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Intermediate Model Structures for
Simplicial Presheaves

J. F. Jardine

Abstract. This note shows that any set of cofibrations containing the standard set of generating projec-

tive cofibrations determines a cofibrantly generated proper closed model structure on the category of

simplicial presheaves on a small Grothendieck site, for which the weak equivalences are the local weak

equivalences in the usual sense.

Suppose that C is a small Grothendieck site, and let sPre(C) denote the category of
simplicial presheaves on the site C. It has been known for some time [9] that the cat-
egory of simplicial presheaves carries a proper closed simplicial model structure for

which the cofibrations are inclusions of simplicial presheaves, the weak equivalences
are the local weak equivalences, and the fibrations are the global fibrations.

In the presence of an adequate supply of stalks (or if the category of sheaves on the
site has enough points), a local weak equivalence is a map f : X → Y of simplicial

presheaves which induces a weak equivalence f∗ : Xx → Yx of simplicial sets in all
stalks. Alternatively, f is a local weak equivalence if

(1) the induced map f∗ : π̃0X → π̃0Y of sheaves of path components is an isomor-
phism, and

(2) the comparison diagram

π̃nX
f∗

//

��

π̃nY

��

X̃0
f∗

// Ỹ0

of sheaves of group objects is a pullback, for n ≥ 1.

Here, for example, X̃0 is the sheaf associated to the presheaf X0 of vertices of X. A
global fibration is a map which has the right lifting property with respect to all mor-
phisms which are simultaneously cofibrations and local weak equivalences.

The indicated structure is a standard tool for calculational applications of the ho-
motopy theory of simplicial presheaves.

Recently, another useful model structure for sPre(C) has appeared which has the

same weak equivalences and hence describes the same homotopy category, but which
has different cofibrations and fibrations. This is the local projective model structure,
which was introduced by Blander [2] as a tool for investigating some of the models
for the motivic stable category.
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Specifically, a cofibration i : A → B is said to be projective if it has the left lifting
property with respect to all maps p : X → Y which are trivial fibrations of simplicial

sets f : X(U ) → Y (U ), U ∈ C, in all sections. A map p : X → Y is then said to
be a local projective fibration if it has the right lifting property with respect to all
maps which are simultaneously projective cofibrations and local weak equivalences.
Blander [2] proves the following:

Theorem 1 The category of simplicial presheaves sPre(C) on a small Grothendieck site

C, with the classes of projective cofibrations, local weak equivalences and local projective

fibrations, satisfies the axioms for a proper closed simplicial model category.

The closed model structure given by this result is the local projective model struc-
ture for the category sPre(C) of simplicial presheaves on C.

Say that a map f : X → Y of simplicial presheaves is a pointwise weak equivalence
(respectively, pointwise fibration) if all of its component maps f : X(U ) → Y (U ),
U ∈ C, are weak equivalences (respectively, fibrations) of simplicial sets.

The special case of Theorem 1 corresponding to the trivial (or chaotic) topology

on C, for which the local projective fibrations are the pointwise fibrations, was proved
long ago by Bousfield and Kan [5]. Explicitly, the chaotic topology on a site C is the
topology for which every covering family of an object U contains the identity map
1: U → U . Every presheaf is a sheaf for the chaotic topology.

Observe that the definition of projective cofibration makes no reference to an un-
derlying topology, and thus coincides with the notion arising in the Bousfield–Kan
result. That result is easy to prove: if LU denotes the left adjoint to the U -sec-
tions functor sPre(C) → S taking values in simplicial sets, then the cofibrations

LU (∂∆
n) → LU (∆n) generate the projective cofibrations in the usual sense, and

the maps LU (Λn
k ) → LU (∆n) generate the acyclic projective cofibrations for the

Bousfield–Kan theory. The function spaces hom(X,Y ) have the form that we expect,
and there is a minor amount of fussing (in the proof of the simplicial model axiom)

to show that if i : A → B is a projective cofibration and j : K → L is an inclusion of
simplicial sets then the induced map

(i, j)∗ : (B × K) ∪(A×K) (A × L) → B × L

is a projective cofibration. One resolves this, however, by showing that the collec-

tion of all inclusions i for which the cofibration (i, j)∗ is projective is saturated, and
includes all LU (∂∆

n) → LU (∆n).
The purpose of this note is to show (in Theorem 2 below) that there are other

model structures on the simplicial presheaf category sPre(C) which are intermediate

between the local projective and standard theories. A little more work (Proposition 5)
shows that these structures are cofibrantly generated. Questions of what the fibrant
objects look like, or equivalently what descent should mean for these theories, are
much more delicate, and will not be discussed here, see [8, 11, 12].

To start the discussion, let CP denote the class of projective cofibrations, and
let C denote the full class of cofibrations in sPre(C). Then there is clearly an in-
clusion relation CP ⊂ C. Recall that CP has a generating family of cofibrations
S0 = {LU (∂∆

n) → LU (∆n)}.
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Suppose that S = {A j → B j} is some other set of cofibrations which contains S0,
and let CS denote the saturation of the set S of cofibrations

(1) (B j × ∂∆
n) ∪(A j×∂∆n) (A j × ∆

n) ⊂ B j × ∆
n

where n ≥ 0, and the cofibrations A j → B j belong to the set S. Note that the case
n = 0 reduces to maps A j → B j in the generating set for CS. The class CS will
also be called the class of S-cofibrations. If S is a generating set for the full class of
cofibrations, then CS = C and in that case the set of S-cofibrations is the full set of

cofibrations.
Say that a map p : X → Y is a local S-fibration if p has the right lifting property

with respect to all maps which are S-cofibrations and local weak equivalences.

Theorem 2 With these definitions, the category sPre(C) and the classes of S-cofibra-

tions, local weak equivalences and local S-fibrations together satisfy the axioms for a

proper closed simplicial model category.

Proof Among the usual closed model axioms CM1–CM5 (see, for example, [7,
p. 66]), only the factorization axiom CM5 requires proof. This axiom is proved with

a small object argument, which is displayed here in a highly compressed form.
Every map f : X → Y of simplicial presheaves has a factorization

X
f

//

j ��?
??

??
??

Y

Z

p

??�������

where the map j is a member of CS and p has the right lifting property with respect

to all morphisms of CS. It follows that p has the right lifting property with respect to
all projective cofibrations, so that p is a projective fibration and a pointwise (hence
local) weak equivalence. The map p is also a local S-fibration.

The map f : X → Y can be factored

X
f

//

i   @
@@

@@
@@

@
Y

W

q

>>~~~~~~~~

where q is a global fibration (hence a local S-fibration) and i is a cofibration and a
local weak equivalence. The map i has a factorization

X
i

//

j ��?
??

??
??

W

Z

p

>>~~~~~~~~
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where p is a local S-fibration and a local weak equivalence and j is an S-cofibration.
Then j must also be a local weak equivalence, and the composite qp is a local

S-fibration.

Suppose that the map p : X → Y is a local S-fibration and a local weak equiva-
lence. Then p has a factorization

X
p

//

j ��?
??

??
??

Y

Z

q

??�������

where j is an S-cofibration and q has the right lifting property with respect to all
S-cofibrations. As before, q is therefore a local weak equivalence as well as a local
S-fibration. The S-cofibration j is thus a local weak equivalence, and so the indicated

lifting exists in the diagram

X
1

//

j

��

X

p

��

Z
q

//

??

Y

The map p is therefore a retract of q, and thus has the right lifting property with
respect to all S-cofibrations.

The function complex is the standard one, and the model structure satisfies

Quillen’s axiom SM7, because the class CS was cooked up so that it would do so:
it includes all maps

(Bi × ∂∆
n) ∪(Ai×∂∆n) (Ai × ∆

n) ⊂ Bi × ∆
n.

To establish properness, note first that all local S-fibrations are pointwise fibra-
tions and pullback along pointwise fibrations preserves local weak equivalences, by a
Boolean localization argument [10]. “Dually”, all S-cofibrations are cofibrations and

the standard structure is proper, so that pushout along S-cofibrations preserves local
weak equivalences.

The case S = S0 for Theorem 2 is the Blander result Theorem 1, and the proof of
Theorem 2 is an abstraction of Blander’s proof.

The meaning of the term “local” in the statement of Theorem 2 can also vary
wildly. In particular, if the ambient topology is the chaotic topology, then local weak

equivalences are pointwise weak equivalences. In this case the corresponding local
S-fibrations will just be called S-fibrations; thus an S-fibration is a map which has the
right lifting property with respect to all maps which are S-cofibrations and pointwise
weak equivalences.
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Corollary 3 With these definitions, the category sPre(C) and the classes of S-cofibra-

tions, pointwise weak equivalences and S-fibrations together satisfy the axioms for a

proper closed simplicial model category.

It is a rather silly way to prove the result, but the Bousfield–Kan theorem is the
case S = S0 of Corollary 3.

Remark 4 F. Lárusson [11] has given an example, coming from analytic geometry,

of an S-structure that coincides with neither the projective nor the standard structure.

The question of whether or not the closed model structure given by Theorem 2 is
cofibrantly generated is somewhat more subtle, but has an affirmative answer which
is displayed in Proposition 5 below.

The proof of Proposition 5 can be achieved either by general techniques such as
those displayed by Beke [1], or by the more ad hoc argument given here. The overall
method, as in [1], is to verify a solution set condition. The solution set technique
was originally introduced by Bousfield in [4]. This proof also involves an applica-

tion of the bounded cofibration condition [6], which again was first introduced by
Bousfield [3].

The bounded cofibration condition says that for the diagram of cofibrations

A

��
B // X

with A → X a local weak equivalence, then for a sufficiently large choice of cardinal λ
there is a λ-bounded object C with B ⊂ C ⊂ X and such that the induced cofibration

C ∩ A → C is a local weak equivalence.

For the statement of the bounded cofibration condition to hold, the cardinal λ

must be chosen larger than the cardinality of the power set of the set of morphisms of

the underlying site. In this case, the set of all λ-bounded trivial cofibrations generates
the class of trivial cofibrations in the standard model structure.

Proposition 5 The class consisting of all maps which are simultaneously S-cofibrations

and local weak equivalences has a set J of generators.

Proof Suppose given a commutative diagram

(2) A
α

//

j

��

X

f

��
B

β

// Y
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where the cofibration j is a member of S (recall that this set is defined in (1)) and f is
a local weak equivalence. Find a factorization f = q · i where i is a cofibration and a

local weak equivalence and q is a global fibration. Then q is a local weak equivalence,
so the lifting θ exists in the diagram

A
α

//

j

��

X

i

��

Z

q

��
B

β

//

θ
??

Y

Pick a cardinal λ which is sufficiently large that the set of all λ-bounded local trivial
cofibrations generates the class of trivial cofibrations, and such that λ > |B|. Let C be
the image of B in Z. Then |C| < λ, so there is a subobject D ⊂ Z containing C such
that |D| < λ and the induced map D ∩ X → D is a local weak equivalence. Then it

follows that the diagram (2) has a factorization

A //

j

��

D ∩ X

��

// X

f

��
B // D // Y

Take a factorization

D ∩ X
i ′

//

""E
EE

EE
EE

EE
E

p

��
D

where i ′ is an S-cofibration and a local weak equivalence and p is an S-fibration and
a local weak equivalence. Then p has the right lifting property with respect to j, so it
follows that each diagram (2) has a factorization

A //

j

��

D ∩ X

i ′

��

// X

f

��
B // E // Y

where the maps i ′ belong to some set T j of trivial S-cofibrations which is determined
by the map j.
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Let K =
⋃

j∈S T j and let C(K) denote the saturation of the set K in the class of
cofibrations. If i : U → V is an S-cofibration and a local weak equivalence, then i has

a factorization

U
j̃

//

i   A
AA

AA
AA

W

q

��
V

where j̃ is a member of C(K) and q has the right lifting property with respect to all
members of C(K). But then q is a local weak equivalence, and so it follows from the
constructions of the first paragraph that q has the right lifting property with respect
to all S-cofibrations. The dotted arrow lifting therefore exists in the diagram

U
j̃

//

i

��

W

q

��
V

1

//

>>

V

so that i is a retract of j̃, and is therefore in C(K).
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