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ON THE MERTENS CONJECTURE FOR ELLIPTIC CURVES
OVER FINITE FIELDS

PETER HUMPHRIES

Abstract

We introduce an analogue of the Mertens conjecture for elliptic curves over finite fields. Using a result of
Waterhouse, we classify the isogeny classes of elliptic curves for which this conjecture holds in terms of
the size of the finite field and the trace of the Frobenius endomorphism acting on the curve.
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1. The Mertens conjecture

Let µ(n) denote the Möbius function, so that for a positive integer n,

µ(n) =


1 if n = 1,

(−1)t if n is the product of t distinct primes,

0 if n is divisible by a perfect square.

The Mertens conjecture states that the summatory function of the Möbius function,

M(x) =
∑
n≤x

µ(n),

satisfies the inequality
|M(x)| ≤

√
x (1.1)

for all x ≥ 1. This conjecture stems from the work of Mertens [8], who in 1897
calculated M(x) from x = 1 up to x = 10 000 and arrived at the conjecture (1.1).
Notably, this conjecture implies that all of the nontrivial zeroes of the Riemann zeta
function ζ(s) lie on the line Re(s) = 1/2 (that is, that the Riemann hypothesis is true),
and also that all such zeroes are simple.

However, Ingham [6] showed in 1942 that a consequence of the Mertens conjecture
is that the imaginary parts of the zeroes of ζ(s) in the upper half-plane must be
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20 P. Humphries [2]

linearly dependent over the rational numbers, a relation that seems unlikely; while
there is yet to be found strong theoretical evidence for the falsity of such a linear
dependence, some limited numerical calculations have failed to find any such linear
relations [1, 2]. Using methods closely related to the work of Ingham, Odlyzko and te
Riele [9] disproved the Mertens conjecture in 1984, and in fact showed that

lim sup
x→∞

M(x)
√

x
> 1.06,

lim inf
x→∞

M(x)
√

x
< −1.009.

These bounds have since been improved to 1.218 and −1.229 respectively by Kotnik
and te Riele [7], and most recently to 1.6383 and −1.6383 respectively by Best and
Trudgian [2]. It seems likely that

lim sup
x→∞

M(x)
√

x
=∞,

lim inf
x→∞

M(x)
√

x
= −∞,

and, from the work of Ingham [6], this is known to follow from the assumption of
the Riemann hypothesis and the linear independence over the rational numbers of the
imaginary parts of the zeroes of ζ(s) in the upper half-plane.

2. The Mertens conjecture for curves over finite fields

A natural variant of this problem is to formulate an analogue of the Mertens
conjecture in the setting of global function fields, that is, for nonsingular projective
curves over finite fields. The advantage of this function field setting, as opposed
to the classical case, is that the Riemann hypothesis is proved, and the associated
zeta functions have only finitely many zeroes. Indeed, when the curve is simply the
projective line P1, so that the associated function field is Fq(t), the Mertens conjecture
is true for trivial reasons, as in this case the summatory function of the Möbius
function is bounded in absolute value by q; see [3, p. 5]. In this paper, we study
the Mertens conjecture in the next-most simple case, namely when the genus of the
curve is one, that is to say, the case of elliptic curves over finite fields. Our main result
is Theorem 2.1, where we state that it is indeed possible for certain elliptic curves to
satisfy a formulation of the Mertens conjecture, and we classify which curves satisfy
this conjecture in terms of the size of the finite field q and the trace of the Frobenius
endomorphism acting on the elliptic curve.

Let E be an elliptic curve over a finite field Fq of characteristic p. For an effective
divisor N of E, we define the Möbius function of E/Fq to be

µE/Fq (N) =


1 if N is the zero divisor,

(−1)t if N is the sum of t distinct prime divisors of E,

0 if a prime divisor of E divides N with order at least two.
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We are interested in the behaviour of the summatory function of the Möbius function
of E/Fq,

ME/Fq (X) =
∑

0≤deg(N)≤X−1

µE/Fq (N),

where X is a positive integer. We wish to determine the validity of the following
conjecture.

TM C  E C  F F. Let E be an elliptic
curve over Fq, and let ME/Fq (X) be the summatory function of the Möbius function of
E/Fq. Then, for all sufficiently large positive integers X,∣∣∣ME/Fq (X)

∣∣∣ ≤ qX/2.

Note that in the definition of ME/Fq (X), we are summing over effective divisors
N of E for which 0 ≤ deg(N) ≤ X − 1, as opposed to the classical case, where M(x)
is a sum over positive integers n for which 1 ≤ n ≤ x. It is also noteworthy that the
classical form of the Mertens conjecture states that |M(x)| ≤

√
x, whereas our function

field version instead states that |ME/Fq (X)| ≤ qX/2. The reason that qX replaces x is due
to the fact that the absolute norm of an effective divisor N of E is qdeg(N), whereas the
absolute norm of a positive integer n is merely n itself.

Our main result is the following theorem.

T 2.1. Let E be an elliptic curve over a finite field Fq of characteristic p. Then
the Mertens conjecture for E/Fq is true if and only if the order of the finite field q and
the trace a of the Frobenius endomorphism acting on E over Fq satisfy precisely one
of the following conditions:

(1) q = pm with a = 2, where either m is arbitrary and p , 2, or m = 1 and p = 2;
(2) q = pm with a =

√
q, where m is even and p . 1 (mod 3);

(3) q = pm with a = 0, where either m is even and p . 1 (mod 4), or m is odd.

In all these cases, we have that ∣∣∣ME/Fq (X)
∣∣∣ ≤ qX/2

for all X ≥ 1, and also that for every ε > 0, there exist infinitely many positive integers
X, dependent on q and a, for which∣∣∣ME/Fq (X)

∣∣∣ > (1 − ε)qX/2.

In a related article [5], the author studies the Mertens conjecture for higher-genus
curves C over finite fields Fq. There is as yet no classification of isogeny classes for
curves of a given genus g outside of Waterhouse’s classification of elliptic curves [11],
as well as the recent classification of Howe, Nart, and Ritzenthaler of curves of genus
two [4], so it is no longer possible to determine directly the isogeny classes of curves
for which the Mertens conjecture holds. Instead, the author studies the average number
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of curves satisfying the Mertens conjecture in a particular family of curves over finite
fields, and shows that for a curve C in the chosen family, we ought to expect that

lim sup
X→∞

∣∣∣MC/Fq (X)
∣∣∣

qX/2
> 1.

3. Explicit expressions for MC/Fq (X)/qX/2

To study ME/Fq (X), we must first introduce the zeta function of E/Fq, ZE/Fq (u). This
is defined initially for a complex variable u in the open disc |u| < q−1 via the absolutely
convergent series

ZE/Fq (u) = exp
( ∞∑

n=1

#E(Fqn )
un

n

)
.

Equivalently, ZE/Fq (u) = ζE/Fq (s) for u = q−s, where

ζE/Fq (s) =
∑
D≥0

1
NDs .

Here the sum is over all effective divisors D of E, and ND = qdeg(D) denotes the
absolute norm of D. This Dirichlet series is absolutely convergent for Re(s) > 1, with
an Euler product expansion

ζE/Fq (s) =
∏

P

1
1 − NP−s ,

where the product is over all prime divisors P of E. This in turn implies that ZE/Fq (u) is
nonvanishing in the open disc |u| < q−1. Much more than this is true: ZE/Fq (u) extends
meromorphically to the entire complex plane, satisfies a certain functional equation,
and also a certain form of the Riemann hypothesis.

T 3.1 (See [10, Theorems 5.9 and 5.10]). Given an elliptic curve E over Fq,
there exists a quadratic polynomial PE/Fq (u) such that for |u| < q−1,

ZE/Fq (u) =
PE/Fq (u)

(1 − u)(1 − qu)
. (3.1)

This yields a meromorphic extension of ZE/Fq (u) to the whole complex plane, with
simple poles at u = q−1 and u = 1. Furthermore, ZE/Fq (u) satisfies the functional
equation

ZE/Fq (u) = qg−1u2(g−1)ZE/Fq

( 1
qu

)
.

Finally, the polynomial PE/Fq (u) is of the form

PE/Fq (u) = 1 − au + qu2,

with a an integer satisfying |a| ≤ 2
√

q, so that a = 2
√

q cos θ for some 0 ≤ θ ≤ π.
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The polynomial PE/Fq (u) = 1 − au + qu2 factorises over C as

PE/Fq (u) = (1 − γ1u) (1 − γ2u)

for some complex numbers γ1, γ2 with γ1 = γ2; we call these the inverse zeroes of
ζE/Fq (s). Without loss of generality, we may assume that Im(γ1) ≥ 0. As γ1 + γ1 = a
and γ1γ1 = q, we have that

γ1 =
√

qeiθ,

γ2 =
√

qe−iθ,

where

θ = arccos
(

a
2
√

q

)
. (3.2)

Geometrically, the integer a is the trace of the Frobenius endomorphism acting on the
elliptic curve E over Fq; the angle θ is called the Frobenius angle of E/Fq. Notably,
there are several restrictions on the possible values that a may take. The following
lemma fully characterises the possible values of a.

L 3.2 (Waterhouse [11, Theorem 4.1]). Let a be an integer. Then a is the trace
of the Frobenius endomorphism acting on some elliptic curve E over a finite field Fq

of characteristic p if and only if one of the following conditions is satisfied:

(1) a . 0 (mod p) and |a| < 2
√

q; for such an integer a, the associated
Frobenius angle θ is such that θ/π is irrational;

(2) (i) q = pm with a = 2
√

q, where m is even, so that θ = 0;

(2) (ii) q = pm with a = −2
√

q, where m is even, so that θ = π;

(3) (i) q = pm with a =
√

q, where m is even and p . 1 (mod 3), so that θ = π/3;

(3) (ii) q = pm with a = −
√

q, where m is even and p . 1 (mod 3), so that θ = 2π/3;

(4) (i) q = 2m with a =
√

2q, where m is odd, so that θ = π/4;

(4) (ii) q = 2m with a = −
√

2q, where m is odd, so that θ = 3π/4;

(4) (iii) q = 3m with a =
√

3q, where m is odd, so that θ = π/6;

(4) (iv) q = 3m with a = −
√

3q, where m is odd, so that θ = 5π/6;

(5) q = pm with a = 0, where either m is even and p . 1 (mod 4), or m is odd,
so that θ = π/2.

That is, there is a bijective correspondence between the isogeny classes of elliptic
curves over Fq and the values of the integer a given in the above conditions.
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The method of proof of Theorem 2.1 involves determining an explicit expression
for ME/Fq (X) in terms of a and q by first studying the Dirichlet series∑

D≥0

µE/Fq (D)

NDs . (3.3)

This has previously been done for arbitrary nonsingular projective curves over finite
fields by Cha [3], who uses the resulting expression to study the average size of the
quantity

lim sup
X→∞

|MC/Fq (X)|

qX/2

when averaged over a particular family of curves C, in the limit as the size of the finite
field Fq tends to infinity. Our results are similar and follow the same method, but by
restricting ourselves to the case of curves of genus one, we are able to determine exact
formulas, while we also have the advantage of using the classification in Lemma 3.2
of the possible values of the trace of the Frobenius endomorphism.

To begin, we note that the Möbius function of E/Fq is multiplicative and satisfies
µE/Fq (P) = −1 and µE/Fq

(
Pt) = 0 whenever t ≥ 2 for any prime divisor P of E, and so

the Dirichlet series (3.3) has the Euler product∑
D≥0

µE/Fq (D)

NDs =
∏

P

(1 − NP−s)

for Re(s) > 1, which, upon comparing Euler products, yields the identity∑
D≥0

µE/Fq (D)

NDs =
1

ζE/Fq (s)
, (3.4)

which is valid for all Re(s) > 1. On the other hand,∑
D≥0

µE/Fq (D)

NDs =
∑
D≥0

µE/Fq (D)

qdeg(D)s
=

∞∑
N=0

1
qNs

∑
deg(D)=N

µE/Fq (D). (3.5)

So determining an expression for the coefficients of the Dirichlet series for 1/ζE/Fq (s)
using the known factorisation (3.1) of ζE/Fq (s) and then comparing coefficients will
lead us to a precise formula for ME/Fq (X).

L 3.3 (See Cha [3, Proposition 2.2]). For each N ≥ 0 and any T > 0,

1
2πi

∮
CT

1
uN+1

1
ZE/Fq (u)

du =
∑

deg(D)=N

µE/Fq (D) +
∑
γ

Res
u=γ−1

1
uN+1

1
ZE/Fq (u)

, (3.6)

where the sum is over the inverse zeroes γ of ZE/Fq (u), counted without multiplicity, and
CT = {z ∈ C : |z| = qT }. Furthermore, the left-hand side of (3.6) vanishes for N ≥ 1.
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P. This is essentially proved in [3, Proposition 2.2] in more generality; the chief
difference here is the use of a varying contour. Consider the contour integral

1
2πi

∮
CT

1
uN+1

1
ZE/Fq (u)

du, (3.7)

where CT = {z ∈ C : |z| = qT }. We can write 1/ZE/Fq (u) in two ways; via (3.1), and via
(3.4) and (3.5), yielding the identities

1
ZE/Fq (u)

=
(1 − u)(1 − qu)

(1 − γ1u) (1 − γ2u)
, (3.8)

1
ZE/Fq (u)

=

∞∑
N=0

uN
∑

deg(D)=N

µE/Fq (D), (3.9)

where the first identity is valid for all u ∈ C \ {γ−1
1 , γ−1

2 }, and the second identity is
valid for all |u| < q−1. So the singularities of the integrand of (3.7) in the interior of
the closed curve CT occur at u = 0 and at u = γ−1 for each zero γ−1 of ZE/Fq (u). At the
singularity u = 0, we have by (3.9) that

Res
u=0

1
uN+1

1
ZE/Fq (u)

=
∑

deg(D)=N

µE/Fq (D).

The identity (3.6) now follows by Cauchy’s residue theorem. Now (3.8) and the fact
that |u| = qT and |γ1| = |γ2| =

√
q imply that∣∣∣∣∣∣ 1

2πi

∮
CT

1
uN+1

1
ZE/Fq (u)

du

∣∣∣∣∣∣ ≤ 1
2π

∮
CT

∣∣∣∣∣∣ 1
uN+1

1
ZE/Fq (u)

∣∣∣∣∣∣ |du|

≤

(
qT + 1

) (
q1+T + 1

)
(
q1/2+T − 1

)2
q−NT .

As the right-hand side of (3.6) is independent of T , we may take the limit as T tends
to infinity in order to find that the contour integral above is zero if N ≥ 1. �

We are now able to determine an explicit expression for ME/Fq (X)/qX/2. We must
consider two cases: when ZE/Fq (u) has only simple zeroes, and when ZE/Fq (u) has a
zero of order two. For the first case, we have the following result.

P 3.4. Let E be an elliptic curve over Fq, and suppose that ZE/Fq (u) has only
simple zeroes. Then

ME/Fq (X)

qX/2
= 2

√
q + 1 − a
4q − a2

cos(ω + Xθ), (3.10)
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where a is the trace of the Frobenius endomorphism, the Frobenius angle θ ∈ [0, π] is
given by (3.2), and ω ∈ (−π/2, π/2) is given by

ω = arctan

 a − 2√
4q − a2

 .
We remark that (3.10) is equivalent to

ME/Fq (X)

qX/2
= cos(Xθ) −

a − 2√
4q − a2

sin(Xθ) (3.11)

via the cosine angle-sum formula.

P. We write γ for γ1 and γ for γ2. The fact that ZE/Fq (u) has only simple zeroes is
equivalent to γ , γ, and hence that a , ±2

√
q, and consequently

Res
u=γ−1

1
uN+1

1
ZE/Fq (u)

= lim
u→γ−1

(
u − γ−1

) 1
uN+1

(1 − u)(1 − qu)
(1 − γu) (1 − γu)

= −γN (γ − 1) (γ − 1)
γ − γ

.

Similarly,

Res
u=γ−1

1
uN+1

1
ZE/Fq (u)

= γN (γ − 1) (γ − 1)
γ − γ

.

It follows that when N = 0, the left-hand side of (3.6) is equal to 1, as the sum over the
inverse zeroes γ, γ on the right-hand side of (3.6) vanishes when N = 0, whereas∑

deg(D)=0

µE/Fq (D) = 1,

as the only effective divisor of E of degree zero is the zero divisor. Thus,

∑
deg(D)=N

µE/Fq (D) =
(γ − 1) (γ − 1)

γ − γ

(
γN − γN

)
+

1 if N = 0,

0 otherwise.

Summing this expression from N = 0 to N = X − 1 and evaluating the resulting
geometric series,

ME/Fq (X) =
γ − 1
γ − γ

γX +
γ − 1
γ − γ

γX ,

and hence

ME/Fq (X)

qX/2
= 2Re

(
γ − 1
γ − γ

eiXθ
)

=

√
q + 1 − 2

√
q cos θ

√
q sin θ

cos(ω + Xθ),
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where

ω = arctan
(√q cos θ − 1
√

q sin θ

)
,

and we have used the fact that γ =
√

qeiθ. We complete the proof by noting that

2
√

q sin θ =

√
4q − a2

as a = 2
√

q cos θ with 0 ≤ θ ≤ π. �

We also have the following analogous result in the case where ZE/Fq (u) has a zero
of multiple order.

P 3.5. Let E be an elliptic curve over a finite field Fq of characteristic p,
and suppose that ZE/Fq (u) has zeroes of multiple order, so that q = pm with a = ±2

√
q,

where m is even. Then

ME/Fq (X)

qX/2
= −(±1)X

(
1 ∓

1
√

q

)
X + (±1)X . (3.12)

P. If a = ±2
√

q, then γ = γ = ±
√

q. Now

Res
u=±q−1/2

1
uN+1

1
ZE/Fq (u)

= lim
u→±q−1/2

d
du

(u ∓ q−1/2)2

uN+1

(1 − u)(1 − qu)
(1 ∓
√

qu)2

= (±1)N+1(
√

q ∓ 1)2Nq(N−1)/2.

As this vanishes when N = 0, we must again have that

1
2πi

∮
CT

1
u

1
ZE/Fq (u)

du = 1

via (3.6), and consequently∑
deg(D)=N

µE/Fq (D) = −(±1)N+1(
√

q ∓ 1)2Nq(N−1)/2 +

1 if N = 0,

0 otherwise,

which leads to the result upon summing over all 0 ≤ N ≤ X − 1 and then dividing
through by qX/2. �

4. Proof of Theorem 2.1

Using Propositions 3.4 and 3.5, we are now able to determine the quantity

lim sup
X→∞

∣∣∣ME/Fq (X)
∣∣∣

qX/2

for each elliptic curve E over a given finite field Fq. We must consider each possible
combination of values for q and a as determined in Lemma 3.2, which will culminate
in a proof of Theorem 2.1.
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(1) If q = pm with a . 0 (mod p) and |a| < 2
√

q, then by (3.10),

|ME/Fq (X)| ≤ 2

√
q + 1 − a
4q − a2

qX/2

for all X ≥ 1. As the Frobenius angle θ is such that θ/π is irrational, the Weyl
equidistribution theorem implies that Xθ is equidistributed modulo π as X tends to
infinity, and hence

lim sup
X→∞

|ME/Fq (X)|

qX/2
= 2

√
q + 1 − a
4q − a2

=

√
1 +

(a − 2)2

4q − a2
.

So the Mertens conjecture for E/Fq is true precisely when the inequality√
1 +

(a − 2)2

4q − a2
≤ 1

holds, which can only occur when a = 2, provided that p , 2. Note that even in this
case, we nevertheless have via the Weyl equidistribution theorem that for every ε > 0,
there exist infinitely many values of X, dependent on q, for which

|ME/Fq (X)| > (1 − ε)qX/2.

(2) If q = pm with a = ±2
√

q, where m is even, then from (3.12),

lim sup
X→∞

|ME/Fq (X)|

qX/2
=∞.

(3) (i) If q = pm with a =
√

q, where m is even and p . 1 (mod 3), we have from
(3.11) that

ME/Fq (X)

qX/2
= cos

(
πX
3

)
−

√
3

3

(
1 −

2
√

q

)
sin

(
πX
3

)
.

We calculate the six cases of X (mod 6):

X (mod 6) ME/Fq (X)/qX/2

0 1
1 1/

√
q

2 −1 + 1/
√

q
3 −1
4 −1/

√
q

5 1 − 1/
√

q
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So for all X ≥ 1,
|ME/Fq (X)| ≤ qX/2,

with equality occurring infinitely often.
(3) (ii) Similarly, if q = pm with a = −

√
q, where m is even and p . 1 (mod 3),

ME/Fq (X)

qX/2
= cos

(
2πX

3

)
+

√
3

3

(
1 +

2
√

q

)
sin

(
2πX

3

)
.

The three cases of X (mod 3) are

X (mod 3) ME/Fq (X)/qX/2

0 1
1 1/

√
q

2 −1 − 1/
√

q

This shows that

lim sup
X→∞

∣∣∣ME/Fq (X)
∣∣∣

qX/2
= 1 +

1
√

q
.

(4) (i) If q = 2m with a =
√

2q, where m is odd, then

ME/F2m (X)

2mX/2
= cos

(
πX
4

)
−

(
1 −

1
2(m−1)/2

)
sin

(
πX
4

)
.

We analyse the eight cases of X (mod 8):

X (mod 8) ME/F2m (X)/2mX/2

0 1
1 2−m/2

2 −1 + 2−(m−1)/2

3 −
√

2 + 2−m/2

4 −1
5 −2−m/2

6 1 − 2−(m−1)/2

7
√

2 − 2−m/2

So when m = 1, we have that
|ME/F2 (X)| ≤ qX/2

for all X ≥ 1, with equality occurring infinitely often, while for m ≥ 3,

lim sup
X→∞

|ME/F2m (X)|

2mX/2
=
√

2 −
1

2m/2
.
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(4) (ii) Likewise, if q = 2m with a = −
√

2q, where m is odd, then

ME/F2m (X)

2mX/2
= cos

(3πX
4

)
+

(
1 +

1
2(m−1)/2

)
sin

(3πX
4

)
.

The table of values of X (mod 8) is

X (mod 8) ME/F2m (X)/2mX/2

0 1
1 2−m/2

2 1 + 2−(m−1)/2

3
√

2 + 2−m/2

4 −1
5 −2−m/2

6 −1 − 2−(m−1)/2

7 −
√

2 − 2−m/2

Thus,

lim sup
X→∞

∣∣∣ME/F2m (X)
∣∣∣

2mX/2
=
√

2 +
1

2m/2
.

(4) (iii) If q = 3m with a =
√

3q, where m is odd, then

ME/F3m (X)

3mX/2
= cos

(
πX
6

)
−

(
1 −

2
3m/2

)
sin

(
πX
6

)
.

The 12 cases of X (mod 12) are

X (mod 12) ME/F3m (X)/3mX/2

0 1
1 (

√
3 − 1)/2 + 3−m/2

2 −(
√

3 − 1)/2 + 3−(m−1)/2

3 −1 + 2 × 3−m/2

4 −(
√

3 + 1)/2 − 3−(m−1)/2

5 −(
√

3 + 1)/2 + 3−m/2

6 −1
7 −(

√
3 − 1)/2 − 3−m/2

8 (
√

3 − 1)/2 − 3−(m−1)/2

9 1 − 2 × 3−m/2

10 (
√

3 + 1)/2 + 3−(m−1)/2

11 (
√

3 + 1)/2 − 3−m/2
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Consequently,

lim sup
X→∞

|ME/F3m (X)|

3mX/2
=

√
3 + 1
2

+
1

3(m−1)/2
.

(4) (iv) Next, if q = 3m with a = −
√

3q, where m is odd, then

ME/F3m (X)

3mX/2
= cos

(5πX
6

)
+

(
1 +

2
3m/2

)
sin

(5πX
6

)
.

Now we have the table

X (mod 12) ME/F3m (X)/3mX/2

0 1
1 −(

√
3 − 1)/2 + 3−m/2

2 −(
√

3 − 1)/2 − 3−(m−1)/2

3 1 + 2 × 3−m/2

4 −(
√

3 + 1)/2 − 3−(m−1)/2

5 (
√

3 + 1)/2 − 3−m/2

6 −1
7 (

√
3 − 1)/2 − 3−m/2

8 (
√

3 − 1)/2 + 3−(m−1)/2

9 −1 − 2 × 3−m/2

10 (
√

3 + 1)/2 + 3−(m−1)/2

11 −(
√

3 + 1)/2 + 3−m/2

So we have that

lim sup
X→∞

|ME/F3m (X)|

3mX/2
=

√
3 + 1
2

+
1

3(m−1)/2
.

(5) Finally, if q = pm with a = 0, where either m is even and p . 1 (mod 4), or m is
odd, then

ME/Fq (X)

qX/2
= cos

(
πX
2

)
+

1
√

q
sin

(
πX
2

)
.

The four cases of X (mod 4) are

X (mod 4) ME/Fq (X)/qX/2

0 1
1 1/

√
q

2 −1
3 −1/

√
q

Thus, we have the inequality
|ME/Fq (X)| ≤ qX/2

for all X ≥ 1, with equality occurring infinitely often.
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