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A Generalization of the Erdös-Kac Theorem
and its Applications

Yu-Ru Liu

Abstract. We axiomatize the main properties of the classical Erdös-Kac Theorem in order to apply

it to a general context. We provide applications in the cases of number fields, function fields, and

geometrically irreducible varieties over a finite field.

1 Introduction

For m ∈ N, define ω(m) to be the number of distinct prime divisors of m. The Turán
Theorem is about the second moment of ω(m). For x ∈ Q , Turán proved that [12]

∑

m≤x

(

ω(m) − log log x
) 2 ≪ x log log x.

A direct consequence of this theorem is that

#
{

m : m ≤ x,
∣

∣

∣

ω(m) − log log m
√

log log m

∣

∣

∣
> gx

}

= o(x),

for any sequence {gx} satisfying gx → ∞ as x → ∞. In particular, it implies a result

of Hardy and Ramanujan [5] that the normal order of ω(m) is log log m. The idea
behind Turán’s proof was essentially probabilistic. In 1940, further development of
probabilistic ideas led Erdös and Kac [2] to prove a remarkable refinement of the
Turán Theorem. They discovered that there exists a Gaussian normal distribution

for the quantity
ω(m) − log log m

√

log log m
.

More precisely, for γ ∈ R, Erdös-Kac proved that

lim
x→∞

1

[x]
#
{

m : m ≤ x,
ω(m) − log log m

√

log log m
≤ γ

}

= G(γ) :=
1√
2π

∫ γ

−∞

e
−t2

2 dt,

where [x] is the largest integer ≤ x.

In their original paper, Erdös and Kac used a technically involved sieve method
to obtain this result. In 1955, Halberstam [4] gave a more probabilistically natural
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approach to this theorem by using the method of ‘all moments’. In 1969, by applying
the concept of independent random variables, Billingsley [1] provided an elementary

proof of the Erdös-Kac Theorem. Thanks to his efforts, we can give a generalization
of this Theorem.

Let P be a set of elements with a map

N : P → N\{1}, p 7→ N(p).

Let M be a free abelian monoid generated by elements of P. For each m ∈ M, we
write

m =

∑

p∈P

np(m)p,

with np(m) ∈ N∪{0} and np(m) = 0 for all but finitely many p. We extend the map

N on M as follows:

N : M −→ N

m =

∑

p∈P

np(m)p 7−→ N(m) :=
∏

p∈P

N(p)np(m),

i.e., N is a monoid homomorphism from (M, +) to (N, · ). Let X be a countable
subset of Q that contains the image Im(N(M)) with an extra condition: if x1, x2 ∈ X,
the fraction x1/x2 belongs to X, too. Without loss of generality, we assume X = Q or
X =

{

qz, z ∈ Z
}

for some q ∈ N (see Remark at the end of this section for a more

detailed discussion about X).

Given P, M, and X as above, for each (sufficiently large) x ∈ X, we assume that

the following two conditions hold: let m ∈ M and p ∈ P, we have

∑

N(m)≤x

1 = κx + O(xθ), for some κ > 0 and 0 ≤ θ < 1.(A)

∑

N(p)≤x

1 = O
( x

log x

)

.(B)

For each m ∈ M, we define

ω(m) =

∑

p∈P
np(m)≥1

1.

It it the number of elements of P that generate m, counted without multiplicity. Given
P, M, and X satisfying (A) and (B), the author [9] proved that for x ∈ X, we have

∑

N(m)≤x

(

ω(m) − log log x
) 2

= κx log log x + Cx + O
( x log log x

log x

)

.
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Here κ is the same constant as in (A) and C is another constant. This result is a
generalization of the Turán Theorem. It implies that

#
{

m ∈ M : N(m) ≤ x,
∣

∣

∣

ω(m) − log log N(m)
√

log log N(m)

∣

∣

∣
> gx

}

= o(x),

for any sequence {gx} satisfying gx → ∞ as x → ∞. In particular, we obtain that the
normal order of ω(m) is log log N(m). This result suggests a possible existence of a

normal distribution for the quantity

ω(m) − log log N(m)
√

log log N(m)
.

This is indeed the case.

Theorem 1 Given P, M, and X as before, assume they satisfy (A) and (B). For m ∈ M,

we have

lim
x→∞

1

#
{

m : N(m) ≤ x
} #

{

m : N(m) ≤ x,
ω(m) − log log N(m)

√

log log N(m)
≤ γ

}

= G(γ).

In [9], the author provided the following applications where the general setting
can be applied.

Example 1 In the case of rational numbers, let P be the set of primes of N with the
identity map N . Take M = N and X = Q . Condition (A) is true since

#
{

m ∈ N : m ≤ x
}

= [x] = x + O(1).

Also, Condition (B) is the classical Chebyshev Theorem [11, pp. 36–37]. Hence, by
Theorem 1, we recover the classical Erdös-Kac Theorem.

Example 2 Given a number field K, let OK be its ring of integer. Let P be the set of
prime ideals of OK with the standard norm map N , i.e., p 7→ |OK/p|. Let M be the
set of ideals and X = Q . Condition (A) is a result of Weber [13]. Also, Condition (B)

follows from the classical Chebyshev Theorem and the fact that there are only finitely
many prime ideals lying above a rational prime. Thus we have

Corollary 1 Let K/Q be a number field and OK be its ring of integers. For an ideal m

of OK , let ω(m) denote the number of distinct prime ideals dividing m. For x ∈ Q , we

have

lim
x∈∞

1

#
{

m : |OK/m| ≤ x
} #

{

m : |OK/m| ≤ x,
ω(m) − log log(|OK/m|)

√

log log(|OK/m|)
≤ γ

}

= G(γ).
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Example 3 Let Fq[t] be the ring of polynomials of one variable over a finite field
Fq. Take P to be the set of monic irreducible polynomials with p 7→ qdeg p, where

deg p is the degree of the polynomial p. Let M be the set of monic polynomials and
X = {qz, z ∈ Z}. Conditions (A) and (B) can be easily derived from the fact that for
a fixed d ∈ N,

#
{

m ∈ M : deg m = d
}

= qd.

Hence, we have a generalization of the Erdös-Kac Theorem in the case of function
fields. Related results about this case can also be found in [14].

Example 4 Let V/Fq be a geometrically irreducible variety of dimension r over a
finite field Fq. Let P be the set of closed points with p 7→ (qr)deg p, where deg p is

the length of the corresponding orbit [10, p. 259]. Take M to be the set of effective
0-cycles and X = {(qr)z, z ∈ Z}. Conditions (A) and (B) can be verified by the
estimate of Lang-Weil [8] about the number of points of V . Hence, we have

Corollary 2 Let V/Fq be a geometrically irreducible variety of dimension r over a finite

field Fq. Let P be the set of closed points and M be the set of effective 0-cycles. Let

X = {(qr)z, z ∈ Z}. For m ∈ M, write m =
∑

p∈P np(m)p. The degree of m is defined

by

deg m =

∑

p∈P

np(m) deg p,

where deg p is the length of the corresponding orbit of p. Let ω(m) denote the number

of distinct closed points on m. We have

lim
n∈∞

1

#
{

m : deg m ≤ n
} #

{

m : deg m ≤ n,
ω(m) − log(deg m)

√

log(deg m)
≤ γ

}

= G(γ).

This application can be viewed as the first geometric analogue of the Erdös-Kac

Theorem.

Remark The conditions that we impose on the set X give only two choices for it:
either X is dense in R+

0 =
{

r ∈ R : r > 0
}

or X =
{

qz, z ∈ Z
}

for some q > 1.

For the purpose of our applications, we take either X = Q or X =
{

qz, z ∈ Z
}

for
q ∈ N. I would like to thank W. Kuo for providing the following theorem.

Theorem 2 (W. Kuo) Let X be a subset of R+
0 that satisfies the following two condi-

tions:

• Im(N(M)) ⊂ X, and
• If x1, x2 ∈ X, the quotient x1/x2 ∈ X.

Then X is either

• dense in R+
0 or

• there is a q > 1, such that X =
{

qz : z ∈ Z
}

.
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In the first case, we say X is archimedean; the second one is called non-archimedean.

Proof Let p1 ∈ P such that

N(p1) = min
{

N(p) : p ∈ P
}

.

We consider the following two cases.

1. There is a p ∈ P such that

log N(p)

log N(p1)
= γ /∈ Q.

2. For all p ∈ P,

log N(p)

log N(p1)
=

mp

np
∈ Q, mp, np ∈ N, (mp, np) = 1.

For the first case, we claim that X is dense in R+
0 ; its proof is following. By the condi-

tions of X, we know that for m, n ∈ N,

N(p)m

N(p1)n
∈ X.

We shall show that any positive number can be approximated by elements of the form
N(p)m/N(p1)n. It suffices to show that log(N(p)m/N(p1)n) is dense in R. We have

log

(

N(p)m

N(p1)n

)

= log N(p) ·
(

m − n · log N(p)

log N(p1)

)

= log N(p) · (m − nγ).

Since γ is irrational, the set
{

(m − nγ) : m, n ∈ Z
}

is dense in R. Therefore, X is
dense in R+

0 . Now, consider the second case. If we assume first that

lim
p∈P

N(p)→∞

np = ∞.

Then the set
{

N(p1)z/np : z ∈ Z, p ∈ P
}

is dense in R+
0 since the set of its log

{

z/np : z ∈ Z, p ∈ P
}

,

is dense in R. Therefore, in this case, X is also dense in R+
0 . On the other hand, if we

have

lim
p∈P

N(p)→∞

np = M < ∞,
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Then X contains the set
{

N(p1)z/M : z ∈ Z
}

.

If there is any other element of X not contained in the above set, repeat the same

argument. We get either X is dense in R+
0 or X is supported on a power of a positive

number.
Moreover, since X is either archimedean or non-archimedean, in either case, Con-

dition (A) indeed implies (B). The case X = Q is a result of Landau [7] and the case

X =
{

qz, z ∈ Z
}

is proved by Knopfmacher [6, p. 76]. Since the proof of (A) im-
plies (B) is involved, in the following discussion, we will continue to assume both
Conditions (A) and (B) with the understanding that (B) is indeed redundant.

2 Review of Probability Theory

In this section, we review some probability theory.
Given a random variable X with a probability measure P, for t ∈ R, the function

F defined by F(t) = P{X ≤ t} is the distribution function of X. The expectation of X

is defined by

E{X} =

∫ ∞

−∞

t dF(t).

The variance of X measures the difference between X and E{X}. It is defined by

Var{X} = E{(X − E{X})2} = E{X2} − (E{X})2.

Let X and Y be two random variables with the same probability measure P. We

have
E{X + Y} = E{X} + E{Y}.

If X and Y are independent, i.e., for all x ∈ R, y ∈ R,

P{X ≤ x,Y ≤ y} = P{X ≤ x} · P{Y ≤ y},

we have

E{X · Y} = E{X} · E{Y}
and

Var{X + Y} = Var{X} + Var{Y}.

Definition Given a sequence of random variables {Xn} and α ∈ R, we say {Xn}
converges in probability to α if for any ǫ > 0,

lim
x→∞

P
{

|Xn − α| > ǫ
}

= 0.

We denote it by

Xn
p−→ α.

Now, we are in a position to state some facts from probability theory that are
needed to prove Theorem 1; most of their proofs can be found in [1] and [3].
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Fact 1 Given a sequence of random variables {Xn}, if

lim
n→∞

E{|Xn|} = 0,

we have
Xn

p−→ 0.

Proof Fix an ǫ > 0. Since limn→∞ E
{

|Xn|
}

= 0, for any ǫ1 > 0, there exists
N = N(ǫ1) ∈ N such that for all n > N , we have

ǫ · P
{

|Xn| > ǫ
}

≤
∫ ∞

−∞

|t| dFn(t) < ǫ1.

It implies that
P

{

|Xn| > ǫ
}

< ǫ1/ǫ.

By choosing ǫ1 small enough, the fact follows.

Fact 2 [1, pp. 134–135], [3, p. 247] Let {Xn}, {Yn}, and {Un} be sequences of ran-
dom variables with the same probability measure P. Let U be a distribution function.

Suppose

Xn
p−→ 1 and Yn

p−→ 0.

For all γ ∈ R, we have
lim

x→∞
P{Un ≤ γ} = U (γ)

if and only if
lim

x→∞
P{(XnUn + Yn) ≤ γ} = U (γ).

We use G(γ) to denote the Gaussian normal distribution, i.e.,

G(γ) :=
1√
2π

∫ γ

−∞

e
−t2

2 dt.

For r ∈ N, the r-th moment of G is defined by

µr :=

∫ ∞

−∞

t rdG(t).

Notice that for an odd integer r, we have

∫ ∞

−∞

|t|r dG(t) =
2√
2π

∫ ∞

0

t r · e−t2/2 dt

=
2√
2π

∫ ∞

0

(2u)(r−1)/2 · e−u du

=
2√
2π

· 2(r−1)/2 ·
( r − 1

2

)

!.
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The last equality holds since
∫ ∞

0
tne−t dt = n!. Thus we have

lim
r→∞

sup
1

r

(

∫ ∞

−∞

|t|r dG(t)
) 1/r

= 0.

It follows from [3, p. 487] that G is uniquely determined by these moments. Thus we
have

Fact 3 [3, pp. 262–263] Given a sequence of distribution functions {Fn}, if for all
r ∈ N,

lim
n→∞

∫ ∞

−∞

t r dFn(t) = µr,

then for all γ ∈ R, we have

lim
x→∞

Fn(γ) = G(γ).

This next fact is an analogue of the Lebesgue Dominated Theorem.

Fact 4 [3, pp. 244–245] Let r ∈ N. Given a sequence of distribution functions {Fn},
if

lim
x→∞

Fn(γ) = G(γ), for all γ ∈ R

and

sup
n

{
∫ ∞

−∞

|t|r+δ dFn(t)

}

< ∞, for some δ = δ(r) > 0,

we have

lim
n→∞

∫ ∞

−∞

t r dFn(t) = µr.

The next fact is a special case of the Central Limit Theorem.

Fact 5 [3, pp. 256–258] Let X1, X2, . . . , Xi, . . . be a sequence of independent ran-
dom variables and Im(Xi) is the image of Xi . Suppose

(1) supi{Im(Xi)} < ∞.
(2) E{Xi} = 0 and Var{Xi} < ∞ for all i.

For n ∈ N, let Gn be the ‘normalization’ of X1, X2, . . . , Xn, i.e.,

Gn :=
(

n
∑

i=1

Xi

)/(

n
∑

i=1

Var{Xi}
)

1

2

.

If
∑∞

i=1 Var{Xi} diverges, we have

lim
n→∞

P{Gn ≤ γ} = G(γ).
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3 Technical Lemmas

Given P, M, and X as defined before, assume they satisfy (A) and (B). We need the
following two lemmas from [9].

Lemma 1 [9, Lemma 1(1)]

∑

N(p)≤x

1

N(p)α
≪ x1−α

log x
if 0 ≤ α < 1.

Lemma 2 [9, Lemma 2]

∑

N(p)≤x

1

N(p)
= log log x + A + O

( 1

log x

)

,

where A is a constant.

For x ∈ X, define

M(x) = {m ∈ M, N(m) ≤ x}.

Let

Px{m : m satisfies some conditions}

denote the quantity

1

|M(x)|#{m ∈ M(x) : m satisfies some conditions}.

Notice that Px is a probability measure on M. Let f be a function from M to R. The
expectation of f with respect to Px is denoted by

Ex

{

m : f (m)
}

:=
1

|M(x)|
∑

m∈M(x)

f (m).

The following lemmas are essential for the proof of Theorem 1. The first one gives

an equivalent statement of Theorem 1.

Lemma 3

lim
x→∞

Px{m :
ω(m) − log log N(m)

√

log log N(m)
≤ γ} = G(γ)

if and only if

lim
x→∞

Px

{

m :
ω(m) − log log x

√

log log x
≤ γ

}

= G(γ).

https://doi.org/10.4153/CMB-2004-057-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-057-4


598 Yu-Ru Liu

Proof Since

ω(m) − log log x
√

log log x
=

ω(m) − log log N(m)
√

log log N(m)

√

log log N(m)
√

log log x

+
log log N(m) − log log x

√

log log x
,

by Fact 2, to prove this lemma, it suffices to show that for any ǫ > 0, we have

lim
x→∞

Px

{

m :
∣

∣

∣

√

log log N(m)
√

log log x
− 1

∣

∣

∣
> ǫ

}

= 0

and

lim
x→∞

Px

{

m :
∣

∣

∣

log log N(m) − log log x
√

log log x

∣

∣

∣
> ǫ

}

= 0.

Consider m ∈ M with x1/2 < N(m) ≤ x. If we have

√

log log N(m)
√

log log x
< 1 − ǫ,

it follows that

(log log x − log 2)1/2 < (log log N(m))1/2 < (1 − ǫ)(log log x)1/2.

Taking square on both sides, we get

1

(1 − ǫ)2
(log log x − log 2) < log log x.

It follows that

log log x <
log 2

ǫ(2 − ǫ)
.

Similarly, for m ∈ M with x1/2 < N(m) ≤ x, if we have

log log x − log log N(m)
√

log log x
> ǫ,

it implies that

log log x <
( log 2

ǫ

) 2

.

Hence, there exists x(ǫ) ∈ R such that for all x ≥ x(ǫ), we have

Px

{

m :
∣

∣

∣

√

log log N(m)
√

log log x
− 1

∣

∣

∣
> ǫ

}

≤ Px

{

m : N(m) ≤ x1/2
}
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and

Px

{

m :
∣

∣

∣

log log N(m) − log log x
√

log log x

∣

∣

∣
> ǫ

}

≤ Px

{

m : N(m) ≤ x1/2
}

.

Applying Condition (A), we have

Px

{

m : N(m) ≤ x1/2
}

=
1

|M(x)| · |M(x1/2)|

=
κx1/2 + O(xθ/2)

κx + O(xθ)

−→ 0,

as x → ∞. Hence, we obtain the equivalence of the statements in the lemma.

For x ∈ X, define

y = x1/ log log x.

For m ∈ M, define

ωy(m) =

∑

p∈P
np(m)≥1
N(p)≤y

1.

It is a truncation function of ω(m). Notice that we have

y = o
(

xǫ
)

for any ǫ > 0.

By Lemma 2, we have

∑

y<N(p)≤x

1

N(p)
≪ log log log x = o

(

(log log x)1/2
)

.

We have another equivalent formulation of the Erdös-Kac Theorem in terms of ωy .

Lemma 4

lim
x→∞

Px

{

m :
ω(m) − log log x

√

log log x
≤ γ

}

= G(γ)

if and only if

lim
x→∞

Px

{

m :
ωy(m) − log log x

√

log log x
≤ γ

}

= G(γ).

Proof Since

ωy(m) − log log x
√

log log x
=

ω(m) − log log x
√

log log x
+

ωy(m) − ω(m)
√

log log x
,
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by Facts 1 and 2, if we have

lim
x→∞

Ex

{

m :
∣

∣

∣

ω(m) − ωy(m)
√

log log x

∣

∣

∣

}

= 0,

the lemma follows. Consider

∑

N(m)≤x

∣

∣ω(m) − ωy(m)
∣

∣ =

∑

y<N(p)≤x

∑

N(m)≤x
np(m)≥1

1

=

∑

y<N(p)≤x

( κx

N(p)
+ O

( xθ

N(p)θ

))

= o
(

κx(log log x)1/2
)

+ O
(

x
)

.

The last equality follows from the remark before Lemma 4 and Lemma 1. Hence, we
have

Ex

{

m :
∣

∣

∣

ω(m) − ωy(m)
√

log log x

∣

∣

∣

}

=
o

(

x(log log x)1/2
)

(

κx + O(xθ)
)(

log log x
) 1/2

−→ 0,

as x → ∞. Thus Lemma 4 follows.

For p ∈ P, define the independent random variables Xp by

P{Xp = 1} =
1

N(p)

and

P{Xp = 0} = 1 − 1

N(p)
.

Define a new random variable Sy by

Sy :=
∑

p∈P
N(p)≤y

Xp.

By Lemma 2 and the choice of y, we have

E{Sy} =

∑

N(p)≤y

1

N(p)
= log log x + o(log log x)1/2,

Var{Sy} =

∑

N(p)≤y

1

N(p)

(

1 − 1

N(p)

)

= log log x + o(log log x)1/2.

We have another equivalent formulation of Theorem 1.
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Lemma 5

lim
x→∞

Px

{

m :
ωy(m) − log log x

√

log log x
≤ γ

}

= G(γ)

if and only if

lim
x→∞

Px

{

m :
ωy(m) − E{Sy}

√

Var{Sy}
≤ γ

}

= G(γ).

Proof Write

ωy(m) − E{Sy}
√

Var{Sy}
=

ωy(m) − log log x
√

log log x

√

log log x
√

Var{Sy}
+

log log x − E{Sy}
√

Var{Sy}
.

Since
Var{Sy} = log log x + o(log log x)1/2,

we have
√

log log x
√

Var{Sy}
p−→ 1.

Also, since
E{Sy} = log log x + o(log log x)1/2,

it follows that

lim
x→∞

Ex

{

m :
∣

∣

∣

E{Sy} − log log x
√

Var{Sy}

∣

∣

∣

}

= 0.

By Facts 1 and 2, the lemma follows.
Now, for p ∈ P, define a random variable δp : M → R by

δp(m) :=

{

1 if np(m) ≥ 1,

0 otherwise.

Hence, we can write
ωy(m) =

∑

p∈P
N(p)≤y

δp(m).

Notice that for a fixed p ∈ P and x ∈ X, by Condition (A), we have

Px

{

m : δp(m) = 1
}

=
1

|M(x)| ·
∣

∣

∣
M

( x

N(p)

)
∣

∣

∣

=
1

κx + O(xθ)

( κx

N(p)
+ O

( xθ

N(p)θ

))

=
1

N(p)
+ O(xθ−1).

Since the expectations of random variables Xp and δp are close, the sum Sy is a good
approximation of ωy . Indeed, the r-th moments of their normalizations are equal as
x → ∞.

https://doi.org/10.4153/CMB-2004-057-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-057-4


602 Yu-Ru Liu

Lemma 6 Let r ∈ N. We have

lim
x→∞

∣

∣

∣
Ex

{( ωy(m) − E{Sy}
√

Var{Sy}

) r}

− E
{( Sy − E{Sy}

√

Var{Sy}

) r}∣

∣

∣
= 0.

Proof For 0 ≤ k ≤ r, write

E
{

Sk
y

}

=

k
∑

u=1

∑′ k!

k1! · · · ku!

∑′ ′

E
{

Xk1

p1 · · ·Xku
pu

}

.

Here
∑ ′

extends over all u-tuples (k1, k2, . . . , ku) of positive integers such that k1 +

k2 + · · · + ku = k and
∑ ′ ′

extends over all u-tuples (p1, p2, . . . , pu) of elements P

such that N(pi) ≤ y for all i and pi 6= p j if i 6= j, regardless of their orders. Since
each Xpi

takes values 0 or 1 and the Xpi
’s are independent, we have

E
{

Xp1
· · ·Xpu

}

=
1

N(p1) · · ·N(pu)
.

Similarly, we have

Ex{ωk
n} =

k
∑

u=1

∑′ k!

k1! · · · ku!

∑′ ′

Ex{δk1

p1 · · · δku
pu
},

with the same
∑′

and
∑ ′ ′

as above. By Condition(A), we have

Ex{δp1 . . . δpu
} =

1

|M(x)| ·
∣

∣

∣
M

( x

N(p1) · · ·N(pu)

)
∣

∣

∣

=
1

κx + O(x)

( κx

N(p1) · · ·N(pu)
+ O

( xθ

N(p1)θ · · ·N(pu)θ

))

=
1

N(p1) · · ·N(pu)
+ O

(

xθ−1
)

.

Hence, we have

∣

∣ Ex

{

ωk
y

}

− E
{

Sk
y

}∣

∣ ≪ xθ−1
(

∑

N(p)≤y

1
) k

≤ yk · xθ−1.

Write

E
{(

Sy − E{Sy}
) r}

=

r
∑

k=0

(

r

k

)

E
{

Sk
y

}

· E{Sy}r−k

and

Ex

{(

ωy − E{Sy}
) r}

=

r
∑

k=0

(

r

k

)

Ex

{

ωk
y

}

· E{Sy}r−k.
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Their difference is

∣

∣

∣
Ex

{(

ωy − E{Sy})r
}

− E
{(

Sy − E{Sy}
) r}

∣

∣

∣
≪

r
∑

k=0

(

r

k

)

yk · xθ−1 · E
{

Sy

} r−k

= xθ−1
(

y + E{Sy}
) r

.

Notice that

E{Sy} =

∑

N(p)≤y

1

N(p)
≤

∑

N(m)≤y

1 ≪ y.

Since for any ǫ > 0.
y = o(xǫ),

we have
∣

∣

∣
Ex

{

(ωy − E{Sy})r
}

− E
{(

Sy − E{Sy}
) r}

∣

∣

∣
−→ 0,

as x → ∞. Thus the lemma holds.
The following lemma is about the r-th moment of Sy .

Lemma 7 For r ∈ N,

sup
y(x)

∣

∣

∣
E

{( Sy − E
{

Sy

}

√

Var{Sy}

) r}∣

∣

∣
< ∞.

Proof Define Y p = Xp − 1
N(p)

. We have

E
{(

Sy − E{Sy}
) r}

=

r
∑

u=1

∑ ′ r!

r1! · · · ru!

∑ ′ ′

E{Y r1

p1 · · ·Y ru
pu
},

where
∑ ′

and
∑ ′ ′

are defined as in Lemma 6 except replacing k by r. Since E{Y p} =

0, without loss of generality, we can assume ri ≥ 2. Since |Y p| ≤ 1 and ri ≤ 2, we

have
∣

∣ E
{

Y ri
pi

}∣

∣ ≤ E
{

Y 2
pi

}

.

Hence, we have

E
{(

Sy − E{Sy}
) r} ≤

r
∑

u=1

∑ ′ r!

r1! · · · ru!

∑′ ′

E
{

Y 2
p1
· · ·Y 2

pu

}

≤
r

∑

u=1

∑ ′ r!

r1! · · · ru!

(

∑

N(p)≤y

E
{

Y 2
p

}

) u

≤
r

∑

u=1

∑ ′ r!

r1! · · · ru!
Var{Sy}u

≤
r

∑

u=1

∑ ′ r!

r1! · · · ru!
Var{Sy}r/2.
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The last inequality holds because 2u ≤ r. Hence, we obtain

E
{( Sy − E{Sy}

√

Var{Sy}

) r}

≤
r

∑

u=1

∑ ′ r!

r1! · · · ru!
< ∞.

Thus Lemma 7 follows.

4 Proof of Theorem 1.

We are now equipped to embark on the proof of Theorem 1. Given P, M, and X as
before, assume they satisfy Conditions (A) and (B). For m ∈ M, we shall show that
the quantity

ω(m) − log log N(m)
√

log log N(m)

distributes normally. By the equivalent statements of Lemmas 3, 4, and 5, to prove

Theorem 1, it suffices to show

lim
x→∞

Px

{

m :
ωy(m) − E{Sy}

√

Var{Sy}
≤ γ

}

= G(γ).

The distribution function Fx respect to Px is defined by

Fx(γ) := Px

{

m :
ωy(m) − E{Sy}

√

Var{Sy}
≤ γ

}

.

Notice that the r-th moment of Fx is equal to

∫ ∞

−∞

t r dFx(t)

=

∞
∑

t=−∞

{

lim
u→∞

u
∑

i=1

(t + i/u)r
(

Fx(t + i/u) − Fx(t + (i − 1)/u)
)

}

=

∞
∑

t=−∞

{

lim
u→∞

u
∑

i=1

(t + i/u)r Px

{

m : (t + (i − 1)/u) <
ωy(m) − E{Sy}

√

Var{Sy}

≤ (t + i/u)
}

}

=
1

#
{

m : N(m) ≤ x
}

∑

N(m)≤x

( ωy(m) − E{Sy}
√

Var{Sy}

) r

= Ex

{( ωy(m) − E{Sy}
√

Var{Sy}

) r}

.

Hence, to prove
lim

x→∞
Fx(γ) = G(γ),
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by Fact 3, it suffices to show that for all r ∈ N,

lim
x→∞

Ex

{( ωy(m) − E{Sy}
√

Var{Sy}

) r}

= µr.

By Lemma 6, we see that the last equality holds if

lim
x→∞

E
{( Sy − E{Sy}

√

Var{Sy}

) r}

= µr.

Define a new random variable Gy = Gy(x) on M by

Gy :=
Sy − E{Sy}
√

Var{Sy}
.

Applying Fact 5, the Central Limit Theorem implies that

lim
x→∞

Gy = G.

Also, Lemma 7 implies that for each r ∈ N, there exists δ = δ(r) > 0 such that

sup
x

∫ ∞

−∞

|t|r+δ dGy(t) < ∞.

By Fact 4, we have

lim
x→∞

E
{( Sy − E{Sy}

√

Var{Sy}

) r}

= µr ;

thus
lim

x→∞
Fx(γ) = G(γ)

follows. Hence, we obtain Theorem 1, i.e., a generalization of the Erdös-Kac Theorem
holds in this general setting.

Remark For m ∈ M, we define

Ω(m) =

∑

p∈P
np(m)≥1

np(m),

the number of generators of m, counted with multiplicity. Applying the same method

as in the classical case, we can also obtain generalizations of the Turán Theorem and
the Erdös-Kac Theorem for Ω(m) in our general setting.

Conclusion The Erdös-Kac Theorem is a refinement of the Turán Theorem. When

we compare these two, we naturally think that the latter is ‘more difficult’ than the
former. However, when we put these two theorems in a general context, they both
require only Conditions (A) and (B). Thus we conclude that these two results are of
‘the same difficulty’.
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