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Abstract

Phtytoplankton group composition determined by microscopy was compared with high
performance liquid chromatography (HPLC) derived from pigment signatures in surface
water samples taken bi-weekly and monthly between October 2018 and September 2019 in
the Golden Horn Estuary (Sea of Marmara). A total of 80 eukaryotic phytoplankton taxa
belonging to eight algal classes were identified in surface water during the study period.
Forty-three taxa (54%) were diatoms, 29 taxa (36%) were dinoflagellates and eight taxa (10%)
were other phytoflagellates. The average contribution of diatoms to total phytoplankton abun-
dance decreased considerably (41 to 25%), while the average contribution of dinoflagellates and
other phytoflagellates increased markedly (59 to 75%) from the lower to the middle estuary.
Chlorophyll-a and seven other group-specific pigments, including fucoxanthin, peridinin,
chlorophyll-c; + ¢, alloxanthin, 19'-hexanoyloxyfucoxanthin, 19'-butanoyloxyfucoxanthin and
divinyl chlorophyll-a were identified in the study area. The relative contribution of the major
phytoplankton groups to chlorophyll-a was estimated on three different initial ratio matrices
by CHEMTAX. The results obtained were compared with those from microscopic examination.
It was concluded that the CHEMTAX method was not accurate enough to characterize the
phytoplankton community in the Golden Horn Estuary ecosystem and microscopic analysis
was essential to determine the major contributing species to chlorophyll-a.

Introduction

Phytoplankton is generally constituted of complex communities and their diversity and
dynamics are highly variable. Information about the combined effects of various environmen-
tal variables is necessary in food chain studies and ecosystem modelling as well as for explain-
ing eutrophication and harmful algal bloom events (Wénstrand & Snoeijs, 2006). Thus,
distribution of phytoplankton species provides crucial data for environmental monitoring
studies. As these species can change in a very short time, regular investigation of phytoplank-
ton composition requires substantial resources for sampling and skilled staff for microscopy
(Hillebrand et al., 1999).

The identification of phytoplankton through microscopic analysis is time-consuming and
needs a high level of taxonomic expertise. There is also the risk of missing smaller phytoplank-
ton groups (like picoplankton, <2 pm in size) in traditional microscopic analysis (Naik et al.,
2011). An alternative or supplementary method for monitoring and identifying phytoplankton
community structures is to determine their pigment signatures by using high-performance
liquid chromatography (HPLC) (Wright & Jeffrey, 2006). This technique is faster and more
reproducible than microscopy and independent of subjective consideration (Wanstrand &
Snoeijs, 2006). Moreover, this technique can be more sensitive for identifying pico- and
nanoplankton or species broken by sample fixation, which can be difficult to identify with
microscopic analysis (Jeffrey & Vesk, 1997). HPLC analysis also allows us to characterize
the physiological condition of phytoplankton, while counts can determine whether organisms
are dead or alive (Millie et al., 1993). Furthermore, the composition of phytoplankton commu-
nities can be determined using HPLC derived pigment data by the means of pigment ratios
(Higgins et al., 2011). One of the most up to date techniques used to do this is the statistical
software CHEMTAX.

CHEMTAX software uses pigments/chlorophyll-a ratios to characterize algal classes (Mackey
et al., 1996). This software has been widely used in different regions of the world oceans to char-
acterize phytoplankton community structure (Schliiter ef al, 2000; Havskum et al, 2004;
Eker-Develi et al, 2008; Kozlowski et al, 2011; Araujoa et al, 2017). In some studies,
CHEMTAX estimates were in agreement with microscopy for major phytoplankton groups
(Wright et al., 1996; Llewellyn et al, 2005) while not in some others (Irigoien et al., 2004;
Lionard et al., 2008). However, the application of the CHEMTAX software to coastal and estu-
arine regions, is limited by the lack of known pigment ratios (Wright et al., 1996; Ansotegui
et al., 2003; Eker-Develi et al, 2012).
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Fig. 1. Study area and sampling stations.

Estuaries are known as highly productive ecosystems, and they
are transition zones between river and marine environments.
Many studies of phytoplankton composition have been performed
in estuaries around the Mediterranean Sea (Trigueros & Orive,
2001; Buri¢ et al., 2007; Barbosa et al., 2010). Recently, studies
have focused on phytoplankton communities of the Golden
Horn Estuary (GHE) by microscopic analysis including the varia-
tions in phytoplankton composition (Tas et al, 2009; Dursun &
Tas, 2019), planktonic diatom composition (Tas, 2017; Tas &
Hernandez-Becerril, 2017), and algal blooms and potentially
harmful species (Tas & Okus, 2011; Tas, 2015, 2019; Tas &
Yilmaz, 2015; Dursun et al, 2016; Tas & Lundholm, 2017).
However, no study has been performed in the GHE using
HPLC, despite HPLC pigment signatures being widely used in
Turkish seas (Ediger et al, 2006; Eker-Develi et al, 2012;
Agirbas et al., 2017; Yticel, 2017).

The primary aim of this study was to investigate variations in
phytoplankton group composition by microscopic and HPLC
pigment analysis alongside associated environmental factors. A
specific objective was to test the usefulness of CHEMTAX analysis
for determining variations in phytoplankton group composition
in the GHE for the first time.

Materials and methods
Study area and sampling strategy

The Golden Horn Estuary (GHE) is located in the north-east of
the Sea of Marmara, extending in a north-west-south-east
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direction, ~7.5km long and up to 700 m wide. The study area
was divided into three sections based on hydrographic and bathy-
metric features; lower estuary (LE), middle estuary (ME) and
upper estuary (UE). The maximum depth is 40 m in the LE, it
decreases rapidly to 14 m in the ME and to 4 m in the UE due
to high concentrations of suspended particulate material (SPM)
originating from two streams, the Alibey and Kagithane. Three
stations were chosen along the study area; ST1 interacts strongly
with the Strait of Istanbul (Bosphorus) and represents the LE,
and ST2 and ST3 represent the ME, with an intermediate marine
influence, where a bridge (Atatiirk Bridge), operating on buoys,
limits the upper layer circulation (Figure 1). The LE is character-
ized by two-layered stratification: with less saline (~18) Black Sea
water above and highly saline (~38) Mediterranean water below
(Unliilata et al., 1990). The upper layer extends to depths of
about 25 m and the lower layer lies below ~25 m (Sur et al., 2002).

The sampling period lasted for one year, from October 2018 to
September 2019. Surface water samples were taken at monthly
(between October and March, from June to September) and
biweekly (April and May) periods from the three stations, repre-
senting the LE and ME (Figure 1). Temperature, salinity, dissolved
oxygen (DO) and pH of surface water were measured using a
multi-parameter probe (YSI Professional Pro Plus) from the sea
surface, and water transparency was measured using a Secchi
disc with 30 cm diameter. No environmental data could be mea-
sured in January due to failure of the multi-parameter probe.
Seawater samples were taken from the surface (0.5 m) using 51
Niskin bottles. For HPLC pigment analysis, surface water samples
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Fig. 2. HPLC chromatogram of the mixed-pigment standard.

(80-700 ml) were taken and filtered immediately onto Whatmann
GF/F filters (25 mm diameter) under low vacuum (<0.7 atm) and
kept frozen until extraction.

Phytoplankton analysis

For identification and enumeration of phytoplankton species, sur-
face water samples were taken into 250 ml bottles and fixed with
acidic Lugol’s solution (2%) (Throndsen, 1978). Sub-samples (10-
50 ml) were allowed to settle in sedimentation chambers for 24—
48 h (Utermohl, 1958). Phytoplankton cells were counted using a
Leica DM IL LED inverted microscope equipped with phase con-
trast optics. Samples were examined at appropriate magnifications
(100x to 400x) and placed into taxonomic categories such as dia-
toms, dinoflagellates and other phytoflagellates. Cell enumeration
was generally performed on two or more transects, counting at
least 300 cells in each sample and group abundances were calcu-
lated as cells per litre.

HPLC pigment analysis

The method chosen for this study (Barlow et al., 1993) is a modi-
fication of the method given by Mantoura & Llewellyn (1983).
According to this procedure, the frozen filters were extracted in
5 mL of 90% acetone, ultrasonicated for 1 min at 60 Hz and cen-
trifuged at 3500 rpm for 10 min to remove cellular debris. A 500
ul aliquot of sample was filtered through a Millex-GS 0.22 pm fil-
ter into a vial and 500 pl of 1 M ammonium acetate was added;
and 100 ul was injected into the HPLC Agilent 1100 series system
(Agilent Technologies, Hewlett-Packard, Waldbronn, DE).

The HPLC system was calibrated for each of the pigment standards
(chlorophyll-a, chlorophyll-b, chlorophyll-c; + c,, peridinin, allox-
anthin, 19’-butanoyloxyfucoxanthin, 19’-hexanoyloxyfucoxanthin,
zeaxanthin, divinyl chlorophyll-a, fucoxanthin, diadinoxanthin,
lutein and {3-carotene: DHI LAB, Denmark) and peaks were
identified based on their retention times (Figure 2, Table 1).
Chromatographic analyses were carried out using a Hewlett-
Packard (HP) 1100 equipped with an inline degasser, quarternary
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Table 1. Pigments detected in the samples listed in the order of elution in the
HPLC system

Elution
Peak time
no. Pigment name Abbreviation (min)
1 chlorophyll-c; + ¢, Chl ¢ 4.48
2 peridinin Peri 5.37
3 19'-butanoyloxyfucoxanthin 19-but 6.55
4 fucoxanthin Fuco 7.03
5 19'-hexanoyloxyfucoxanthin 19-hex 7.98
6 diadinoxanthin Diadino 10.10
7 alloxanthin Allo 11.99
8 divinyl chlorophyll-a Div-chl a 26.53
9 chlorophyll-a Chla 26.73
10 R-carotene Beta 29.05

pump, autosampler and diode-array detector; data collection and
processing of chromatograms were done using the Chemstation soft-
ware. Pigments were separated on a Thermo Scientific Hypersil
MOS-2 C8 (150 mm x 4.6 mm, 3 um) column. Detection wavelength
was set at 440 nm with a 10 nm bandwith; the reference wavelength
was 750 nm with a 100 nm bandwith. The flow rate was set at
1.0 ml min~". The mobile phases were A: 70% methanol plus 30%
1 M ammonium acetate and B:100% methanol. Gradient elution
was designed at 25% B, lasted for 1 min and increased to 50% over
1 min, which was applied for 19 min. Elution was then resumed by
increase to 100% B over 5 min before programming back to first con-
ditions over 7 min. First conditions were applied for a further 7 min,
resulting in a total analysis time of 39 min.

CHEMTAX analysis

On the basis of the measured pigment concentrations, the phyto-
plankton community composition was estimated using the
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CHEMTAX software, as described by Mackey et al. (1996).
CHEMTAX is a matrix-factorization software that uses factor
analysis and a steepest descent algorithm to determine the best
fit to the data with a given initial ratio matrix of pigment ratios
(Mackey et al., 1996). Using an iterative process for a given initial
ratio matrix, the software optimizes the pigment ratios for each
group and applies the final ratio to the total chlorophyll-a in
each sample to determine the proportion of chlorophyll-a con-
centration attributed to each phytoplankton group in the commu-
nity. An important step to correctly estimate the contribution of
different algal classes to total chlorophyll-a by CHEMTAX is
the selection of the correct accessory pigment:chlorophyll-a
ratios (Henriksen et al., 2002; Rodriguez et al., 2002). Therefore,
pigment ratios to be used in CHEMTAX should come from the
major phytoplankton species native to the area from which the
samples were obtained (Mackey et al., 1996; Lewitus et al., 2005).
To determine the most appropriate input ratios for our
measured concentration of marker pigments data set, 60 further
pigment ratio tables were generated by multiplying each cell of
initial input ratio by a randomly determined factor F. Each of
the 60 ratio matrices was used and then the best 10% of results
were chosen to calculate the average of the abundance estimates
(Wright & Jeftrey, 2006). Besides the partial chlorophyll-a attrib-
uted to each phytoplankton group, an additional output is a new
matrix of pigment : chlorophyll-a ratios resulting from the best fit.
For each sample, 10 successive CHEMTAX runs were performed
using the output pigment : chlorophyll-a ratio matrix of each run
as input for the consequent run in order to have those ratios sta-
bilize toward their most probable values (Latasa, 2007)
(Supplementary Table S1). The three different input ratio matri-
ces of pigment:chlorophyll-a were tested and matrices were
based on pigment ratios published in the literature for oceanic
(Mackey et al., 1996) and estuarine species (Schliter et al,
2000; Lewitus et al., 2005). The results are output in terms of
absolute amounts (ugl™") of chlorophyll-a attributed to each
phytoplankton group (Supplementary Figure S1), and as a relative
amount (percentage) of chlorophyll-a (Figure 8) in a sample.

Data analysis

The relationships between environmental factors, pigment types
and concentrations and phytoplankton abundances were analysed
by Pearson’s product-moment correlation coefficients, following
transformations to natural logarithms using Statistica 8.0 software.
The relationships between phytoplankton cell counts obtained by
microscopy and respective pigments were examined by regression
analysis.

Results
Hydrography

During the study period (16 October 2018-11 September 2019),
sea surface temperature (SST) showed seasonal fluctuations, vary-
ing between 7.2°C (February) and 24.7°C (July) (Figure 3). From
November to May, values were consistently below 15°C. Salinity
during the sampling period ranged from 8.7 (May, ST3) to 17.4
psu (April, ST1). Salinity values were generally higher at ST1
between October and May, and slightly decreased at ST2 and
ST3 (Figure 3). Secchi disc depths decreased significantly from
ST1 to ST3 and the highest value was measured as 7.5 m at ST1
(November), with a minimum of 1.1m at ST3 (January)
(Figure 3). DO values showed frequent variations between 5.25
(October, ST3) and 11.81 mgl™" (May, ST2), and were generally
high at ST1. The pH values varied between 7.97 (March, ST3)
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Fig. 3. Changes in some environmental factors during the study period.

and 9.05 (August, ST3) and showed no pattern over the sampling
period (Figure 3).

Phytoplankton composition

A total of 80 eukaryotic phytoplankton taxa belonging to eight
algal classes were identified in surface water samples collected
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during the study period (Table 2). Forty-three taxa (54%) were
diatoms, 29 taxa (36%) were dinoflagellates and eight taxa
(10%) were other phytoflagellates, including silicoflagellates,
raphidophytes, cryptomonads, chrysophytes, prasinophytes and
euglenophytes. The number of diatoms and dinoflagellates, as
the major groups, accounted for 90% of the total number of
phytoplankton. The most diverse genera were Chaetoceros and
Rhizosolenia within diatoms, and Protoperidinium, Prorocentrum
and Tripos within dinoflagellates. The most frequent species
observed during the study period were Pseudo-nitzschia spp.,
Skeletonema spp. and Chaetoceros curvisetus from diatoms;
Prorocentrum micans, Tripos furca, T. fusus from dinoflagellates;
Plagioselmis prolonga from cryptomonads and Heterosigma aka-
shiwo from raphidophytes (Table 2).

Total phytoplankton abundance showed seasonal and spatial
fluctuations and was relatively low (49 x 10°-350 x 10° cells I71)
between October and March, while it was high (11 x 10°-
30,000 x 10% cells1™!)  between April and July (Figure 4).
The highest cell abundance (~27,500 x 10° cellsI™!) was detected
at ST2 in June (Figure 4). 87% of the cell abundances were lower
than 10* cells 17!, while 7% were between 10* and 10° cells 1", and
4% were between 10° and 10°cellsl™". Only 2% of cell abun-
dances were higher than 10° cells 1! (Table 2).

Group composition based on cell abundance varied between the
sampling months of the study period. Diatoms were clearly abun-
dant between April and May, while cryptomonads and raphido-
phytes were more abundant from June to September at ST2 and
ST3 (Figure 5). The average contribution of diatom abundance to
total phytoplankton decreased from ST1 to ST3 (41 to 25%),
while the average contribution of dinoflagellate and other phytofla-
gellate abundances increased (59 to 75%) (Figure 6).

Diatoms

The majority of phytoplankton taxa (43 taxa) were diatoms. The
most diverse genera were Chaetoceros and Rhizosolenia; and the
most abundant species were Pseudo-nitzschia spp., Skeletonema
spp. and Chaetoceros curvisetus. In general, diatom abundance
displayed marked seasonal differences and their highest abun-
dance was observed between April and May in the study area
(Figure 5). The maximum diatom abundance (~11,000 x 10> cells
1"") was found in May, dominated by Skeletonema spp. at ST3
(~10,750 x 10> cells 1Y) (Figure 5). Skeletonema spp. reached
~8100 x 10> cells 1" at ST2 in May, as well (Figure 5). Other com-
mon diatoms were Pseudo-nitzschia spp. and Chaetoceros curvise-
tus in the study region with a highest abundance of 520 x 10 cells
17" at ST1 in May, and 325 x 10° cells ™" at ST3 in April, respect-
ively. Diatom abundance was negatively correlated with salinity
(P <0.05) and there was a strong positive correlation between dia-
tom abundance and DO (P <0.01) (Table 3). The mean annual
contribution of diatoms to total phytoplankton abundance was
31.5% (Figure 6).

Dinoflagellates

Dinoflagellates were the second major group (29 taxa) of the
phytoplankton community. Protoperidinium, Prorocentrum and
Tripos were the most diverse genera. Dinoflagellate abundance
was generally lower, compared with the other groups. Their high-
est abundances were found at ST2 and ST3 (Figure 5). The highest
dinoflagellate abundance (214 x 10 cellsI™!) was observed in
June, dominated by Scrippsiella acuminata at ST2 (142 x 10> cells
17!) (Figure 5). The same species reached 34 x 10° cells ™" at ST3
in June, as well. Other dinoflagellate species, Prorocentrum scutel-
lum and Heterocapsa triquetra reached 17 x10°cells]™" in
December and 16 x 10® cells ™! in June, respectively (Figure 5).
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Dinoflagellate abundance was weakly positively correlated with
DO (P <0.05), while no correlation was found between salinity,
temperature and dinoflagellate abundance in the study period
(Table 3). The mean annual contribution of dinoflagellates to
total phytoplankton abundance was 6.5% (Figure 6).

Other phytoflagellates

A total of eight phytoflagellate taxa belonging to six algal classes
were observed in surface water collected during this work.
Plagioselmis prolonga (Cryptophyceae), Heterosigma akashiwo
(Raphidophyceae),  Apedinella  sp. (Chrysophyceae) and
Eutreptiella sp. (Euglenophyceae) were the most common species
in the study area. Plagioselmis prolonga, a bloom-forming crypto-
monad, was frequently observed and its highest abundance
reached 540 x 10’ cells]™" at ST3 in August (Figure 5).
Cryptomonad abundance was positively correlated with salinity
(P<0.05) and pH (P<0.01) during the study period (Table 3).
The mean annual contribution of cryptomonads to total phyto-
plankton abundance was 34.6% (Figure 6). Another bloom-
forming species was Heterosigma akashiwo, and it was commonly
observed from June to September. A bloom of H. akashiwo
occurred at ST2 in June with maximum abundance of 27,000 x
10° cells 17" (Figure 5). Raphidophyte abundance was positively
correlated with temperature (P < 0.05, Table 3). The mean annual
contribution of raphidophytes to total phytoplankton abundance
was 20.5% (Figure 6). Euglenophytes were generally observed
between March and September (Figure 5). The highest abundance
of Eutreptiella sp. was found as 432 x 10 cells1™" at ST2 and ST3
in April. Euglenophyte abundance was negatively correlated with
Secchi depth (P <0.05) and positively correlated with DO (P <
0.05) during the study period (Table 3). Apedinella sp. appeared
only in April and reached 1100 x 10° cellsI™" at station ST1 and
ST2 (Figure 5). Chrysophyte abundance was positively correlated
with salinity (P <0.05, Table 3). The mean annual contributions
of chrysophytes, euglenophytes, silicoflagellates and prasino-
phytes to the total phytoplankton abundance were 4.5, 1.8, 0.6
and 0.1%, respectively (Figure 6).

Distribution of marker pigments

Chlorophyll-a and nine other marker pigments were identified in
the Golden Horn Estuary (Table 1). Lutein, zeaxanthin and
chlorophyll-b were not detected at any time and station.
Chlorophyll-a and marker pigment (e.g. fucoxanthin and peridi-
nin) concentrations for all stations and all sampling dates are pre-
sented in Figures 4 and 7.

Chlorophyll-a concentrations ranged between 0.12 and 19.49
ugl™ in surface waters during the study period (Figure 4). The
highest chlorophyll-a concentrations (19.49 and 14.24ugl™")
were observed at ST3 and ST2 during July. Chlorophyll-a values
were generally lower (<1.5ugl™") from October to June, and
increased markedly between July and September (Figure 4).

In addition to chlorophyll-a, concentrations of two other
marker pigments, fucoxanthin and peridinin, being the major
markers of diatoms and dinoflagellates, respectively, were identi-
fied at the study region. The concentration of fucoxanthin,
which was notably high (>0.15ug1™") from April to September,
was observed to be low (<0.05ug I"!) between October and
March (Figure 7). Its concentration in surface water varied
between 0.05 and 3.41 ugl™'. Fucoxanthin concentrations were
generally low (<0.98 pg ™Y at ST1, and the maximum fucoxan-
thin values were measured at ST2 (3.41 ug L) in June and at
ST3 (2.47 ug 1™ in July, respectively (Figure 7).

Peridinin concentrations were low from October to May (0.06-
0.30ugl™"), and values were consistently below 0.30ugl™
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Table 2. List of phytoplankton taxa identified during the study period and the groups of abundance based on the mean cell number

Sampling periods

¥59

Taxa Oct. Nov. Dec. Jan. Feb. Mar. Apr-I Apr-ll May-I May-II June July Aug. Sep.

Bacillariophyceae

Actinocyclus sp. - - = = A - - = = = - - - _

Aulacoseira granulata - - - A = = = = = = - - - -

Asterionellopsis glacialis - - A - - - = = = - - - - _

Cerataulina pelagica A - = = = = = = - - - - - _

Chaetoceros aequatorialis A - - - - - - - - - _ _ _ _

Chaetoceros affinis - - - A = - = = = = B - - -

Chaetoceros curvisetus - B - A - A B D C - - - = =

Chaetoceros decipiens - A - - - - - - B = - - - -

Chaetoceros diadema A - - = - = - - - - - _ _ _

Chaetoceros didymus - - - - - = = = - - - _ A _

Chaetoceros lorenzianus A - = - = - - - - - _ _ _ _

Chaetoceros teres - - - - - = = = - - - _ B _

Chaetoceros tortissimus A - - = - = - - - - _ _ _ _

Chaetoceros socialis - - - = - - - - - - _ _ _ _

Chaetoceros sp. B A A B A - A - - - - A B -
Coscinodiscus sp. A A A A - - A = - - - - _ _
Cylindrotheca closterium C A = - - - - - = = A = B B
Dactyliosolen fragilissimus - - - - A = = = - - B _ _ _
Ditylum brightwellii - - A A - - - - = = = - - -
Guinardia delicatula A - A B - - A = - - B - _ _
Guinardia striata - - - - = = = - - - - A _ _
Hemialus hauckii A - = = = = = - - - - - _ _
Lauderia annulata A - - - = = = = - - - - _ -
Leptocylindrus danicus - - B B A - - - - - B - A B
Leptocylindrus minimus A - - B - - - = = = = - - _
Licmophora sp. - - = = = = = - - - - - _ A
Melosira moniligera A - - = = = = = = - - - - -
Meuniera membranacea - - - A - - - - - - = - - -
Navicula sp. A - - - = = = = = - - - _ -
Nitzschia longissima A A A A - A A A = = = - _ _
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Nitzschia sp.

Pleurosigma normanii

Pleurosigma sp.

Proboscia alata

Pseudo-nitzschia spp.

Pseudosolenia calcar-avis

Rhizosolenia hebetata

Rhizosolenia setigera

Skeletonema sp.

Stellarima stellaris

Striatella unipunctata

Thalassionema nitzschioides

Thalassiosira rotula

Dinophyceae

Dinophysis acuminata

Dinophysis acuta

Dinophysis caudata

Diplopsalis lenticula

Gyrodinium sp.

Heterocapsa triquetra

Katodinium glaucum

Noctiluca scintillans

Oxytoxum scolapax

Phalacroma rotundatum

Polykrikos schwartzii

Prorocentrum cordatum

Prorocentrum compressum

Prorocentrum micans

Prorocentrum scutellum

Protoperidinium bipes

Protoperidinium brevipes

Protoperidinium conicum

Protoperidinium depressum

Protoperidinium divergens

(Continued)
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Table 2. (Continued.)

Taxa

Sampling periods

Oct.

Nov.

Dec.

Jan.

Feb.

Mar.

Apr-| Apr-ll

May-I

May-II

June

July

Aug.

Sep.

Protoperidinium pellucidum

Protoperidinium steinii

Protoperidinium sp.

Scrippsiella acuminata

Tripos furca

Tripos fusus

Tripos horridus

Tripos lineatus

Tripos muelleri

Dictyochophyceae

Dictyocha fibula

Dictyocha speculum

Octactis octonaria

Raphidophyceae

Heterosigma akashiwo

Cryptophyceae

Plagioselmis prolonga

Chrysophyceae

Apedinella sp.

Prasinophyceae

Pyramimonas grossii

Euglenophyceae

Eutreptiella sp.

A

The groups of abundance (cells |?) refers to the following: A=<10% B=10°-10% C=10"-10° D=10°-10% E =>105 (-), absent.
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Fig. 4. Distribution of total phytoplankton abundance, chlorophyll-a and divinyl chlorophyll-a in the GHE during the study period.

(Figure 7). Its concentration in the surface water changed from 0.06
to 4.66ugl™" during the study period. Peridinin concentrations
were generally low at ST1 (<0.4 ug1™"), with the highest concentra-
tion being measured at ST2 (4.66 pg ™)) in June (Figure 7).
Alloxanthin was mostly observed between April and July, and
its concentration varied between 0.05 and 0.47 ugl™" (Figure 7).
The maximum alloxanthin value was detected at ST2 in June.
Chlorophyll-c; + ¢, was generally observed during the study per-
iod and concentrations varied between 0.03 and 0.76 ug1™". The
maximum chlorophyll-¢c; + ¢, value was measured at ST2 in
June (Figure 7). Diadinoxanthin concentrations changed between
0.09 and 0.36 ug 1! (Figure 7) and the maximum value was
measured at ST2 in June. $3-carotene was mostly detected from
October to January, and from July to September, and its concentra-
tion ranged between 0.05 and 0.31 ug1™" (Figure 7). The maximum
3-carotene values were observed at ST2 (0.31 and 0.30 pg I™) in
December and January, respectively. Other accessory pigments, i.e.
divinyl chlorophyll-a (0.34-1.43 ugl™"), 19'-butanoyloxyfucoxanthin
(0.35-10.75ug1™") and 19'-hexanoyloxyfucoxanthin (0.07-0.66
ugl™), an indicator of prochlorophytes, chrysophytes and prymne-
siophytes, were detected but they were not consistently present.

CHEMTAX derived estimations

The CHEMTAX analysis indicated that dinoflagellates were the
dominant planktonic algae calculated based on Matrix 1 and
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Matrix 2 (Figure 8A, B). Dinoflagellates were the most dominant
species at all stations except from April to July, representing 60-
99% of the phytoplankton composition and contributing on average
62% of total chlorophyll-a in Matrix 1 (Figure 8A). Cryptomonads
were identified as the second dominant algal group, contributing on
average 35% to total chlorophyll-a and diatoms contributed on aver-
age 3% to total phytoplankton composition. The average contribu-
tion of dinoflagellate and cryptomonad abundances to total
phytoplankton showed minor variations from ST1 to ST3.

The calculation based on Matrix 2 showed that dinoflagellates
were the dominant taxa at all stations except from April to July,
accounting for 61-100% of the phytoplankton composition and
contributing on average 62% of total chlorophyll-a (Figure 8B).
Diatoms and cryptomonads contributed on average 30.3 and
7.7% to total chlorophyll-a, respectively. The average contribution
of dinoflagellate abundance to total phytoplankton inreased from
ST1 to ST3 (59 to 67%), while the average contribution of diatom
abundance decreased (34 to 25%).

The results based on the above two matrices (Matrix 1 and
Matrix 2) substantially overestimated dinoflagellates but consider-
ably underestimated diatoms (Figure 8A, B). During the estima-
tion process, it was determined that as the shared pigments of
diatoms and dinoflagellates, the increase or decrease in diadinox-
anthin and chlorophyll-¢; + ¢, to chlorophyll-a ratio could affect
the estimation of diatom composition, leading to the underesti-
mation of diatoms and overestimation of dinoflagellates.
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Fig. 5. Spatio-temporal variations in abundance of phytoplankton groups during the study period (dashed lines show the lowest limit of bloom density).

Based on the above results, we reduced the ratio of fucoxanthin
and diadinoxanthin of diatoms in Matrix 1 and Matrix 2, and
increased the ratio of chlorophyll-c; + ¢, of diatoms. Final adjust-
ments were conducted to obtain Matrix 3, whose results were
more similar than Matrix 1 and Matrix 2 to those from micro-
scopic observations (Figure 8C). CHEMTAX analysis based on
Matrix 3 identified diatoms as the dominant algal group, except
in April at ST1 and ST2, and in June at ST3. Diatoms represented
68-100% of the phytoplankton composition with a contribution
on average of 86% of total chlorophyll-a (Figure 8C). However,
dinoflagellates and cryptomonads contributed on average 30.3%
and 7.7% to total chlorophyll-a, respectively. The contribution
of diatoms to the phytoplankton community showed higher
values at ST1 and ST3 (88% and 87%) when compared with
ST2 (83%). Dinoflagellates were more abundant at ST2 (11%),
than ST1 and ST3 (8.1 and 8.5%). The relative distribution of
cryptomonads increased from ST1 (3.8%) to ST3 (5%).

Discussion

The validity of using pigment signatures detected by HPLC to
estimate phytoplankton group composition was tested for the

https://doi.org/10.1017/50025315421000631 Published online by Cambridge University Press

Mediterranean Sea (Thyssen et al., 2011; Yiicel, 2017) and Black
Sea (Ediger et al., 2006; Eker-Develi et al., 2012; Agirbas et al.,
2015, 2017). Although there have been many studies on phyto-
plankton in the Golden Horn Estuary (Tas et al., 2009; Tas &
Okus, 2011; Tas & Yilmaz, 2015; Dursun & Tas, 2019; Tas,
2019) based on microscopic examination, the phytoplankton
group composition had not yet been evaluated by HPLC pigment
analysis in this region.

In this study, the highest abundances in total phytoplankton
were observed between April and September, as shown by micro-
scopic analysis. The abundance pattern displayed seasonal varia-
tions in this study that are similar to previous studies (Tas
et al, 2009; Tas & Yilmaz, 2015; Dursun & Tas, 2019).
Phytoplankton studies performed in estuaries show that environ-
mental factors such as salinity, temperature, Secchi depth and
adaptation to the environmental conditions play a major role in
seasonal variations of phytoplankton in terms of diversity and
abundance (Buri¢ et al., 2007; Barbosa et al., 2010; Jasprica
et al., 2012). Similar relationships were demonstrated in previous
studies in the GHE by Tas et al. (2009, 2016) and Dursun & Tas
(2019), but no clear relationships were found between the envir-
onmental factors and total phytoplankton abundance measured
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in this study. However, it is known that phytoplankton abundance
is increased in coastal areas and estuarine ecosystems by eutrophi-
cation (Smith et al., 1999). As noted in previous studies in the
GHE (Tas et al., 2009; Tas & Okus, 2011; Tas & Yilmaz, 2015),
nutrient inputs might cause an increase in phytoplankton abun-
dance in the GHE, particularly in summer and spring.

The number of phytoplankton taxa observed during this study
was similar to that of Dursun & Tas (2019), but lower than pre-
vious studies of the GHE by Tas et al. (2009) and Tas & Yilmaz
(2015). The contribution of diatoms and dinoflagellates to the
total number of species was higher (90%), and that of other phy-
toflagellates was relatively lower (10%) than previous studies per-
formed by Dursun & Tas (2019) in the GHE and by Jasprica et al.
(2012) in the Eastern Adriatic estuary (Neretva River). This
inconsistency between studies was probably due to the differences
in the total number of samples, sampling periods and frequencies.
Buri¢ et al. (2007) stated for the Zrmanja, Adriatic Sea that dia-
toms dominated in spring, while dinoflagellates and other phyto-
flagellates dominated in summer. Our results were generally
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Fig. 6. Relative contribution of phytoplankton groups to
the total abundance during the study period.

consistent with Buri¢ et al. (2007) and this indicates that phyto-
plankton group composition in the GHE may change rapidly
depending on environmental conditions.

The highest phytoplankton abundance was found at ST2 in
June, although some higher abundances were observed at all sta-
tions particularly in May. Furthermore, chlorophyll-a values were
generally observed to be higher from July to September at all sta-
tions and the maximum chlorophyll-a value (19.50 ugl™") was
measured at ST3 in July. In contrast to the study performed by
Silva et al. (2008), who found a good relationship between total
phytoplankton abundance and HPLC derived chlorophyll-a
concentrations in Lisbon Bay, Portugal. The results of this study
showed no relation between chlorophyll-a concentrations detected
by HPLC and total phytoplankton abundance. The same conclusion
was reported by Pérez et al. (2006) and this situation may be caused
by the constitution of the high portion of phytoplankton by pico-
planktonic species which could not be identified by microscopy.
Thus, all phytoplankton groups could not be identified by micro-
scopic analysis in the study area. Flow cytometry may provide
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Table 3. Pearson Product-Moment correlations between environmental parameters, pigment types and their concentrations, and phytoplankton group abundances

Diatoms Dinoflagellates Raphidophytes Cryptomonads Chrysophytes Euglenophytes

Secchi depth —0.332*

Salinity —0.404* 0.321* 0.392*

Temperature 0.319*

DO 0.498** 0.375* 0.327*

pH 0.510**

Peridinin 0.819**

19'-but 0.896™*

Fuco 0.558**

19'-hex

0.762**

Alloxanthin 0.729**

Statistically significant correlations are indicated by symbols: N =42; xP <0.05, sxP<0.01.
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additional information regarding the cell size distribution of the
plankton community. In particular the picoplankton component
can be studied in great detail (Olson et al, 1990; Campbell &
Vaulot, 1993; Veldhuis & Kraay, 2000). In addition to this, estima-
tion of the abundance of the total phytoplankton community based
on chlorophyll-a only can be unreliable because of the algal cells’
adaptation strategy to varying light levels of changing their pigment
content (Everitt et al., 1990; Veldhuis & Kraay, 1990).
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Higher divinyl chlorophyll-a values (0.34-1.43ugl™") were
measured from July to September (Figure 4) and these findings
may indicate the existence of prochlorophytes, which are photo-
synthetic picoplankton. Gibb et al. (2000) stated that higher divi-
nyl chlorophyll-a values were detected when the sea surface
temperature (SST) values were greater than 15°C and our findings
were consistent (SST >23°C, from July to September; Figure 3)
with the results of that study. However, in this study, lutein,
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Fig. 8. The relative contribution of groups to phytoplankton composition, calculated using different pigment matrices in CHEMTAX. Matrix 1 (A), Matrix 2 (B), Matrix

3(C).

zeaxanthin and chlorophyll-b pigments, which were commonly
stated as the markers of the picoplanktonic species (Eker-Develi
et al, 2012; Agirbas et al, 2015), were not detected. However,
not all picoplanktonic groups (for example, Prochlorococcus
spp.) carry lutein, zeaxanthin and chlorophyll-b markers. This
was highlighted by Veldhuis & Kraay (2004) who showed that
Prochlorococcus spp. has only divinyl chlorophyll-a pigment
instead of chlorophyll-a and does not carry lutein and zeaxanthin.

Comparative studies generally show a good relationship
between microscopy and HPLC analysis for diatom species (espe-
cially larger ones), but the correlation is lower for dinoflagellates,
raphidophytes and crysophytes due to the shared marker pig-
ments (Zapata et al, 2004; Eker-Develi et al, 2012; Agirbas
et al.,, 2015). Comparison of fucoxanthin vs diatom abundance
indicates that the relationship was not found in this study. It
has been reported by Agirbas et al. (2017) for the Black Sea
and by Seoane et al. (2011) for the Bay of Biscay (Basque coast,
northern Spain) that diatoms were the most abundant micro-
planktonic group in summer, with the highest diatom abundances
being observed during spring (April and May) in this study, simi-
lar to Totti’s (2000) observations for the middle Adriatic.
Moreover, the concentration of fucoxanthin was found to be max-
imum in June and July in this study which differs from the data
presented by Ansotegui et al. (2003) when the maximum fuco-
xanthin concentration was found in late winter in a Spanish estu-
ary. This inconsistency might be the result of the peak of
fucoxanthin  possibly  originating from  nanoplanktonic
non-diatom species in the study region (Krivokapi¢ et al.,
2018). All these findings suggest that fucoxanthin as a marker
pigment did not work well for the diatom community and
demonstrates the need for microscopic confirmation to fully char-
acterize peak events in the GHE.

Generally, low concentrations of peridinin were detected with
the HPLC analysis, in correspondence to the low abundance of
dinoflagellates detected by microscopic analysis. The highest
dinoflagellate abundance (214 x 10° cellsI™!) was observed in
June, in accordance with the highest peridinin concentration
(4.66 ugl™") at the same period. The maximum dinoflagellate
abundance was dominated by Scrippsiella acuminata in the
study region, which was indicated as the carrier of peridinin by
several studies (Zhang et al, 2000; Wong & Wong, 2009;
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Islabao et al., 2016). Thus, comparison of marker pigment values
and microscopic cell counts indicates that a significant relation-
ship between peridinin and dinoflagellate abundance was
observed in the study region (Table 3, N =42, P<0.01, r=0.819).
Cryptomonads were one of the most frequent groups in the
phytoplankton community from October to April in the GHE,
as reported in other estuarine and coastal waters (Brunet &
Lizon, 2003; Carreto et al., 2003; Garibotti et al., 2003; Seoane
et al., 2006). However, alloxanthin, which indicates the presence
of crytocryptomonads (Jeffrey & Vesk, 1997), was mostly
observed between April and July. The maximum value was
detected in June and no correlation was found between allox-
anthin and cryptomonad abundance (Table 3). Moreover, dino-
flagellate abundance was highly correlated with alloxanthin
values (Table 3, N=42, P<0.01, r=0.729). A possible explan-
ation of this situation might be the presence of the dinoflagellate
genus Dinophysis, which contains alloxanthin as a major pigment
and shows a cryptomonad-like signature as described before by
Meyer-Harms & Pollehne (1998) for the Baltic Sea, and by
Schnepf & Elbrichter (1988) and Zapata et al. (2012) under
laboratory conditions. Several species of Dinophysis have been
identified in the GHE, reaching densities of almost 1 x 10° cells
17!, and the same densities were also reported for Nervion River
Estuary, Spain and Japanese coastal waters (Nishitani et al.,
2005; Laza-Martinez et al., 2007). Another possible explanation
for this situation might be the existence of relatively large dinofla-
gellate species in the GHE, such as Gyrodinium spirale, reaching
densities of almost 1.5 x 10> cells 17!, which also contain high pro-
portions of alloxanthin (Kong et al., 2012). As a consequence,
cryptomonad cell counts by microscopic analysis might not
match exactly with alloxanthin values, which can show a wider
distribution (Gieskes & Kraay, 1983; Rodriguez et al., 2002).
Dense algal blooms, except for a bloom-forming raphidophyte
Heterosigma akashiwo, were not observed in the GHE during the
sampling period. The first bloom of H. akashiwo was reported by
Tas & Yilmaz (2015) and after that by Dursun et al. (2016) almost
at the same time in this study area. During this study, a bloom of
H. akashiwo occured at ST2 in June. In previous studies, the
values of major pigments of H. akashiwo showed some variations.
Generally, the major pigment was found to be fucoxanthin
(Jeffrey & Vesk, 1997; Okumura et al., 2012), while others have
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additionally reported zeaxanthin and violoxanthin (Fiksdahl
et al., 1984; Rodriguez et al., 2006). However, the most abundant
pigments were detected as fucoxanthin and chlorophyll-c; + ¢, for
H. akashiwo in this study. Also, comparison of pigment values
and microscopic cell counts indicates that a significant relation-
ship between fucoxanthin and raphidophyte abundance was
observed in the study region (Table 3, N=42, P<0.01, r=
0.558). Moreover, our results were supported by Butrén et al.
(2012) for the Bay of Biscay and by Li et al. (2003) under culture
conditions. As a derivative of fucoxanthin, 19'- butanoyloxyfu-
coxanthin is presented mainly in chrysophytes (Wright &
Jeffrey, 2006; Kong et al., 2012). Exceptionally, a highly significant
relationship (Table 3, N =42, P<0.01, r=0.896) was detected
between H. akashiwo abundance and 19'- butanoyloxyfucoxanthin
in this study period. The highest abundance of H. akashiwo was
observed at ST2 in June. Moreover, 19'- butanoyloxyfucoxanthin
concentrations were only observed in June, when the raphido-
phytes were dominant in the GHE and maximum concentration
(10.75 ug 1I™!) was measured at the same time. These findings indi-
cate that 19'-butanoyloxyfucoxanthin might be the main marker
pigment, while chlorophyll-c; + ¢, and fucoxanthin were accessory
pigments of H. akashiwo in the GHE.

19’-hexanoyloxyfucoxanthin was reported as a major pigment
signature of Emiliania huxleyi, a bloom-forming prymnesiophyte,
by Stolte et al. (2000) for all Atlantic strains of this species and by
Ediger et al. (2006) for the south-western Black Sea. The pigment
composition of the chrysophyte, Apedinella sp., was characterized
by the predominance of 19'-hexanoyloxyfucoxanthin in this
study, as reported by Daugbjerg & Henriksen (2001) under
laboratory conditions. Apedinella sp. appeared only in April and
reached maximum abundance at ST1 and ST2. Moreover,
19’-hexanoyloxyfucoxanthin concentrations were commonly
observed in April, when chrysophytes were dominant in the
GHE and maximum concentration (0.66 ug I"!) was measured
at the same time. A significant relationship (Table 3, N=42, P
<0.01, r=0.762) was detected between Apedinella sp. abundance
and 19'- hexanoyloxyfucoxanthin.

HPLC pigment analyses and CHEMTAX have been used pre-
viously as a valuable monitoring tool in estuaries for determining
the absolute or relative contributions of major phytoplankton
classes as determined by variations in pigment concentrations
(Ansotegui et al, 2001; Paerl et al., 2003; Lewitus et al., 2005).
Moreover, there is evidence in the literature that CHEMTAX ana-
lysis results were generally consistent with microscopic observa-
tions (Wright et al, 1996; Havskum et al, 2004; Llewellyn
et al., 2005). However, in recent years, it has been found that
one algal species cannot be accurately determined by one specific
pigment and different algal groups can share the same pigments,
thus affecting the accuracy of the CHEMTAX method (Zapata
et al., 2012). There are species that carry ‘unambiguous’ marker
pigments of a different phytoplankton group, e.g. fucoxanthin-
and alloxanthin-containing dinoflagellates or only fucoxanthin-
containing prymnesiophytes (Jeffrey & Vesk, 1997; Irigoien
et al., 2004; Zapata et al., 2004).

An important step to correctly estimate the contribution of dif-
ferent algal classes to chlorophyll-a by CHEMTAX is the selection
of the appropriate accessory pigment:chlorophyll-a ratios
(Henriksen et al, 2002; Rodriguez et al., 2002). Therefore,
pigment ratios to be used in CHEMTAX should come from the
major phytoplankton species native to the area from which the
samples were obtained (Mackey et al, 1996; Lewitus et al.,
2005). Three different input ratio matrices of pigment:
chlorophyll-a were tested in this study and matrices were based
on pigment ratios published in the literature for oceanic (Matrix
1, Mackey et al., 1996) and estuarine species (Matrix 2, Schliiter
et al., 2000 and Matrix 3, Lewitus et al., 2005). As can be seen
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in the estimations of Matrix 1, Mackey et al’s (1996) original
matrix has required modifications for adapting to different
regions - the application of CHEMTAX to estuaries needs to
take a typological approach, that is, calibration with species repre-
senting the study region. It is not surprising that application of
CHEMTAX calibrated with oceanic isolates to estuarine systems
can lead to inaccurate predictions of phytoplankton group com-
position, as originally cautioned by Mackey et al. (1996).
However, increase or decrease of the initial ratios of pigments
of diatoms and dinoflagellates leads to a relatively accurate assess-
ment for diatom composition (Matrix 3) but diatoms still tend to
be overestimated. Moreover, CHEMTAX prediction of cryptomo-
nads was also exceptionally poor in all initial ratio matrices
(Matrices 1, 2 and 3). This is not surprising, because this group
was derived from one species (Plagioselmis prolonga) and pigment
composition can vary within this class.

In addition to correlations between HPLC pigment analysis
and microscopy, phytoplankton classification using CHEMTAX
can provide qualitative and quantitative data on the composition
of phytoplankton, particularly in complex estuarine ecosystems.
Gameiro et al. (2007) reported on HPLC derived pigment concen-
trations and CHEMTAX enabled identification of diatoms, dino-
flagellates,  cryptomonads,  chlorophytes,  euglenophytes,
prasinophytes, cyanobacteria and haptophytes in the Tagus
River estuary, Portugal, and highlighted the reliability of HPLC
derived pigment analysis as a tool for the assessment of phyto-
plankton variability related to community diversity. In this
study, it was found that the composition of a phytoplankton com-
munity could not be accurately distinguished based on ratio of
pigment from the literature, and the calculated results were sig-
nificantly different from microscopic examination.

The marker pigments detected in this study constitute a high
proportion of accessory pigments (fucoxanthin, peridinin, allox-
anthin, etc.) and represent, as far as we know, the first detailed
description of the distribution patterns of these marker pigments
in the Golden Horn Estuary. HPLC derived marker pigments ana-
lysis is a useful method for assessment of some phytoplankton
groups quantitatively including fragile forms. This method has
an advantage over fluorescence microscopy or flow cytometry,
where measurements are made on the whole composition from
picoplanktonic size to large colonies in a short time. On the
other hand, based on the above results, it is suggested that
CHEMTAX method cannot accurately characterize the phyto-
plankton community and needs to be applied carefully to evaluate
phytoplankton composition of the Golden Horn Estuary.
This indicates that CHEMTAX analysis should always be accom-
panied by a microscopic analysis due to the ambiguous character
of some marker pigments. In future years, combined use of exist-
ing methods and also comparison with phytoplankton cell
volumes instead of abundances, will be the most reliable way to
monitor variations and dynamics of phytoplankton communities.
Future investigations, with more frequent sampling periods,
including all environmental variables (for example nutrients,
light transparency) are needed to establish a clear understanding
of HPLC derived phytoplankton pigment signatures in complex
estuary ecosystems.

Supplementary material. The supplementary material for this article can
be found at https:/doi.org/10.1017/S0025315421000631
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