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Summary

A generalised factorial function (z : k)! is defined as an infinite product
similar to the Euler product for z!, but with the sequences of integers
replaced by the roots of F(z) = sin nz-\-knz. It is proved that, apart from
poles in dt(z) < 0, (z : k)\ is analytic in both variables, and that F(z)
may be expressed in the form F(z) = nzj(z : k)\(—z : k)\

As \z\ -*• oo, it is shown that the function satisfies a Stirling formula

1. Introduction

Koiter [1] has used certain approximations in order to apply the
Wiener-Hopf technique to mixed boundary value problems associated with
the infinite strip in plane elasto-statics. It has been pointed out by Noble
[2] that it is possible in these cases to obtain an exact solution provided
the function

H{z) = sinh z-\-kz

can be factorised into a product H(z) = zH+(z)H_(z) where H+ and H_
are regular and non-zero in the upper and lower half planes, respectively.
However, to apply this method it is necessary to know the asymptotic
behaviour of the factors H+ and H_ for large \z\.

In this paper, such a factorisation is obtained in terms of a generalised
factorial function (z : k)! of two variables, defined by an infinite product
somewhat similar to Euler's formula for the gamma function. It will be
shown in Theorem 1 that this product represents an analytic function of
both z and k. The important result that, as \z\ -> oo,

(z : k)! ~ y/{%nz)zzJe-\
is given in Theorem 2.

It will be convenient to consider the function

(1) F{z) = sin nz+knz,

which is obtained from H by trivial replacements.
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2. The factorisation of F(z)

The function

is an integral function of order \. Thus, if M(r) = maX|t|_r \G(t)\, then

for large r. Hence, as r-> oo, logAf(r) = O(ri); and, it is easy to see,
log M(r) = 0(rfi) does not hold for any /3 < J. By theorems due to Hada-
mard [3], G(t) has an infinity of roots T; for ft > £ the infinite series

converges; and, if G(0) 7̂  0, i.e. A: # — 1,

The infinite product converges absolutely, and uniformly in \t\ sj R, for
any i? > 0.

If G(0) = 0, the same theorems, applied to G(t)jt, give

where the infinite product is over the non-zero roots of G(t).
Replacing t by z% and T by f2, we have

where now, the products are taken over the non-zero roots C = f+M? of
F(z) with f ^ 0. If k is real and k < — 1 (and in this case only) F(z) has
purely imaginary roots; there are exactly two such roots, they are simple
and conjugate. The product in (2) is then understood to contain a factor
corresponding to one only of these two roots. The second formula in (2)
follows formally from the first by taking the limit k -> — 1, when one root
£ occurring in the product tends to 0, and
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Now define a function (z : k) I by the limit

(z:«)! x-00 og£<^ \ C/

It will be proved that this limit exists for all z and all k (=£ —1) and
represents an analytic function of z and k, provided the A-plane is cut
from —1 to —oo. For k = — 1 the definition is

(4) =h(z:—l)=- . .
(z .—I)'. V"-*•-<» o<£<x

We agree to regard (3) as double valued for real k, k < —1, i.e. on
the cut in the &-plane. For such a k = k0, F(z) has the two roots ±C0/
which are purely imaginary, and we agree that the product (3) contains a
factor corresponding to one only of these two roots. This ambiguity in the
meaning of (3) corresponds to the two limiting values of (3) as k approaches
the value k0, from one or other of the two sides S(k) > 0, or *f(k) < 0.
If £0 = irj0 is the root with positive imaginary part (JJ0 > 0) it is easy
to see that the choice of factor (l-\-zj^0) in (3) corresponds to the approach
k -*• k0 from S(k) > 0.

Thus, if £ be the root near f0 for k near k0 we find

dk I l\
— — k (JI cot jif 1 •
dC \ C /

For k = k0, f = f 0 = irj0 this gives dk = ipdC, where

p = —kon (coth nr)0 1 > 0.
This means that as k moves from k0 into S(k) > 0, so f moves from f0
into f > 0.

From (2), (3), (4)

nz
(5) (z:k)\(-z:k)\ = sin nz-\-knz

or, equivalently

(6) F{z)=nzh{z'.k)h(-z:k).

Obviously, h{z) has no roots or poles in &(z) > 0, and A(—z) has no roots
or poles in 0t(z) < 0. This is then an explicit factorisation of the type
sought.

In the products (2), (3) and (4) multiple roots of F(z) are allowed
for by a corresponding repetition of the factors. Infact (excepting for k = —1,
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when the triple root at z = 0 is the sole multiple root of F(z)), only double
roots occur; more precisely, F(z) has multiple roots only for a discrete set
of values of k, these being all real and in the range —1 < k < 1. For each
of these values of k, F(z) has exactly two double roots ±£ , and these are
real. The product (3) contains then just one repeated factor. To prove these
statements, let f be a multiple root of F(z). Then k= — coswf, and
%£, = tan nC- The last equation has real roots only, and, for its different
positive roots, the values of cosjtf are all different. Finally F'"(£) =
kn% ^ 0, so that the multiple root f is actually a double root.

In order to establish the limit (3), it is sufficient to replace the con-
tinuous variable X by an increasing sequence of values Xn. We shall select
the sequences Xn = 2n+\, and Xn = 2»+f, for n = 0, 1, 2, 3, • • \ To
treat the complete range of values of k, it will be necessary to consider both
these sequence replacements for X. However, for a discussion of the limit
(3), it is first necessary to obtain some results concerning the roots of F(z).

3. The roots of F(z)

We prove three lemmas concerning the roots f = S+irj. The first is
concerned with showing that, for a root £ \rj\ is 'not too large' compared
with £. The others concern the way in which the roots f are related to
the sequences Xn.

LEMMA 1. For any a. > 0, as $ -> oo,

(7) r, = O(|«).

If G > 0, be any positive number, then (7) holds uniformly with respect to
k in \k\ ^ G.

PROOF. Clearly, we may choose a constant c = c(a, G), such that,
for x > nc, y > x",

\e* > 2Gy+2,
and

far > 2Gz.
Then, for nz = x-\-iy,

\2iF(z)\ S |«-'"|-|«'"|-|2fcK|,

where
\e~"'\ > Je^+Je* >-2,Gx+2Gy+2,
\e*'*\ = e-» < l,

\2knz\ < 9.Gx+2Gy,
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so that |2F(z)| > 1. This means that, if £ = H+it] is a root of F{z), and
f > c, we must have nr\ < si (I)". A similar argument shows that m\ > — (jrf)",
and from these two inequalities, 3r|̂ | < (jif)" for £ > c = c(a, G). This
proves the lemma.

LEMMA 2. Suppose G > 0, 0 < e < «/2.
(t) Le* Z B = 2»+£. PF« ca« /wrf n0 = no(e, G) such that, for \k\ ^ G,

|arg k\ ^ ?r—e, F(z) has exactly 2»

0 < < ZB,
provided n ^ » 0 .

(«) Lei Xn = 2«+f. We ca« /««rf «0 = «0(e, G) such that, for \k\ ^ G,
|arg (—A)| ^7i—e, and k-\-l not a negative number, F(z) has exactly 2n-\-J
roots in

0 < ®(z) < Xn.

In both cases, for n> n0, F(z) has just two roots f, £*, in

PROOF. Consider the integral

(8) I = —. f Y~- dz,

where Pis the rectangle PQRS, indented at the origin, with sides @{z) = 0,

s L

xn

M Q
Fig. 1.

Xn, and J(z) = ±y/«, as illustrated in Figure 1. On the sides PQ, RS,
as y -+ oo,

|F(z)| = |sin nz-{-knz\ /~ ^e*,

so that for large y, F(z) does not vanish on these sides. Also F(z) does
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not vanish on SP nor, as we shall see, on QR for n sufficiently large. Then /
is the number of roots of F(z) inside F.

On PQ, RS, as y-+ oo,

F'U) n cos nz+kn
F(z) sta nz+knz

the upper and lower signs corresponding to RS, PQ, respectively. Thus
these two sides contribute altogether Xn-\-O{ye~*) to the integral (7). Also
the side SP, with indentation, contributes

since the integrand in the first term changes sign with z, and the integral
is therefore zero. The remaining side QR gives a contribution

log F(z)\ = log
F(z)'

where nz = nX^+iy and the logarithm is properly interpreted,
(i) Take Xn = 2 « + | , and write x = nXn. If

sin nz x—iy
w = = cosh y = rew,

nz x2-\-y2

we have

cosh (a; tan 0)
x tan 6

(11) r = sin0

where y = — a:tan0. For x = (2n+\)n, (11) is the polar equation of the
path of w when z describes the line QR. Then y § 0 according as 0 ^ 0.
The curve is symmetrical with respect to the real axis, and cuts it at the
point 1/x.

Suppose |arg k\ s& n—e, \k\ <: G, and that in Figure 2 the point K is
w = —k in the w plane. Then K lies somewhere in the sector OACB shown
in this figure, with OA = G, AOU = e. Draw also the sector OA'C'B',
with OA' = 2G, and A'OU = ^e. Now let y0 be the value which minimizes
the function y-1 cosh y. Choose x0 so that *0 tan e/2 > y0, and so that, if r0 is
the value given by (11) for x — x0, 0 = e/2, then r0 > 2G. Now any curve
(11) with x > x0 does not meet OA' or OB', and for 0 > e/2 absolutely,
the curve lies entirely outside the sector OA'C'B' of the circle of radius
2G. Thus >ve may choose »0 = «0(e, G) such that for all n > n0, and,
therefore, x> x0, both w = 0 and w = —k lie on the same side of the
curve (11).
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Fig. 2.

Thus, as y-»-±oo, both arg (w-\-k) and argw have limits ±J I /2 .

Hence arg [(w-\-k)jw] -> 0 as y -*• Jh oo. Then

(12)
w-\-k

F(z) = nz{w-\-k) = cosh y,
w

so that F(z) does not vanish on QR, and

(13) a r g F ( * ) ^ 0 as y -* ±co,

for n > n0. From (12)

(14) ( k \

where the logarithms on the right are principal values when \y\ is sufficiently
large. Hence, as y -> oo,

From (9), (10), and (15) we find that

We infer that the 'error' term is zero if y is sufficiently large and F(z)
has exactly Xn—£ = 2» roots in 0 < @(z) < Xn.

This result holds for all n > n0, so that under the same conditions,
F(z) has exactly two roots f, f*. in the strip Xn_t < ^?(«) < Xn.

(ii) The same calculations apply when Xn = 2«+f. In this case we set

re" = w = — sin ?rz
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The path of w is still given by (11), but now

F(z) = —nz{w—k).

In the discussion we suppose |arg (—k)\ 5S ji—e, and refer to the same
Figure 2, but now K is the point w = k. Equations (12) to (16) still hold,
provided that k is replaced by —k and F(z) by —F{z). It follows now also
that

For n > n0, there are 2«+l roots in the strip 0 < £ < Xn, and exactly
two roots £ £* in the strip Xn_x < | < Xn. In the case k+l real and
negative, one of the 2»+l roots counted lies on the imaginary axis.

LEMMA 3. / / £ f* are the two roots of F(z) in the strip Xn-1 < f < Xn,
then, as n-*- oo,

(16) C+1* -•= Xn_1+Xn+O

uniformly with respect to k in \h\ ̂  G and (i) for the sequence Xn = £
in |arg k\ :S n—e; (ii) /or the sequence Xn = 2»+f, w |arg (—^)| ^ «—s.

PROOF, (i) Let Xn = 2n+\, and take n > no(e, G). In Figure 1, if y
is sufficiently large, F(z) is not zero on the rectangular contour MQRL,
0t(z) = Xn_lt Xn; J{z) = ±y\n, and, therefore,

2w» ( )

taken round this contour. On the horizontal side RL, we find, using (9), that

1 CL F'lz) rL

— z-ii^=-J
2jt*JR F(z) *JR

and, there is a similar contribution from the lower side MQ. The two sides
RL, MQ, together give a contribution to the above integral of

Now consider
CR F'lz) r 1R CR

(17) , - = l i & = hrlogFW -
J« -P(2) L J<? JQ

Using (14),
*log F(z)] = Znlog | ^ J + ^ log

J /• («) 1
= 2 log (cosh
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as y -*• oo, where the logarithms take their principal values. Since
Xn—Xn_1 = 2, F(z—2) — F{z) = —2hn, we find that, as y -+ oo,

F'(z)
dz = ~ l08 F&dz +

JQ JQ

Thus, adding all these contributions to the integral, and letting y ->• oo,

(19) -FTT; *y>

where nz = nXn-\-iy = x+iy.
Returning to Figure 2, suppose OA' meets the curve (11) at A", so

that A" separates the curve into two parts. For one part, the distance from
K to this part exceeds G, so, for w on it,

\w+k\ ^G ^ \k\.

The other part is separated from K by the line OA', so the distance from
K to any point on it exceeds the distance from K to OA', and hence
|w+&| 2: \k\ sin e/2. We have supposed that K is, as marked, in the sector
AOC. But by symmetry, the same inequalities hold for K in the sector BOC.
Thus, for x > x0, and any w on the curve (11),

(20)
w+k

< cosec \e.

This inequality holds for n > no(e, G), and \k\ :£ G, |arg k\ 5= JI—e. Thus,
in (19),

(21)

2kn

F(z)
2k 2

xn

k

w+k
2 cosec e/2

We may suppose Xn sufficiently large in (21) so that \2knjF(z)\ < \.
Then the logarithm in (19) must represent the principal value in the
whole range — oo < y < oo. Hence, from the logarithmic series expansion,
and (21)

(22) log[l W)\ W)
4 cosec e/2

We can now estimate the integral in (19). Take y > logo-2, then
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F(z) cosh y coshy
-x — y,

e'e*

e*
> 6 G '

for x > clt a suitable constant depending on G only. Then

[
Q j L —| />OO

JP(2)J Jlogl" ^
if x > c1. The same estimate applies to the integral over the range — oo
to —log x2.

Also, from (22),

F{z)
dy

8 cosec e/2
log x*.

Since x = nXn, we obtain from these two inequalities,

as n -*• oo. Now (16) follows from (19) and (23).
(ii) Let Xn = 2»+f, |arg (—A)| ^ n—e. Now we set

ID = re = —
sin nz

nz

Then the proof of (19) and hence (16) follows exactly as in (i). In figure 2,
K is now the point w = k and all the formulae in (i) hold if we replace k
by —k and F(z) by — F(z).

4. Some properties of (z :k)l

THEOREM 1. Except for a branch point at k= — 1, the function
h(z, k) = [(z : A)!]"1, defined in (3), is an analytic function of z, k, for all
values of these arguments.

PROOF. Let

(24) nn=(i+k)ix-'

Take |z| g i?, |A| :£ G and |arg (±ft)j ^ w—e according as XB =
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or Xn = 2»+f. Choose nx > »0(e, G), such that R/Xni < J. Also, let

(25) <rr = logXP- 2 T-

Now we may write, for q > p 2: » > w1(

(26) log I ? =_*(<,,-*„)+ 2

In the summation |z/f| <£ -R/-X, < J, and log (1+z/f) is understood as
the principal value; this of course implies the appropriate meaning for a
logarithm on the left. By Lemma 2, as n -> 00, and uniformly with respect
to z and k,

(27) 2 riog(i + l ) - i ] = 2

Also, in accordance with lemma 2, if Ct and ff be the two roots £ in
X(_! < f < Xt, then

« / I 1 1 \ / 1 \
«=»+i \ * t j C< / \ w /

By lemma 1, which 0 < a < 1, f( and ff are equal to 2t-\-0{t") and hence
ot-o, = Otl/w1-"). Then, from (26) and (27), as n -> 00,

uniformly for q> p ~^.n and z, A, restricted in the manner specified.
By the general principle of convergence, the sequence log (i7B/77Bi)

and hence also the sequence njlln converges as n -»• 00 and uniformly
with respect to z and k. Moreover each term of this sequence is an analytic
function of z and k; this is obvious for z, and it is clear also for k when
we note that IIJIIn involves symmetrically all the roots f of F(z) with
XHi ^ $ < Xn and that there are no roots on the bounding line f = X^.
Thus the limit i7oo/77f>i is an analytic function of z and k.

For Xn = 2»+£ it is clear that 77Bi is analytic in z, k, in |z| ^ /?,
|fc| ^ G, |arg £| £ tt-e.

For ZB = 2«+f, 77Bi is analytic in z, k, in \z\ S i?, |*| ̂  G,
|arg (—A)I g n—e provided we add the additional restriction that k-\-l be
not zero or a negative number. This is because the first factor in i7Bi changes
discontinuously as k crosses the cut from —1 to —00 in the k plane.

These results, for the two sequences Xn, taken together show that the
limit (3) exists and represents an analytic function of z, k as stated in the
theorem.
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From the proof just given it is clear that or, defined by (25), tends
to a limit as r -*• oo, which is an analytic function of k in the cut plane.
We may therefore define a generalised Euler' 'constant' yk by

(28) yt = lim
r-»oo

Then (z : k)! may be represented by the generalised Weierstrass products

-It, k=£-l,

', k=-l.
V° 0<f<oo

From (29),

«>:*).= (!+*)-». ^ - 1 ,
[z . — i j ! **** ^DjTtz, as

And, if v(z;k) = d/dz{z : k)\,

In particular

(31) V(O : k) = -
(1+*)*

5. Stirling's formula for (z :*)!

THEOREM 2. As \z\ -> oo,

(32) (z:k)\~ V2n~zz'e-*,

uniformly with respect to arg z in |arg z\ ^ n—d, and uniformly with respect
to k in \k\ ^ G.

PROOF. Set AB = l(x«-i+x«) ^ d e f i n e

(33) 4,{z)=\imX-'U

Naturally (̂2:) depends on which of the two sequences Xn is taken.
Then as \z\ ->• 00, uniformly in |arg ^| ^ JI—8,

-^W*' fOr X «
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From (3),

n (.+£)

Take p > «0(e, G) and, for the moment, ignore the earlier factors of the
products in (35). Thus consider

where, in accordance with lemma 2, J and £* are the roots of F(z) in
X,-! < l < Xr. In the factor of (36) with A = A,, write

By lemma 1, with any selected a, 0 < « < \, h and h* are both 0(r").
By lemma 3, h+k* = C+C*—2A = O(logr/r). Here the O-symbols are
uniform with respect to k in |£| ^ G and |arg (±A)| ^ n—e, according
asXn = 2n+\ or Xn = f

Now

(37)

since A/z+A is bounded in A > 0, |argz| ^ 31—d. The 0-term is uniform for
|argz| ^ w—^ and \k\ ̂  G, |arg (±A)| <; »—e. It follows that the infinite
product

converges to an analytic limit ^x(z, k); and as \z\ -> c» in |argz| ^ ?t—<3
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n 4i
uniformly with respect to k.

Now if we set

mi

and recall that, according to lemma 2, there are either 2p or 2^+1 roots
£ with < f < Xp, we have from (35), letting |z| -v oo in |arg z| ^ re—#,

1

uniformly in |&| 5J G, |arg (±*) | ^ n—s.
Combining this with (34), as |z| ->• oo,

(38) - 9

( * : * ) ! (z:k)\ +

with the same uniformity as that just specified. Since the two statements
in (38) hold for a common range of values of arg k so the two expressions
in (38) are identical. There is of course no contradiction here since the
functions 6lt 02, like <j>, are defined differently for the two sequences Xn.
Thus we may write

as \z\ -*• oo uniformly for |argz| ^ n—d, \k\ ^ G. And, of course, C(k) is
an analytic function of k.

From (5),
sin nz+knz z\(—z)\

sia.nz (z:k)\ (—z : k)!'

and, letting \z\ -> oo along (say) the imaginary axis, we have

1 = [C(«)]«.

Since C(0) = 1, so C(k) = 1. This shows that (z : k)! behaves asymptotically
like z\ and Theorem 2 follows trom Stirling's formula.
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