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Abstract

The Lebesgue measure, X(E + F), of the algebraic sum of two Borel sets, E, F of the classical
"middle-thirds" Cantor set on the circle can be estimated by evaluating the Cantor measure,
fi, of the summands. For example log X(E + F) exceeds a fixed scalar multiple of \og(i(E) +
log/x(F). Several numerical inequalities which are required to prove this and related results
look tantalizingly simple and basic. Here we isolate them from the measure theory and present
a common format and proof.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 26 D 20;
secondary 43 A 05, 43 A 10.

1. Introduction

It is reasonably common for a measure-theoretic estimate to reduce to an in-
equality involving only real numbers. That inequality is, in turn, usually some
variant of one of the classical inequalities or else so specialized as to be clearly
an ad hoc exercise. Recent investigations of singular measures have led to simple
inequalities such as

(1) 1 + x + x2 > (1 + xs)2/s, x > 0, s = log3 4,
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which look fundamental but do not appear to belong to any of the standard
classes of known inequalities (see [1], [9], [10]). While their proofs are not excep-
tionally difficult, such inequalities are sufficiently "tight" that it appears worth-
while to subject them to independent study.

The hope is, of course, that freed from the measure theory context, patterns
and proofs will stand out more boldly. There have already been gains. Each of
the propositions of the next section is a new result (which can be fed back into
the measure theory). Moreover our proofs offer a shorter path to known results.
It will be clear to the reader, however, that there remains considerable scope for
extension.

Part of this work was developed while the author visited the University of
Cambridge and he thanks S.E.R.C and D.P.M.M.S. in general and Tom Korner
in particular for kind hospitality.

Before specializing the discussion to specific inequalities and their proofs, we
should discuss some background. As it happens, the Cantor sum set problem
described in the preceding abstract has an amusing history.

Motivated by consideration of Raikov systems for convolution measure alge-
bras (for general background see Graham and McGehee [6]) W. Moran and the
author formally proposed the sum set problem in the book of the 1974 LMS
Durham Research Symposium on Functional Analysis and Stochastic Processes.
We conjectured that the sum of two Borel sets of positive Cantor measure has
positive Lebesgue measure and stated that the proof could be reduced to a count-
ing problem concerning mid-points of joins of vertices of hypercubes. We had
been unable to reduce either problem to a convenient analytic inequality.

The basic sum set problem was soon solved by M. Talagrand [12] who at-
tributed it to R. Haydon. The counting problem was taken up by R. R. Hall [8]
and then D. R. Woodall [13], Woodall formulated and proved the fundamental
inquality: for 0 < x, y < 1, a — log4 3,

(2) xaya + max(za(l - y)a, ya{\ - x)a) + (1 - x)a(l - y)a > 1.

Moran and I then showed, in [3], how Woodall's inequality gives

(3)

and we discussed refinements of the original Banach algebra problem.
Meanwhile D. Hajela and P. Seymour, [7], unaware of the work of Hall and

Woodall, but knowing Talagrand [12], gave an independent derivation of both
(2) and (3). They also solved the hypercube problem, but attributed it to Erdos,
and referred to our original Raikov system problem, but attributed it to Moran
alone.

Hajela and Seymour mention the obvious n-summand generalization of (3) but
are unable to verify it. That result proved surprisingly tricky (a more general
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but false s ta tement appears on page 182 of [6]) and was finally established in
Brown, Keane, Moran and Pearce [2] after some special cases had been dealt
with by R. Bot t , a s tudent of Moran.

Meanwhile D. M. Oberlin had been developing sum set results of the type

(4) 6\{E)0 < \{E + K),

where K is some fixed measurable null set and 6 > 0, /? € (0,1) depend on K.
In Oberlin [11], A is Haar measure on a locally compact abelian group and the
motivation comes from the study of certain fc-dimensional surfaces K in Rn = G,
1 < k < n. Oberlin [11] considers (4) when K is a Cantor set. Then he relates
his methods to those of Brown and Moran [3]. In particular he establishes the
inequality

(5) max(aoi,ai(l — x)) +max(aia;,a2(l — x)) +max(o2X, ao(l — i)) > 1,

for 0 < x < 1, aj > 0, O,Q/0 + a\/p + a\/0 = 1, 0 = 1 - log3 2, and uses it to prove

(6) n(E)\(Ff<\(E + F),
for n Cantor measure and A Haar measure on the circle.

Inequality (5) with its side conditions may seem to call in question our remark
about "inequalities which look tantalizingly simple and basic". Indeed we shall
work with simpler versions of (2), (5) which retain the form of (3), (6) more
clearly. In this sense the simplified version of (2) is (1) and the simplified version
of (5) appears in the statement of Proposition 2, below.

Our simplification is not without cost. There is extra work involved in deriving
measure theoretic results from the simplified canonical forms of the inequalities.
Going from (1) to (2) is quite easy but the corresponding step for a more complex
inequality can require effort. (The arguments up to and including Lemma 1 of
[2] give a non-trivial example.)

We leave the detailed discussion of the passage from canonical inequalities
to measure-theoretic results for another occasion [5]. Suffice it to say that such
a passage is possible in several cases discussed here. Thus Proposition 1 ex-
tends (2), Proposition 2 extends (6) and, for example, Proposition 3(i) yields
the following result.

Suppose that the probability measure v is defined on the circle (identified
with [0,1)) as the distribution of a number whose base 4 expansion is random
except that only the digits 0,1, are used. Then

(7) u{E)a\{F)0 <\{E + F),

whenever 0 < a < 1, 0 < /? < 1, §« + /?< 1. (In this context note that the
Cantor measure /x appearing in (2), (6) can be realized as the distribution of a
number whose base 3 expansion is random except that only the digits 0, 2 are
used.)

https://doi.org/10.1017/S1446788700032298 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032298


86 Gavin Brown [4]

The remaining cases of Proposition 3 do not transfer so readily.

2. The inequalities

The proofs that follow are exercises in elementary calculus with the twist
that we must handle sums of fractional powers rather than polynomials. We
have found significant shortcuts for the proofs of Propositions 2, 3 but the proof
of Proposition 1 is still rather long.

PROPOSITION 1. Suppose that s,t > 1 and that s" 1 + t'1 = Iog3/log2.
Then,

1 + x + x2 > (1 + x'y/'il + z')1/',

for all 0 < x < 1, if and only if

PROOF. Note that the standing assumption on s, t corresponds to equality
at x = 1. Let's check necessity of the other condition on s,t. In fact consider
x = 1 — y, for small positive y, and note that

(1 + x*)1'* = 2X/S(1 - (s/2)y + (s(s -

= 2 1 " (1 - (y/2) + ((«

It follows that

(1 + z s ) 1 / s ( l + z*)1/* = 2S~1 + '~1 (1 - y + ((* + t)/S)y2 + O(y3))

and this is to be compared with

The required condition is derived by considering the coefficients of y2.
Now we would like to reduce to consideration of specific s, t. In fact if 3(s+<) =

8, s'1 +t~* = log3/log2, and s < t, then s = 1.0246... and t = 1.6420... are
uniquely determined. Moreover, for any si,*i such that s^1 +£j~1 = log3/log2
and 3(si + ti) < 8 we must have s < si < t. From this it is possible to deduce
that

The last step uses a simple observation by Larry Shepp and the present author
([4], Lemma 4) to the effect that, for a fixed function / , log| | / | | s + log||/| | t(s)
(where s/t(s) is affine) has no local maxima as a function of s.
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The last paragraph has shown t h a t we need only prove the inequality for
the special values of s, t mentioned earlier ( tha t is, s = 1 .024. . . ,t = 1 .642 . . . )
Accordingly we fix s, t and proceed. We write

F(x) = (1 + x + x2)/(l + xs)1/a(l + x')1/ ' .

Because F(0) = F(l) = 1 and F is greater than 1 for small positive x it will
suffice to prove that F' has precisely one zero for 0 < x < 1. Considering the
derivative of log F, we see that F' is a positive multiple of the function G defined
by

- x'-^l + x + x2)(l + x') - x ' - ^ l + x + x2)(l + x3)

= 1 + 2x - Xs"1 - x ' - 1 + xs + 1 + x t + 1 - 2xa + t - 1 - xs+t.

Observe that G(0) = 1, G(l) = 0. Therefore it will, in turn, suffice to prove that
G' has precisely one zero for 0 < x < 1. Unfortunately successive differentiation
of G does not appear to clarify this point, so we are led to consider rather
x1+3~t[—x2~sG'(x)]'. Tackling the problem in stages, let's write

H(x) = - x2"sG'(x)

= (s - 1) + {t - l )x ' - s - 2x2-s + 2(s + t- l)x<

- (s + l)x2 - (t 4- l )x ( - s + 2 + (s + t)xt+1.

Note that H(Q) = s - 1 > 0, H'{0+) > 0, while H{1) = 3(s +1) - 8 = 0. Thus
to prove that H (hence G') has precisely one zero for 0 < x < 1, it will suffice to
establish that H' has precisely two zeros for 0 < x < 1. Let us consider rather
K defined by

K[x) = x1+'-*H'{x)

= {t- l){t -s)- 2(2 - 8)x2- ' + 2t{s + t - l)xs

-{t + l){t - s + 2)x2 + {s + t)(t + l )xs + 1 - 2(s + l ) i 2 + - * .

Observe that K(0) = {t - l){t - s) > 0, while K{1) = 0, as we now check:

(t - l)(t -s)- 2(2 - s) + 2t(s + t-l)

-{t + l)(t - s + 2) + (s + t)(t + 1) - 2(s + 1)

= Zt2 + 3st - 5t + 3s - 8

= 3<2 + 3st -8t + 3t +-3s - 8

= (* + l)(3t + 3s -8 )=0 .

We have

K'[x) = - 2(2 - s)(2 - f)!1-' + 2st{s + t - I)*3"1

- 2{t + l)(t -s + 2)x + (s + t)(t + l)(s + l)xs.
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= L(x)

Figure I

- l)a;s + t - 2

and introduce L defined by

L(x) = xt~1K'(x).

It will turn out that L" is negative for 0 < x < 1. In fact

L'(x) = 2st{s + t - l)(a +1 - 2)xa+t~3 - 2(s + 1)(2 + s -

- 2{t + 1)(* - s + 2)txt~1 + (s + t)(t + 1)(« + l)(

L"(x) = 2st(s + t - l)(s +1 - 2)(s +1 - 3)zs + t - 4

- 2(s + 1)(2 + s - t)s{s - l)xa~2

- 2(t + l)(t -s + 2)t{t - l)i*-2

+ (s + t){t + l)(s + l)(s +1 - l)(s + t - 2)xa+t-3.

It is clear that the terms in the expression for L" are arranged in ascending
powers of x and that the first three coefficients are negative. Accordingly to
prove that L" is negative throughout the interval ]0,1] it is enough to check that
L"(l) is negative. Using the estimates 1.024 < s < 1.025, 1.642 < t < 1.643,
3(s + t) = 8, we see, in fact, that L"{\) < -0.102.

Now we can give the shape of all the curves involved. Since H(0) > 0,
H{1) = 0 we know that H'{x) < 0 for some 0 < x < 1 and hence that K
is somewhere negative. Since K(l) — 0 this shows that K' is strictly positive
for some 0 < x < 1 and hence so is L. However L(0) = -2(2 — s)(2 — t) < 0
and direct calculation shows that L(l) < 0 (The sum of the negative terms has
absolute value in excess of 20 and the sum of the positive terms is strictly less
than 20.) Some rough sketches may be helpful at this point.

Figure I shows the general shape of L. In fact V has precisely one zero and
L has precisely two, for 0 < x < 1.
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= K(x)

Figure II

H

y=H(x)

Figure III

Armed with this information concerning L, and hence K', we are able to
determine the general shape of the graph of K. See Figure II. The function K
has exactly two critical points—a local minimum followed by a local maximum.
Since K(1) = 0, K'(l) > 0 we see that the local maximum occurs for positive
K. On the other hand we previously noted that K is somewhere negative—so
the local minimum is, in fact, the minimum for 0 < x < 1 and occurs below the
z-axis.

Now we turn to H and Figure III. H(0) is positive and H increases further
to a maximum before decreasing to a local minimum then increasing once more
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to 0 = H(l), where the graph is tangent to the horizontal. It is clear therefore
that H has precisely one zero for 0 < x < 1.

It follows that G', and in turn G, has precisely one zero for 0 < x < 1 and
this completes the proof.

PROPOSITION 2. Suppose that s,t > 1 and that (1 - t'^logS - S'1 Iog2.
Then

1 + x + x2 > (1 + x3)1/*^ + xt + x2t)1'1,

for a / / 0<x < 1.

PROOF. Once more the standing assumption on s, t corresponds to equality
for x = 1. Moreover the relationship

is such that s/t(s) is affine in s. Thus Lemma 4 of [4] applies and we deduce
that the product

is majorized by the maximum of the corresponding products for the special cases
s — 1, t = (1 — (log2/log3))"1; s = oo, t = 1. The case s = oo, t = 1 reduces to
equality because

{l + xsy/s-+l

(recall that 0 < x < 1).
Thus we have reduced the problem to the special case s = 1, t = log 3 / log(3/2)

= 2 . 7 0 9 5 . . . . As before we consider a suitable function F; here

F{x) = (1 + x +

We note that F(0) = F(l) = 1 and that F is greater than 1 for small positive
x. We will show that F' has precisely one zero for 0 < x < 1. Considering the
derivative of log F, we see that F' is a positive multiple of G denned by

G(x) = (1 + 2x)(l + x)(l + x* + z2t) - (1 + x + x2)(l + x* + x2t)

- (x*-1 + 2x2t-1)(l + x)(l + x + x2).

It will suffice to show that the function H, defined by

H{x) = x-xG(x) = 2 - x*-2 + x - 2X*-1 - 2x2t~2 - 4X2*-1 - 2x2t - x2t+1,

has precisely one zero for 0 < x < 1. It is convenient to choose C = (3-t)/(t — l)
and write

H(x) = K(x) - L(x),

where
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Because 0 < C < 1, we see t h a t L is strictly increasing throughout 0 < x <
1. Thus to check tha t H has only one zero it will suffice to check t h a t K is
decreasing. In fact

K' = -{t - 2)x'-3 + 1-C(t- l)x*-2,

so that K'{0+) < 0 and K'{\) = -(t - 2) + 1 + (t - 3) = 0; while

K" = - {t - 2)(t - 3)x'-4 - C(t - l){t - 2)x'-2

> - (t - 2)[{t - 3) + (3 - t)]* '-2 = 0.

This completes the proof.

REMARK. For the result proved in the last part of the previous proof we
could have appealed to the inequality proved in the last theorem of [11] (that
is, inequality (5) of the previous section). In fact the argument here leads to a
quicker proof of (5) and emphasizes the common theme of the various inequalities
being discussed.

We have considered inequalities with 1 + x + x2 as the majorant. These corre-
sponded to applications involving the triadic Cantor measure. For applications
related to base four expansions we should use the majorant 1 + x + x2 + x3 =
(l + x)(l + x2).

PROPOSITION 3. In each case the stated expression is majorised by 1 + x +
x2 + x3 for all 0 < x < 1:

(i) (1 + xsy/a{l + x* + x2t + x34)1/', whenever i s " 1 + r 1 = 1; s, t > 1;
(ii) (l+xs+x2 s)1/ s(l+xt+x2 t)1/S whenever (\og43)(s-1+t-1) = l;s,i > 1;

(iii) (1 + xs + x2sy/3(l + x* + x2t + x3')1/ ' , whenever (log4 3)*"1 + r 1 =

REMARK. Note that in each case we allow all values of s, t so that the ex-
pression equals 4 (the value of 1 + x + x2 + x3) at x = 1, so the results cannot
be improved.

PROOF. In each case it will be possible to apply Lemma 4 of [4] so we need
verify the inquality only for the end-point values of s, t.

For (i), we consider s = oo, t — 1 (which corresponds to a valid equality) and
s = 1, t = 1. The latter corresponds to the statement

(1 + x)(l + x2)1/2(l + x4)1/2 < (1 + x)(l + x2),

which is clearly true for 0 < x < 1.
Cases (ii), (iii) require more effort. For (ii) we must consider s = 1, t =

(log4 - log3)/log3 = 3.8188... (and the corresponding case with s,t inter-
changed). Proceeding as on earlier occasions we differentiate

(1 + x + x2 + x3)(l + x + x2)-x(l + x* + x 2 ' ) - 1 / '
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to see that we should consider zeros of G(x) defined by

G(x) = (1 + 2x + 3x2)(l + x + x2)(l + x* + x2t)

- (1 + x + x2 + x3)(l + 2x)(l + x* + x2t)

- (1 + x + x2 + x3)(l + x + x2)^'1 + 2x2t~1).

Then

x~2G(x) = 3 - x*-3 + 2x - 2x*-2 + x2 - 3X*-1 - 2x2t"3

- 4x2t~2 - 6X24"1 - 3x2t - 2x2t+1 - x2t+2,

and it will suffice to show that this function has precisely one zero for 0 < x < 1.
Consider H, K defined by

H{x) = x~2G{x) + x ' - 3 - 1,

K{x) = x ' - 3 - 1.

To obtain a zero of G we must have H = K. K is negative increasing for
0 < x < 1, so it will suffice to show that H is decreasing wherever it is negative.
Since H(0) = 2, H'(0) — 2, this will indeed be the case provided H' has precisely
one zero for 0 < x < 1. (For future reference note that this reduction has used
only the information that ( > 3.) We write

tf'(x) = 2 ( l - ( t - 2 ) x * - 3 + x ) - L ( x ) ,

and note that L is increasing. It will suffice to show that M, denned by

M(x) = l - ( < - 2 ) x * - 3 + x ,

is decreasing for 0 < x < 1. Now we note that

M"(x) = -(t - 2)(t - 3)(« - 4)x'-5,

so that M' increases (t lies between 3 and 4) but

Af'(l) = 1 - (t - 2)(* - 3) < 0,

so M is indeed decreasing. This completes the proof of (ii).
We turn to (iii). One extreme case, s = oo, t — 1, is easy and we must focus

on the case s = 1, t — (1 — log4 3)"1 = 4.8188... (Of course this value of t is
precisely one more than the value of t considered in case (ii).) We set about
differentiating

(1 + x + x2 + x3)/(l + x + x2)(l + x* + x2t + x3t)1/f

and consider zeros of G given by

G(x) = (1 + 2x + 3x2)(l + x + x2)(l + x* + x2t + x3t)

- (1 + 2*)(1 + x + x2 + x3)(l + x* + x2t + x3t)

- (1 + x + x2)(x4-J + 2x2t-x + 3x3t~1)(l + x + x2 + x3).
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We have

x~2G(x) = 3 + 2x - x*-3 + x2 - 2xt-2 - 3*4-1 - 2x2t~3 - 4x2t~2

- 6X2'"1 - 3x2t - 2x2t+1 - x2 t + 2 - 3x3t~3 - 6x3t"2

_ 9 x 3 t - l

It is slightly misleading that the first several leading terms are formally the
same as those for case (ii). The fact that t is different changes the nature of
the function—a point we have emphasised by arranging the first few powers in
ascending order. Nevertheless we can repeat part of the earlier argument. Using
only the fact that t > 3, we reduce the problem to consideration of the derivative
of H, where

In our present situation, t is greater than 4 so we are able to note further that

H'(x) = 2 + 2x

where Oi > 0 and bi > 1. Thus H^(x) < 0, for 0 < x < 1, and H'(0) =
H"(0) = 2. it follows that, in the stated domain, H" has at most one zero (of
course it does have one) and the proof is complete.

The author thanks David Wilson for checking and in one case correcting the
numerical assertions made in the proofs in this section.
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