an analytic function of
both z and k. The important result that, as |z| - oo,

(z: k) ~ 4/ (2nz)2"[e7,
is given in Theorem 2.
It will be convenient to consider the function

(1) F(z) = sin wz+knz,

which is obtained from H by trivial replacements.
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2. The factorisation of F(z)

The function

sin z4/¢
A/t

is an integral function of order 4. Thus, if M(r) = max,_, |G(¢)|, then

G(t) = 4+

P 2V4d

€
+ k<27,
2%

AT

M) =

for large 7. Hence, as r — o0, log M(r) = O(r}); and, it is easy to see,
log M (r) = O(r*) does not hold for any g < 4. By theorems due to Hada-
mard [3], G(¢) has an infinity of roots 7; for 8 > } the infinite series

DA LInd

T#0

converges; and, if G(0) #£ 0, ie. &k # —1,
4
Git) =GO TI (1 _ :).

The infinite product converges absolutely, and uniformly in |f| < R, for
any R > 0.
If G(0) = 0, the same theorems, applied to G(t)/¢, give

6() = G O1 I (1 *%)

where the infinite product is over the non-zero roots of G{¢).
Replacing ¢ by 2% and t by (2, we have

—-6—231;[(1—5), k=1,

where now, the products are taken over the non-zero roots ¢ = &-+in of
F(z) with § = 0. If % is real and k << —1 (and in this case only) F(z) has
purely imaginary roots; there are exactly two such roots, they are simple
and conjugate. The product in (2) is then understood to contain a factor
corresponding to one only of these two roots. The second formula in (2)
follows formally from the first by taking the limit # — —1, when one root
¢ occurring in the product tends to 0, and
142 a2

zz 6
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Now define a function (z:#%)! by the limit
2

3 (s k) = (1+F)} lim X (1 ~).
®) (z: R)! (= &) (+)x..oo osllx +C

It will be proved that this limit exists for all z and all # (# —1) and
represents an analytic function of z and %k, provided the k-plane is cut

from —1 to —o0. For 2 = —1 the definition is

1 nz z
4 ——— =h{z: —1) = — lim X—* (1+—).
) (z: —1)! ( ) V0 xa o<15_£x {

We agree to regard (3) as double valued for real 4, 2 < —1, i.e. on
the cut in the k-plane. For such a k = k,, F(z) has the two roots —+{,,
which are purely imaginary, and we agree that the product (3) contains a
factor corresponding to one only of these two roots. This ambiguity in the
meaning of (3) corresponds to the two limiting values of (3) as 2 approaches
the value k,, from one or other of the two sides S (k) > 0, or £(£) < 0.
If ¢, = in, is the root with positive imaginary part (y, > 0) it is easy
to see that the choice of factor (14-z/{,) in (3) corresponds to the approach
&k~ ky from SF(k) > 0.

Thus, if { be the root near [, for k near %y we find

Z—]z_= k((ncotnc— lé')

For k =k, £ = ¢, = in, this gives dk = 1pd{, where
1

p= ""kon (Coth 7‘770 —_—— > 0.
7n

This means that as k& moves from &, into £ (k) > 0, so £ moves from [,
into £ > 0.
From (2), (3}, (4)

L 7
(5) (Zk)'(—z.k)'=m,
or, equivalently
(6) F(z) =nzhiz: R)h(—z : k).

Obviously, A(z) has no roots or poles in #(z) > 0, and 4(—2z) has no roots
or poles in #(z) < 0. This is then an explicit factorisation of the type

sought.
In the products (2), (3) and (4) multiple roots of F(z) are allowed
for by a corresponding repetition of the factors. In fact (excepting for = —1,
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when the triple root at z == 0 is the sole multiple root of F(z)}, only double
roots occur; more precisely, F(z) has multiple roots only for a discrete set
of values of %, these being all real and in the range —1 < £ < 1. For each
of these values of %, F{z) has exactly two double roots ¢, and these are
real. The product (3) contains then just one repeated factor. To prove these
statements, let { be a multiple root of F(z). Then 2 = —cosx{, and
n{ = tan #{. The last equation has real roots only, and, for its different
positive roots, the values of cos sl are all different. Finally F"'({) =
kn?f +£ 0, so that the multiple root ¢ is actually a double root.

In order to establish the limit (3), it is sufficient to replace the con-
tinuous variable X by an increasing sequence of values X,. We shall select
the sequences X, = 2r+3, and X, = 2n+%, for =0, 1, 2, 3,---. To
treat the complete range of values of &, it will be necessary to consider both
these sequence replacements for X. However, for a discussion of the limit
(8), it is first necessary to obtain some results concerning the roots of F(z).

3. The roots of F(z)

We prove three lemmas concerning the roots ¢ = &4 The first is
concerned with showing that, for a root £, [5| is ‘not too large’ compared
with & The others concern the way in which the roots { are related to
the sequences X,,.

LeEmMmA L. For any a > 0, as § > o0,

(7 n = 0(&).
If G > 0, be any positive number, then (7) holds uniformly with respect to
kin |k <G

ProoF. Clearly, we may choose a constant ¢ = c(«, G), such that,
for = > ne, y > 2%,
3 > 2Gy+2,
and
4= > 2Gz.

Then, for az = 241y,
|26 F(2)| = le~*"%|—|e**| —|2knz|,
where
le~i7%| > }e**+}e* >2Gx+2Gy+-2,
e =¥ < 1,
12kmz] < 2Gz+2Gy,

https://doi.org/10.1017/51446788700024095 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700024095

61 A generalization of z! 331

so that |2F(z)| > 1. This means that, if { = &4 is a root of F(z), and
£ > ¢, we must have zn < & (£)*. A similar argument shows that zy > - (=£)?,
and from these two inequalities, zjp| < (n€)* for & > ¢ = ¢{a, G). This
proves the lemma.

LemMA 2. Suppose G >0, 0 < e < m/2,
(¢) Let X, = 2n+3%. We can find ny = ny(e, G) such that, for |k| < G,
larg k| < w—e, F(2) has exactly 2n roots in
0< R < X,
provided n = n,.
() Let X, = 2n+3. We can find ny = ny(e, G) such that, for k| < G,

larg (—k)| < w—e¢, and k-+1 not a negative number, F(z) has exactly 2n+1
roots in

0< R(2) < X,,.
In both cases, for n > n,, F(2) has just two roots {, {*, in
X, ,.< 2> <X,.
Proor. Consider the integral

1 [ F(2)
8 I=—| =g,
®) o) Fl@)
where I' is the rectangle PQRS, indented at the origin, with sides Z#(z) = 0,
aY
5 L R

P M Q
Fig. 1.

X,, and S (2) = +y/n, as illustrated in Figure 1. On the sides PQ, RS,
as y - o,

|F(2)| = [sin nz+knz| ~ fev,
so that for large y, F(z) does not vanish on these sides. Also F(z) does
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not vanish on SP nor, as we shall see, on QR for # sufficiently large. Then I
is the number of roots of F(z) inside I
On PQ, RS, as y — o,
F'(z) _=mcosnztkn
F(z)  sinmz+knz

(9) = TFin+4-0(ye™),

the upper and lower signs corresponding to RS, PQ, respectively. Thus
these two sides contribute altogether X,+O(ye™¥) to the integral (7). Also
the side SP, with indentation, contributes

o -ELE e

z 21

since the integrand in the first term changes sign with 2, and the integral
is therefore zero. The remaining side QR gives a contribution

R
l:log F (z)]q log izz;

where #z = xX 4y and the logarithm is properly interpreted.
(i) Take X, = 2n-+4%, and write 2 = nX,. If

sin nz x—iy
W= cosh y = re*9,
nz 2?2

we have

cosh (z tan 6)

11 = sin 6
(11) r=sm xtan 6

where y = —xz tan 6. For = (2n+3)n, (11) is the polar equation of the
path of w when z describes the line QR Then y £ 0 according as 0 2
The curve is symmetrical with respect to the real axis, and cuts it at the

point 1/z.
Suppose |arg k| < mw—e, |k] < G, and that in Figure 2 the point K is
w = —Fk in the w plane. Then K lies somewhere in the sector 0ACB shown

in this figure, with OA = G, AOU = ¢. Draw also the sector 04'C’'B’,
with 04’ = 2G, and A’OU = }e. Now let y, be the value which minimizes
the function y1 cosh y. Choose #, so that z, tan ¢/2 > y,, and so that, if »,is
the value given by (11) for z = z,, 8 = &/2, then 7, > 2G. Now any curve
(11) with = > =, does not meet 0A’ or OB’, and for 6 > ¢/2 absolutely,
the curve lies entirely outside the sectar OA'C’'B’ of the circle of radius
2G. Thus we may choose %, = n,(¢, G) such that for all # > n,, and,
therefore, £ > z,, both w = 0 and w = —£k lie on the same side of the
curve (11).
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Fig. 2.

Thus, as y - 400, both arg (w+%) and argw have limits +n/2.
Hence arg [(w+k)/w] - 0 as y - 4 c0. Then

(12) F(z) = mz(w+k) = w:k cosh y,
so that F(z) does not vanish on QR, and
(13) arg F(z2) -0 as y— +oo,
for n > ny. From (12)

k
(14) log F(z) = log cosh y+log (l + 5) )

where the logarithms on the right are principal values when |y| is sufficiently
large. Hence, as y —» oo,

F
(15) log % = log (E%)

From (9), (10), and (15) we find that
I=X,—1+0(ye).

We infer that the ‘error’ term is zero if y is sufficiently large and F(2)
has exactly X,—4 = 2% roots in 0 < #(2) < X,,.

This result holds for all # > #,, so that under the same conditions,
F(z) has exactly two roots £, {*, in the strip X, , < #(z) < X,,.

(ii) The same calculations apply when X, = 2#+$. In this case we set

—0 (-1—) = O@ye).

||

sin 7z
76 —w = —

nz
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The path of w is still given by (11), but now
F(z) = —nz(w—Ek).

In the discussion we suppose |arg (—k)| < m—e, and refer to the same
Figure 2, but now X is the point w = k. Equations (12) to (15) still hold,
provided that % is replaced by —% and F(z) by —F(z). It follows now also
that

I=X,—

For n > #,, there are 2n+1 roots in the strip 0 < £ < X, and exactly
two roots £, (* in the strip X, ; < § < X,. In the case k-1 real and
negative, one of the 21n--1 roots counted lies on the imaginary axis.

LeMMA 3. If £, * are the two roots of F(z) inthe strip X, , < E < X,
then, as n — o0,

log »
(16) EHEr = Xt X0 (B),
uniformly with respect to k in |k| < G and (i) for the sequence X, = 2n--4,
in |arg k| < m—e; (ii) for the sequence X, = 2n-+3, in |arg (—k)| < a—e.
Proor. (i) Let X, = 2n-+3}, and take # > n,(e, G). In Figure 1, if y
is sufficiently large, F(z) is not zero on the rectangular contour MQRL,
Riz)=X,,, X,; #(z) = +y/n, and, therefore,

1 F'(2)
* d
¢+e 2l ° F (2) %
taken round this contour. On the horizontal side RL, we find, using (9), that
1 L F (2}

——dz = ~%f 2dz+0(yte™),
= }X 1+ X,]+iy/n+0(ye™),

and, there is a similar contribution from the lower side MQ. The two sides
RL, MQ, together give a contribution to the above integral of

X1 +X,+0(y?e™).

2wl FFl)

Now consider

E F'(2) R R
(17) fo “Fo) dz = [z log F(z)]o—fq log F(z)dz.

Using (14),

[z log F(z)]n — X,log & tz;
qQ

= 2 ]Og (COSh y)+0(yze-')’

+ ylog F(2)F (),

https://doi.org/10.1017/51446788700024095 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700024095

91 A generalization of z! 335

as y — oo, where the logarithms take their principal values. Since
X, ~X, ,=2, F(z—2)—F(z) = —2kn, we find that, as y — oo,

(1) %5
ki
(

(18) = f: log [l — Ii—z)] dz4-0(yev).

R R
dz = ——f log F(z)dz +f log [F (2) —2knldz+O(y?ev),
Q Q

Thus, adding all these contributions to the integral, and letting y — co,
1 2kn

19 * = X+ — 1 1——

(19) t+t = Xk Kok o [ dog[1- 25 au,

where nz = nX 41y = x-1y.

Returning to Figure 2, suppose 04’ meets the curve (11) at A", so
that 4’ separates the curve into two parts. For one part, the distance from
K to this part exceeds G, so, for w on it,

w-+E| = G = A

The other part is separated from K by the line 0A4’, so the distance from
K to any point on it exceeds the distance from K to 04’, and hence
|w+k| = |k| sin ¢/2. We have supposed that K is, as marked, in the sector
AOC. But by symmetry, the shme inequalities hold for K in the sector BOC.
Thus, for z > z,, and any w on the curve (11),

R
(20) }w—+k < cosec %e.
This inequality holds for #» > ny(e, G), and |k < G, |arg k| < m—e. Thus,
in (19),

2kn _ 2k 2 k

1) F@)|  |z2w+k)| X, |wtk

2 cosec /2

X,

We may suppose X, sufficiently large in (21) so that |2kn/F(2}] < 3.
Then the logarithm in (19) must represent the principal value in the
whole range — o0 < y < oo. Hence, from the logarithmic series expansion,

4 cosec /2

and (21)
2nk
log [I’F(?)] < 7@ X,

We can now estimate the integral in (19). Take y > log a?, then

(22) 4kn
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F(2) cosh y ) cosh y
}T =|"% TETW| > Ty
oY ev glog e ev
= —r—Y = — _ pe——1R
=% " y‘6G+(6G “)+(sc ”)
eﬂ
> '6'67

for x > ¢;, a suitable constant depending on G only. Then

had 2k *® 240G
lo [1 _ __] @
J;ogx’ 8 F(Z) Y

< 24Gn J evdy =
log 2t Y a?
if # > ¢;. The same estimate applies to the integral over the range —oo
to —log 22
Also, from (22),

log #* 2kn 8 cosec £/2
1 1— | d e ] 2
J.—logz’ 8 [ F(Z)] y] < X 8%

»

n

Since z = =X ,, we obtain from these twe inequalities,

*© 2kn log n
as # — oco. Now (16) follows from (19) and (23).

(i) Let X, = 2n+32, |arg (—k)| < n—e. Now we set

» sin 7z
w=re*® = — .

174

Then the proof of (19) and hence (16) follows exactly as in (i). In figure 2,
K is now the point w = k and all the formulae in (i) hold if we replace &
by —k and F(z) by —F{z).

4. Some properties of (z : k)!

THEOREM 1. Except for a branch point at k= —1, the function
h(z, R)=[(z : R)!]7Y, defined in (3), is an analytic function of z, k, for all
values of these arguments.

Proor. Let
(24) I, = (1+-X T (1+i).
0<f<X, C

Take |¢| < R, k| = G and jarg (+ )] < n—e according as X, = 2n+3},
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or X, = 2n43. Choose 7, > my(e, G), such that R/X, < }. Also, let

(26) o,=lgX,— 3 =+
o<é<x, {

Now we may write, for ¢ > p = > #,,

T z z
26 log —° = —z(o,~¢ [lo (1 ——)——].
( ) gH, ( [ 4 9) +X,S§<x' g + C C
In the summation |z/{] < R/X, < 4, and log (1+2/{) is understood as
the principal value; this of course implies the appropriate meaning for a
logarithm on the left. By Lemma 2, as # — oo, and uniformly with respect
to z and &%,

z 2 1 1
m gl ) -, 20 @)
(27) x,s§<x,[ g e ¢ x,,s%x, & "
Also, in accordance with lemma 2, if {, and ¥ be the two roots ¢ in
X, < &< X,, then
a 1 1 1 1
d—0y= 3 (= —=—= 0 ~.).
=2 -5 G

By lemma 1, which 0 < a < 1, ¢, and £f are equal to 24 0(t*) and hence
6,—06, = O(1/n'~*). Then, from (26) and (27), as # — oo,

11,
log ﬁ; -0,
uniformly for ¢ > $ = » and 2z, %, restricted in the manner specified.

By the general principle of convergence, the sequence log (/7,/11,)
and hence also the sequence I7,/IT, converges as # — co and uniformly
with respect to z and k. Moreover each term of this sequence is an analytic
function of z and %; this is obvious for z, and it is clear also for & when
we note that IT,/I], involves symmetrically all the roots { of F(z) with
X,, £ &< X, and that there are no roots on the bounding line §{ = X, .
Thus the limit 17/, is an analytic function of z and k.

For X, = 2n+4% it is clear that I1, is analytic in z, k, in |z SR,
Bl =G, larg k| < n—e.

For X, =2n+3}, II, is analytic in 2z &, in |2 S R, |k =G,
|arg (—%)| < n—e provided we add the additional restriction that k41 be
not zero or a negative number. This is because the first factor in I7,, changes
discontinuously as % crosses the cut from —1 to —oo in the % plane.

These results, for the two sequences X, taken together show that the
limit (3) exists and represents an analytic function of z, & as stated in the
theorem.
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From the proof just given it is clear that g,, defined by (25), tends
to a limit as  — oo, which is an analytic function of % in the cut plane.
We may therefore define a generalised Euler’ ‘constant’ y, by

1
(28) ype=1lm| 3 — —log r] .
r—+00 <f<r C
Then (z : )! may be represented by the generalised Weierstrass products
(z;k)' = (R IT (1 +%) - Bt —1,
(29) . . 0<f<o
nz z
= — 87"' (1 +—) e—’/t' k = _]"
\/6 0<Eoo C
From (29),
0:k) = (14-k)4, R+ —1,
a0 ©:k)! = (1+4) +
(z: —1)! ~ 4/8]nz, as z->0,

And, if p(z; k) = d/dz(z : k)1,
L (-3
E TR I Py
In particular

7x

(31) PO R = — it

5. Stirling’s formula for (z : k)!

THEOREM 2. As |z| = o0,
(32) (z: k) ~ V2nz 22 e,
uniformly with respect to arg z in |arg z| < m—4, and uniformly with respect
to kin |k =<G.

ProoF. Set 4, = }X,_;+X,) and define

. n z\2
(33) #) = lim X* T (147) -
fiso0 =1 Af

Naturally ¢(z) depends on which of the two sequences X, is taken.

Then as |z| — oo, uniformly in |arg z| = n—9,

[(_%) !]2/'\/71, for X” = 2”+%,
(34) 21 (z) ~ { r(})”z/z’\/ﬂ, for X, = 2n+%‘
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From (3),
()
(35) = (1+k)} lim o<i<x, \ 0/
z: k)1$) e Z\2
I (1+3)

Take p > ny(e, G) and, for the moment, ignore the earlier factors of the
products in (35). Thus consider

F4 4
i (5{};_;: )
A,

where, in accordance with lemma 2, { and ¢* are the roots of F(z) in
X, , <é< X,. In the factor of (36) with A = 4,, write

L= A+h, [*=2A+h*
By lemma 1, with any selected «, 0 < « << 4, 4 and A* are both O(r*).
By lemma 3, A+4-A* = [+4{*—21 = O(log |r). Here the O-symbols are

uniform with respect to % in |k < G and- |arg (£k)| < =n—e, according
as X, =2n+3% or X, = 2n+3.

Now

¢ S 242 A 24A] A%
zZ\2 h+h*  hh* ’
14 — e
( + 1) Tt %

37
=140 (,2%4) ,

since 4/z-+1 is bounded in 4 > 0, larg z|] < #—4§. The O-term is uniform for
jarg 2| = n—4 and [R] =< G, |arg (k)] = =n—e. It follows that the infinite

product
o )0

rept1 (1 + %)z

converges to an analytic limit ¢,(z, k); and as |z| > o0 in |arg 2| < 7n—4
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2, k 0,(k) = —_ ’
¢1( )_> l( ) —pi1 Cc*
uniformly with respect to k.
Now if we set
e
0,(k) = (1+k)F ==,
0<f{<X,

and recall that, according to lemma 2, there are either 2p or 2p+-1 roots
¢ with < & < X, we have from (35), letting |2| > oo in |arg 2| < an—3§,

1 . { 0.(R)05(k), X, =2n+4,

(z:2)4(2) 26,(k)0;(k), X, = 2n+3,

uniformly in |k £ G, |arg (+k)| £ =—e.
Combining this with (34), as |z] > oo,

(=1
z! zl¢ Vr

R GRS | (@,
‘\/ 1() 2( )’

61(%) 65(k),
(38)

T

with the same uniformity as that just specified. Since the two statements
in (38) hold for a common range of values of arg & so the two expressions
in (38) are identical. There is of course no contradiction here since the
functions 6,, 6,, like ¢, are defined differently for the two sequences X,,.
Thus we may write

z!

(z:k)!NC(k)'

as |z| - oo uniformly for |arg z| < =—6, |k] < G. And, of course, C(%) is
an analytic function of &.
From (5),
sin nz--knz 2t (—2)!
sinmz | (@:k)(—z:k)!

and, letting |z| > co along (say) the imaginary axis, we have

1= [C(B).

Since C(0) = 1, so C(k) = 1. This shows that (z : k) ! behaves asymptotically
like z! and Theorem 2 follows trom Stirling’s formula.
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