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Abstract
In the study of social processes, the presence of unobserved heterogeneity is a regular concern. It should

be particularly worrisome for the statistical analysis of networks, given the complex dependencies that

shape network formation combined with the restrictive assumptions of related models. In this paper, we

demonstrate the importance of explicitly accounting for unobserved heterogeneity in exponential random

graph models (ERGM) with a Monte Carlo analysis and two applications that have played an important role

in the networks literature. Overall, these analyses show that failing to account for unobserved heterogeneity

can have a significant impact on inferences about network formation. The proposed frailty extension

to the ERGM (FERGM) generally outperforms the ERGM in these cases, and does so by relatively large

margins. Moreover, our novel multilevel estimation strategy has the advantage of avoiding the problem of

degeneration that plagues the standard MCMC-MLE approach.

Keywords: networks, heterogeneity, exponential random graph model

Thestatistical analysisofnetworkshasbecome increasingly important in thesocial andbehavioral

sciences in recent years. Indeed, inferential and predictive statistical models for networks have

been applied to a diverse range of social science problems, including international military

alliances (Cranmer, Desmarais, andMenninga 2012), international trade networks (Ward, Ahlquist,

and Rozenas 2013), segregation in adolescent friendship networks (Moody 2001), communication

networks (Eveland and Hively 2009), social and spatial interaction (Lee, Liu, and Lin 2010; Gondal

2011), and interest group networks (Box-Steffensmeier and Christenson 2014, 2015), amongmany

others. These statistical methods are exploding in use as they allow one to relax the conditional

independence assumptions required by most other statistical methods. In fact, a key strength of

these methods is that they allow complex dependencies—such as reciprocity, homophily, and

transitivity—to be explicitlymodeled. This allows old theories about social structure andbehavior

to be analyzed in a new light, while also opening the door for entirely new questions.

Yet, while the statistical analysis of networks continues to attract a great deal of attention from

scholars and the broader public, the quantitative study of networks remains in the relatively early

stages of development. Only recently have the statistical theory and computational techniques

Authors’ note: This research was supported by P2C-HD058484 from the Eunice Kennedy Shriver National Institute of

Child Health & Human Development awarded to the Ohio State University Institute for Population Research, the National

Science Foundation’s Methodology, Measurement, and Statistics Program and Political Science ProgramAwards #1528739

& #1528705, as well the Ohio Supercomputer Center. Earlier versions of this paper were presented in 2014 at the Summer

Methods Meeting of the Society for Political Methodology at the University of Georgia and the Seventh Annual Political

Networks Conference at McGill University. Replication data for this study are available on the Harvard Dataverse (Box-

Steffensmeier, Christenson, and Morgan 2017).
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been developed to rigorously analyze many common types of networks, such as weighted and

dynamic networks. Moreover, there remains significant gaps in the statistical tools that limit

their usefulness to scientists, among the most prevalent of which is the problem of unexplained

heterogeneity in models of network formation. Unexplained heterogeneity is simply variation

among the nodes that contributes to link formation but goes unmodeled, because it is either

unobserved, unmeasured or unimagined.1 Our objective is to improve thewell-known andwidely

usedexponential randomgraphmodel (ERGM), byexplicitlymodelingunexplainedheterogeneity.

The ERGM has been a cornerstone in the revolution of network analysis because it provides a

comprehensive and flexible method of incorporating structural network characteristics as well as

node and edge traits to explain network formation. However, despite the important advantages

of ERGMs over other methods of modeling network data, currently missing is a method of

incorporating unobserved heterogeneity into these models. This is an important gap that limits

the applicability of ERGMs in many areas of potential interest, given that we expect unobserved

heterogeneity to be the rule, rather than the exception. Indeed, one of the twomajor assumptions

of the ERGM is that themodel is correctly specified, and coefficient bias ormodel degeneracymay

result from violations of this assumption. In other words, if analysts are unable to collect all the

individual-level covariates needed to explicitly model the data generating process, substantive

inferences drawn from these models will be suspect. We propose to extend the ERGM to account

for this problem through the introduction of a frailty term.

This paper is comprised of three parts. First, we provide a rigorous definition of the proposed

frailty ERGM, or FERGM, and compare it to the standard ERGM approach. Second, we perform a

series of Monte Carlos to validate the proposed model on networks of various sizes and network

characteristics. The objective of the Monte Carlos is to compare the performance of the proposed

model to the standard ERGM that does not accommodate unexplained heterogeneity. Beyond

the evaluation of the proposed model, the Monte Carlo analysis also provides information about

the sensitivity of the standard ERGM to the presence of unexplained heterogeneity. Serious

considerations of this nature are absent from the literature and thus this analysis makes a major

contribution to the broader literature in its own right.2

Third, we demonstrate the applicability and value of the project with applications to two

well-known and important social networks: the Lazega (2001) law firm collaboration network and

Magnolia High network (Resnick et al. 1997). These cases serve as critical tests of the FERGM, both

because the networks have been explored in depth and because there is good reason to expect

different levels of unexplained heterogeneity in the formation of these networks.

This paper also makes an important contribution to the estimation of ERGM-family models by

employing a novel multilevel modeling solution. For the undirected networks, we use amultiple-

membership mixed-effects model to derive parameter estimates for the network- and node-level

network terms included in the model. This estimation strategy has the important advantage of

avoiding the vexing problem of degeneration in estimation that plagues the standard MCMC-MLE

approach in all but the simplest of networks while, as the Monte Carlo and substantive results

show, not greatly affecting the inferences drawn from these models.

1 The ERGM and Frailty Extensions

The ability to include structural and nodal characteristics sets ERGMs apart from other network

methods. As a consequence of this flexibility, ERGMs are an attractive modeling option for

1 By unobserved heterogeneity, we are specifically referring to the occasions in which some exogenous characteristic of the

actors in a network affects their likelihood to form ties, but goes unmeasured or is otherwise excluded from the model.

For instance, the characteristic of charismamay influence ties in a friendship network, but because charisma is difficult to

measure, it is likely to be a source of unobserved heterogeneity.

2 Section 2 provides some results that point to this being a significant and important gap in scholars’ understanding of

ERGMs.
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behavioral, social, natural networks and their coupling (see, e.g., Saul and Filkov 2007). In this

section, we provide a short review of the standard ERGM, along with its limitations, and then

present a rigorous description of our proposed extension, the frailty exponential random graph

model (FERGM).

1.1 The standard ERGM
Consider a network of n actors forwhich somedyadic relationship has been recorded. Such actors

may be individuals, groups, or nation-states, while the dyadic relationships may be friendship

ties, shared group memberships, bilateral treaties, or other forms of ties between the nodes in

the network. In the statistics literature, such relations are usually represented in the form of an

adjacency matrix, Y . In the binary networks considered here,3 Y is an n × n matrix with each

element of the matrix, yi j ∈ {0, 1}, indicating the existence or absence of a tie between unique

actors (nodes) i and j in the network. In undirected networks, yi j = yj i �i � j ; i.e., the adjacency
matrix is symmetric. In directed networks, this symmetry does not necessarily hold. In other

words, onemember of a dyadmay “send” a tie to the othermember, but not “receive” a reciprocal

tie in return.

The purpose of the ERGM is to model the probability of observing a given network conditional

on a set of measures on that network. Mathematically, the ERGM is defined as

Pr(Y = y � x, θ,Y) = exp{θT Γ (y , x)}∑
� ỹ ∈Y exp{θT Γ (ỹ , x)}

. (1)

Here, Y is the support of y , Γ (y , x) is a vector of network statistics calculated on y and on

(exogenous) nodal characteristics x, and θ is a vector of model coefficients. Γ can include any

number of measures of the structural characteristics of the network, such as measures of density

and transitivity. The denominator in (1), abbreviated below by κ, represents all possible networks

that could be formed given the fixed set of nodes in the network.

As Cranmer and Desmarais (2011) have recently pointed out, the ERGM is something of a

peculiar model when compared to models typically seen in social science. This is the case for

a couple reasons. First, unlike the more familiar statistical models, ERGMs operate on a single

realization of a network; i.e., they model the probability of observing the given network, y , with

what is essentially a single observation. Second, complex dependencies are allowed in themodel.

In other words, there is no assumption of independence between observations. These traits

are important to fully understand the model and they further highlight the importance of the

proposed frailty extension.

This family of models has become well utilized in the social sciences, where they are

more generally referred to as p∗ models. While the modern ERGM is largely attributed to

Wasserman and Pattison (1996), the foundationswere laidmuch earlier in spatial statistics (Besag

1974), and further developed by work on the network distributions, the class of models, and

estimation techniques (Feinberg and Wasserman 1981; Holland and Leinhardt 1981; Frank and

Strauss 1986). Currently, likelihood-based inference is provided by Markov chain Monte Carlo

Maximum Likelihood (MCMC-MLE) algorithms (Corander, Dahmström, and Dahmström 1998;

Crouch, Wasserman, and Trachtenberg 1998; Besag 2000; Handcock 2000; Snijders 2002) as

well as pseudolikelihood procedures (Strauss and Ikeda 1990; Wasserman and Pattison 1996),

though there are important objections to the latter (Besag 2000; Snijders 2002). Important to

the analysis of social processes, many extensions to the ERGM have allowed for role analysis

(Salter-Townshend and Brendan Murphy 2015) and the consideration of egocentrically sampled

network data (Krivitsky, Handcock, and Morris 2011). In addition, this family of models is

3 In other words, we do not consider weighted networks.
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developing toconsider longitudinal ordynamicnetworks in the formof temporal ERGMs (TERGMs)

(Hanneke and Xing 2007; Hanneke, Fu, and Xing 2010; Desmarais and Cranmer 2010; Cranmer

and Desmarais 2011) and separable temporal ERGMs (STERGMs) (Krivitsky and Handcock 2014;

Christenson and Box-Steffensmeier 2016).

As an aside, it is important to recognize that the ERGM is only oneof a handful of relatedmodels

used to understand data with complex interdependencies. The p∗ model has been extended
to identify between- and within-group ties for groups with stochastic block models (Wang and

Wong 1987). When group membership is unobserved, Nowicki and Snijders (2001) provide a

model to describe latent class membership. The agent-based approach of Snijders (2001) posits

conditionally independent dyads on latent class membership, which can be used to understand

features of social network dynamics (see also Snijders, Van de Bunt, and Steglich 2010). Relatedly,

latent space models, which generally reduce higher-order network dependencies down to lower

dimensional spaces, havegrownoutofwork in spatial statistics (Hoff,Raftery, andHandcock2002;

Hoff and Ward 2004; Franzese and Hays 2006), and have paid particular attention to exploring

networkdynamics. For example,WardandHoff (2007)model ties at each timeperiodas a function

of latent covariates (see also Ward, Ahlquist, and Rozenas 2013; Durante and Dunson 2014). More

recently, Hoff et al. (2015) provides amethod that combines the dependence representation of the

agent-based approach with the node heterogeneity of latent space approaches (see also Minhas,

Hoff, and Ward 2016).

Our objective in this paper is to improve on the well-used, powerful and flexible ERGM. It is not

to argue that the ERGM should be used to model all networks. One or more of the approaches

above may be more appropriate for a particular research question or data set.4 As stated by

Cranmer and Desmarais (2011, 68), the best approach for modeling complex interdependencies

will be “based on substance and the quest for a universally best method is quixotic.” Instead, we

offerherean important amendment to theERGM,amodel that is alreadyextremelypopular across

disciplines and is likely to continue to be so. In providing a frailty extension to the ERGMwemake

it even more widely applicable, since we suspect that there are many contexts where complex

interdependencies come with unobserved heterogeneity. Moreover, our model has the positive

side effect of overcoming estimation problems in the ERGM that lead to degeneracy.

1.2 The frailty ERGM
An important assumption for identifying Equation (1) is that Γ (y, x) is a vector of sufficient

statistics for the network; i.e., the model includes all network- and nodal-level covariates

necessary to explain the network. This is a strong assumption. As is the case with standard

regression models, excluding covariates that are correlated with both the dependent and

independent variables is a threat to inference. In a network model, excluding relevant covariates

is likely to be even more damaging to inference given the inherent correlations between network

statistics. For instance, in a friendship network, we may believe that the formation of friendships

(ties) between individuals is driven by many factors that are measurable; e.g., social class,

race, age, etc. However, we may suspect that there are other, intangible factors specific to each

individual that are difficult if not impossible tomeasure, such as “friendliness” or “charisma,” that

are also related to network structure (people that are friendlier are likely to have more friends,

increasing the centrality of friendly individuals above what we would expect given their other,

known attributes). In other words, the observed and measured characteristics are not sufficient

for explaining the networkwe observe. Further, because these unobserved characteristicsmay be

correlated with both the outcome (network structure) and the other explanatory variables, there

is the potential for mistaken inferences when such heterogeneity is not accounted for.

4 For a summary of the limitations of ERGMs, see Cranmer and Desmarais (2011).
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The approach we propose to accommodate such unobserved heterogeneity is directly

analogous to the use of frailty terms in other applied methods, such as in event history models.

In that context, frailty terms—modeled as individual-level random effects—are added to the

model to account for unobserved heterogeneity in the units, where it is meant to capture

variation in individuals’ susceptibility to disease or death (Vaupel, Manton, and Stallard 1979).

In our case, we introduce individual (or group) random effects into Equation (1) to model

unobservedheterogeneity in thepropensity for individuals in the network to form ties. Tobemore

concrete, suppose each individual has some level of sociality—i.e., friendliness or charisma in the

friendships network example above—which we will call si , then Equation (1) could be augmented

as such:

Pr(Y = y � ·) = 1

κ
exp

{
θT Γ (y, x) +

∑
si

}
. (2)

Here
∑
si is the sum of all of the individual frailty components.5 Recall that the ERGM estimates a

single probability for the graph as a whole. Thus, the frailties are added as a set to the numerator

and denominator (i.e., κ). For identification, they are allowed to vary according to a distribution

centered at 0. For the purposes of this paper, we use a normal distribution with mean 0 and a

variance, σ2
s , to be estimated from the data; i.e., si ∼ N (0,σ2

s ). To model a greater degree of

variability, distributions with more mass in the tails could certainly be used. Notice that, because

E [si ] = 0, modeling the frailty term as being centered at zero has a key advantage of leaving the

probability of the graph fixed in expectation, though the variance increases.

Our proposed extension is directly applicable to directed networks, though in this case we

would include sender and receiver effects—one each for each individual (or group)—in the

network. In this case, the objective is to model heterogeneity in the probability that actors in the

network send ties (the sender effect) and the probability they accept ties (the receiver effect). We

model these effects as having a joint Gaussian distribution centered at zero,

��
�
si

ri

��
� ∼ N

⎡⎢⎢⎢⎢⎢⎣
0,
��
�
σ2
s σsr

σsr σ2
r

��
�
⎤⎥⎥⎥⎥⎥⎦

(3)

where σ2
s and σ

2
r are the variances of the sender and receiver effects, respectively, and σsr is their

covariance, each to be estimated from the data. In terms of the ERGM, including these sender and

receiver effects would result in the following model to be estimated:

Pr(Y = y � ·) = 1

κ
exp

{
θT Γ (y, x) +

∑
si +
∑

ri
}
. (4)

As in Equation (2) and the sociality effects, the sender and receiver effects are included as additive

terms in the numerator and denominator. For the remainder of this paper, we focus on the

undirected frailty model of Equation (2), though it should be clear that the directed case is a

relatively straightforward extension.

1.3 Estimation
Estimation of the proposed FERGM was performed using a novel application of a (logistic)

multiple-membershipmixed-effectsmodel,which is amodel developedby education researchers

for the purpose of modeling student performance in cases where students may have moved

between classrooms (or other groups) during a period being studied (Goldstein 2003, ch. 13). In

that context, researchers are often interested in theperformanceof students on standardized tests

5 This specification is analogous to the way in which Krivitsky et al. (2009) introduce random effects terms to latent space

network models.
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and wish to account for the hierarchical structure of the data generating process, where students

are nested in classrooms, which are themselves nested in schools, etc. If students never move

classrooms (schools), then a standard hierarchical model is easily applied. However, the situation

is complicatedwhen students are assigned tomultiple classrooms. In that case, researchers need

to adjust for the fact that students can spend a portion of their time in multiple classrooms.

Multiple-membership models are one tool that has been developed for just such a situation.

In the case of the proposed network model, instead of modeling the performance of students,

we model the occurrence of ties between two nodes. In our application of the model, each

(potential) tie, yi j , is estimated as being associated with two groups—one being the group

associated with node i and the other with node j . More concretely, in the undirected case each

tie in this model is estimated as follows

Pr(yi j = 1) = logit−1
{
θT ΔΓ (y, x) + si + sj

}
. (5)

Here, si and sj are the random effects associated with nodes i and j , ΔΓ (y, x) is a vector of

change statistics (those corresponding with the sufficient statistics of Equation (1)) for when the

tie between i and j is toggled,while θ is the coefficient on these change statistics. In otherwords, if

youwere toexclude the randomeffects, youwould recover themaximumpseudolikelihoodmodel

for the standard ERGM.

Estimating theFERGM in thiswayhasbothadvantagesanddisadvantages.On theonehand, the

FERGM can be estimatedwithmany standardmixed-effectsmodeling packages (wewill use R and

Stan in the Monte Carlo and examples below), estimated much more quickly for larger networks,

and is less susceptible to issues of degeneracy when compared to the MCMC-MLE approach. On

the other hand, estimating the model in a way that extends the maximum pseudolikelihood

approach potentially opens up issues of efficiency and excessively optimistic inferences, which

are a weakness of that approach. However, our Monte Carlos as well as the below applications

suggest that the robustness of our estimation strategy to issues of degeneracy should outweigh

those concerns for most analysts.

2 Monte Carlo Analysis

In this section, we present the results of an extensive Monte Carlo analysis. The objective of this

analysis is to compare, under controlled conditions, the performance of the proposed FERGM to

the standard ERGMwhen unobserved heterogeneity is present in the network formation process.

To foreshadow our results, we find that the performance of the FERGM, as measured by the

root-mean-squared error of the errors, significantly outperforms the standard ERGM in a number

of contexts.

2.1 Network simulation
The first step of the Monte Carlo analysis was to simulate a set of networks of various sizes and

specifications.6 Undirected networks of n ∈ {25, 50, 100} nodes were specified. To approximate
the type of networks that may be encountered in applied research, while still keeping the data

generating process relatively simple, the model used to generate these networks included: the

overall network density, measured by the number of edges (ties) in the network; a transitivity

effect, measured by the geometrically weighted edgewise shared partner distribution (gwesp;

Snijders et al. 2006);7 and two node-level homophily effects. For the first nodal covariate, groupi ,

each node was randomly assigned with equal probability to one of two groups. For the second

6 Replicationmaterials for theMonte Carlo analysis and the applications in Section 3 are available on theHarvard Dataverse

(Box-Steffensmeier, Christenson, and Morgan 2017).

7 Our simulationmodel, aswell as our applicationsbelow, contain a third-order effect term in the formofGWESP.Weassume

here that the random nodal effects are not correlated with GWESP.
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Table 1. Summary of network densities for the networks generated in the Monte Carlo study.

25 nodes 50 nodes 100 nodes

γ Min. Mean Max. Min. Mean Max. Min. Mean Max.

0.00 0.017 0.081 0.237 0.214 0.258 0.299 0.225 0.239 0.256

−0.25 0.003 0.042 0.100 0.064 0.158 0.228 0.189 0.205 0.222

−0.50 0.003 0.030 0.077 0.020 0.049 0.113 0.129 0.160 0.188

−0.75 0.003 0.025 0.073 0.011 0.031 0.061 0.065 0.109 0.144

−1.00 0.003 0.020 0.057 0.008 0.023 0.050 0.025 0.068 0.115

Note: 1008 undirected, binary networks were drawn for each specification. The values for γ refer to the
coefficient on the individual-level unobserved heterogeneity term, which was drawn from a Gaussian

distribution with μ = 0 and σ = 1. Full model specifications are found in Equation (6).

nodal covariate, a continuous value for eachnodewasdrawn froma standardnormal distribution,

σi ∼ N (0, 1).
In notation, the data generating process used for the simulated networks was as follows:8

Pr(Y = y � ·) = 1

κ
exp

⎧⎪⎪⎨⎪⎪⎩
−3.25 × edgesy + 0.75 × gwespy

+0.25 ×
∑
i ,j ∈y

1(groupi = groupj ) + γ ×
∑
i ,j ∈y

�σi − σj �
⎫⎪⎪⎬⎪⎪⎭
. (6)

Here 1(·) is the indicator function and is equal to 1 if i and j belong to the same group and 0

otherwise. In otherwords, this defines adummyvariable that indicates shared groupmembership

and will have the effect of increasing the likelihood of a tie between nodes in the same group.

As indicated in (6), the vector of coefficients was set to θ = (−3.25, 0.75, 0.25, γ). The coefficient
on the continuous node-level homophily effect, γ, varied in increments of 0.25 from 0.0 to −1.0;
i.e., γ ∈ {0,−0.25,−0.50,−0.75,−1.0}. By varying the coefficient on theunobservedheterogeneity
in this way, we are able to test the performance of the ERGM and FERGM on networks for which

the importance of the unobserved heterogeneity in the data generating process varies.9

Overall, the abovemodel produced 15 different data generating processes (three network sizes,

five levels of heterogeneity). For each of these, random networks were generated following a

three-step procedure. First, an undirected basis network was generated with a default density of

0.15.10 Second, nodal covariates were assigned as specified above in Equation (6). Third, using

the modified basis network, 1008 networks were simulated for the given network coefficient

specification.11 A summary of model specifications and average network densities is presented

in Table 1 and six selected networks are show in Figure 1. As reported, network densities remain

relatively stable—they do not display any tendency toward 0 or 1—thus we were confident the

chosen specification does not produce degenerate networks across the range of network sizes

used.12

8 The data generating processwas specified to resemble the Lazega (2001) law firmnetwork analyzed by vanDuijn, Gile, and

Handcock (2009) in their landmark network simulation studies.

9 The decay strength for the geometrically weighted shared partner measure was fixed at 0.75, which was the value used in

van Duijn, Gile, and Handcock (2009). For a description of this measure, see Hunter and Handcock (2006), Hunter (2007).

10 Thedefault densitywas chosen to limit the chanceof creatingdegeneratenetworks.Overall, only fivedegeneratenetworks

were generated. All simulations were performed in R (version 3.0.3) using the network (version 1.9.0) and ergm (version
3.1.2) packages.

11 Simulations were done with a burn-in of 50,000, saving every 100 networks.

12 As expected, the more important the unobserved heterogeneity was to the network generating process, the lower the

average network density.
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Figure 1. Example networks.

2.2 Model estimation and evaluation
The second task in our preliminary Monte Carlo assessment of the proposed FERGM is to estimate

the models using the networks simulated as described in the previous section. Since we are

interested in the comparative performanceof the ERGMandFERGM in thepresenceof unobserved

heterogeneity, we purposefully excluded from the estimation of the models the node-level

continuous homophily term included in the network simulations; i.e., the last term involving γ

in Equation (6).

The standard ERGM was estimated through the state-of-the-art Markov Chain Monte Carlo

MLE (MCMC-MLE) methodology. In the MCMC-MLE approach, the denominator of Equation (1) is

approximated with a large sample from the universe of possible networks given the previous

iteration’s estimates of θ. After many iterations, estimates of θ are guaranteed to converge.

However,while theMCMC-MLEmethodologyhasbetter theoretical properties than thealternative

maximum pseudolikelihood (MPLE) approach, (see, e.g., Robins et al. 2007), it can suffer from

issues of degeneracy (Snijders 2002; Snijders et al. 2006).13 For this reason, we took a multistep

approach to avoid issues of degeneracy and to ensure convergence. In the first step, initial values

for θ were generated by taking (up to) four iterations of the algorithm.14 In the second step, the

algorithm was restarted using the estimates from the first step as the initial values. In this step,

the algorithm was run for up to 20 iterations, or until convergence (as determined by a lack of a

change in the log-likelihood). For situationswhere themodel failed to converge during the second

stage, another 10 more attempts were made (with 20 iterations of the algorithm included during

each attempt), with the initial values set to those from the previous attempt. If, after all of this, the

model still failed to converge, the network was discarded for nonconvergence.15

13 Themost common form of degeneracy is when the sampling procedure puts all themass on networks with density of zero

or one.

14 The algorithm terminates in the event that the model converged in fewer than four iterations.

15 Overall, this occurred for 528 networks, or about 3.5% of the simulated networks.
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Figure 2.Monte Carlo results.

Estimation of the FERGM was more straightforward. The FERGM was estimated as a multiple-

membership mixed-effects model, as described in Section 1.3, in Stan (Stan Development Team

2015). As the Monte Carlos focus on undirected networks, each node’s random component was

modeled as drawn from a single normal distribution, centered at zero with variance σw , with the

assumption that σw was drawn from a Cauchy distribution centered at zero with a dispersion of

2. The parameters for the endogenous structural parameter and the exogenous covariates were

given diffuse normal priors centered at zero with a standard deviation of 10.16

2.3 Results
Overall results for the Monte Carlo study are presented in Figure 2. Each of the panels shows the

(scaled) root-mean-squared error for coefficient estimates17 on the vertical axis and the level of

the unobserved heterogeneity on the horizontal axis. The first column of panels shows networks

with 25 nodes, the center column 50-node networks, and the right column 100-node networks.

16 Themodel was run for 1250 iterations for each network, saving the last 250. This ensured that the Gelman–Rubin (Gelman

and Rubin 1992) statistic for convergence, R̂ , was below 1.05 for all parameters and that the effective number of samples
from the posterior was sufficient.

17 Tomake themmore comparable, RMSE was scaled by the magnitude of the true coefficient values.
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Each rows reports the results for a different covariate. Results for the ERGM are reported as dotted

lines and open circles, while the FERGM results are shown as solid lines and closed circles.

The general takeaway from these results is that, on average, the FERGM performs better than

the standard ERGM in the presence of unobserved heterogeneity. In six of nine panels, the FERGM

reports lowerRMSE than the standardERGMat any level of unobservedheterogeneity. In theother

three cases, the differences in performance are slight. It is important to note that the scales of the

y-axes in these three are quite small. Furthermore, two of the cases in which the ERGM seems

to outperform the FERGM are for the coefficient on the exogenous homophily covariate for the

50- and 100-node networks (bottom row, right two columns). Since the unobserved heterogeneity

was, by construction, not correlated with this covariate, it should not be surprising that the ERGM

performed well.

On the other hand, when the ERGM is wrong, it is often significantly so. For instance, take

the GWESP structural term for the 100-node networks. Scholars are often interested in this

term, as such a parameterization of transitivity tends to explain much about how a network is

structured (see, e.g., Goodreau, Kitts, and Morris 2009). In this case, the presence of unobserved

heterogeneity leads toRMSEs that aremore than 3 times the size of those producedby the FERGM.

That is, when the FERGM does better, it generally does so by a hugemargin relative to the scale of

the coefficient. Overall then, the results are strongly in favor of the FERGM. The ERGM and FERGM

perform similarly in only a few cases: for the mid- and large-sized networks the ERGM performs

relatively well on the exogenous covariate; ERGM also does well on the endogenous terms for the

mid-sizednetwork. However, it fails otherwise, andwhen it fails, it does soby largemargins,which

makes inferences based on the ERGMmore problematic.

Finally, it should be noted that these results should be considered as a best-case scenario

for the standard ERGM. A great deal of effort went into estimating each of these networks and

assuring that the model had converged (see Section 2.2). When there was some question as

to the convergence status, the network was dropped. This means the Monte Carlo study was

designed conservatively, in favor of the standard ERGM. Because convergence in the ERGM may

be hampered by heterogeneity, evidence of someof theworst performing ERGMs are not included

in the results. Even with these precautions in place, these results suggest the standard ERGM is

very fragile in the face of unobserved heterogeneity and that our proposed FERGM can play an

important role when such heterogeneity exists.18

3 Applications

While the previous section demonstrated the potential importance of directly modeling

unobserved heterogeneity in nodal covariates in simulated network data, there remains a

question as to how the model we propose will function in practical, real-world problems. For

this reason, in this section we turn to two networks that have played an important role in the

networks literature: the Lazega (2001) law firm collaboration network and the Magnolia High

network (Resnick et al. 1997).

18 As a supplement to the extensive Monte Carlo analysis we present here, we also performed a more modest analysis to

capture another common case. In that analysis, three sets of fifty 50-node networks were generated where 3 nodes (6% of

the network) had a greater likelihood of forming ties (higher sociality). This was done by using the sociality term from

the ergm package. The three sets of networks were simulated such that the three “social” nodes had sociality levels of
0.50, 1.00, and 2.00, respectively. Otherwise, the data generating process was the same as in the rest of the paper. We then

estimated the standard ERGM and the proposed FERGM using the same routines as described above. The results of this

analysis were inline with what we present here: both the ERGM and FERGM performed similarly when the unaccounted

for heterogeneity was low, but in networks with higher heterogeneity, ERGM’s performance suffered. In fact, in networks

with three nodes having sociality of 2.00, only 27 of the 50 ERGMs converged using the routine we described above. And in

cases where the standard ERGM did converge, estimated RMSEs were noticeably higher for the ERGM than for FERGM. Full

results of this analysis is available from the authors.
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Figure 3. Lazega (2001) Law Firm Collaboration Network. This is an undirected network recording

collaborations between the 36 attorneys. The three female attorneys are highlighted in black.

3.1 Lazega law firm collaboration network
The first example we turn to is the Lazega (2001) law firm collaboration network. This undirected

network consists of 36 attorneys (nodes) in three New England offices: 22 attorneys were located

in Boston, 13 in Hartford, and 1 in Providence. There were three female attorneys in the data set,

all of which were located in the Boston office. In addition to each attorney’s office and gender, the

network includes data on attorneys’ seniority, and whether they were in litigation or corporate

practice. Overall, there are 115 ties (density of 18.3%). The network is shown in Figure 3, with the

female attorneys in red.

The Lazega network has been used in a number of studies investigating the properties of

ERGMs. In addition to acting as a template for the simulated networks explored in theMonte Carlo

analysis, van Duijn, Gile, andHandcock (2009) used the network in an important study comparing

the performance of the MPLE and MCMC-MLE approaches to estimating ERGMs, while Hunter and

Handcock (2006) used the network as an example in their development of curved exponential

family models.19 In other words, the Lazega network is considered to be well understood and

it quite amenable to analysis with ERGMs. This makes it an excellent example to gauge the

performance of the proposed FERGM.

For this analysis,wehaveadoptedan identicalmodel specification to theoneused in vanDuijn,

Gile, and Handcock (2009). The ERGM and FERGM included an edge term, homophily terms for

practice, gender, and office; nodal covariates for seniority and practice; and, to account for the

network structure, the model included a geometrically weighted edgewise shared partner term

(with decay equal to 0.7781, as in van Duijn, Gile, and Handcock (2009)). The ERGMwas estimated

with MCMC-MLE, as is current standard practice in the network sciences, while the FERGM was

estimated as a Bayesian multiple-membership model, as in the Monte Carlos in the previous

section.20

19 Also see Lazega and Pattison (1999) for another investigation of this network in the literature.

20 The ERGM was estimated with an MCMC burn-in of 250,000 with every 500 samples retained for a total sample size of

40,000. For the FERGM, which was estimated in Stan, four chains of 100 warm up iterations and 500 posterior samples

was taken. For this small network, this was enough to get the Gelman–Rubin diagnostic (Gelman and Rubin 1992) of

convergence R̂ to be at or below 1.01 for all estimated coefficients.
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Figure 4. ERGM and FERGM results for the Lazega law firm collaboration network.

The coefficients estimates along with 95% confidence (credible) intervals for these estimated

models are reported in Figure 4.21 Estimated from the standard ERGM are reported in black, while

the FERGM results are in red. As expected, the coefficient estimates for the ERGM agree with

those published by van Duijn, Gile, and Handcock (2009), while each of these coefficients is also

statistically significant at the95%confidence level (as shownby theconfidence intervals excluding

zero). The posterior means for the FERGM also largely agree with the standard ERGM results.

The difference between these models emerges when we turn to comparing the confidence

intervals of the ERGM with the credible intervals of the FERGM. On average, the FERGM credible

intervals are wider than the ERGM confidence intervals. In most cases this does not make a large

difference to the inferences we can draw from themodel; however, in one important case it does.

Notice that the credible interval for the gender homophily term increases significantly in the

FERGM when compared to the standard ERGM. In the case of the FERGM, the credible interval

includes zero, suggesting that theeffectof genderhomophily is not statisticallydifferent fromzero.

Looking more carefully at the network we see that the results for the FERGM are more

reasonable than those of the standard ERGM. Recall that there are only three (of 36) women in the

network. Of the potential 630 ties in the network, only three of them represent potential gender

homophily effects betweenwomen and only one of these is a tie. In otherwords, there is very little

data from which we can make the claim that gender homophily is important to the formation of

this network; i.e., the results from the standardERGMseemunreasonably certain about this effect.

On the other hand, the proposed FERGM, by incorporating the potential for other unobserved

nodal factors, is more conservative.

As an additional check on the relative performance of the two models, we also performed a

straightforward predictive analysis through simulation. For the estimated ERGM, we simulated

21 The coefficient estimates for the edges term was omitted as it is not typically of particular interest to analysts.
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Figure 5.Magnolia high friendship network.

500 networks, extracted the adjacency matrix, and then calculated the percentage of ties that

were correctly predicted in each of these. For the FERGM, we calculated the predicted probability

of a tie for each of the 500 posterior draws of the estimated parameters, used these predicted

probabilities to take a single draw from aBernoulli distribution for each dyad in the network, then

calculated the percent correctly predicted. Calculating the mean percentage correctly predicted

for each of these sets of simulations, we found that, on average, the FERGM outperformed the

standard ERGM by approximately 5% (79.7% for the FERGM versus 74.6% for the ERGM).

3.2 Magnolia high friendship network
The second network we investigate is the Magnolia High friendship network, which was first

reported in Resnick et al. (1997). This network is generated from amodel of adolescent friendship

networks in a large high school in the Southern U.S. Because it is constructed from a well-fitting

model of the observed network, the data generating process is known. Thus, the network allows

us to explore the behavior of the FERGM in another large, real-world example, but one in which

we should expect little to no unobserved heterogeneity. This example, then, gives us an idea

of the effect of using the FERGM in a case where a standard ERGM would be sufficient. Should

the FERGM differ significantly from the ERGM then analysts should be cautious in applying the

FERGM.Alternatively, should theFERGMdonoharm, thenanalysts risk little inapplying theFERGM

whenever there is reason to suspect unobserved heterogeneity.

Overall, the Magnolia High network has 1461 students across five grades (7th to the 12th). The

network includes 974 undirected ties for a density of 0.09%. The network includes data on each

node’s grade, race, and sex. The full network is presented in Figure 5, with nodes colored by their

grade.

For estimating the ERGM and FERGM for the Magnolia High network, we have adopted the

same model specified to generate the model. This included a term for the number of edges,
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Figure 6. ERGM and FERGM results for the magnolia high friendship network.

a geometrically weighted edgewise shared partner term (decay fixed at 0.25), and homophily

terms on grade, race, and sex.22

The results for the ERGMandFERGMestimates are shown in Figure 6. As before, point estimates

and confidence intervals for the ERGM are shown in black, while the FERGM posterior means and

credible intervals are shown in red. Unlike in the case of the Lazega network, there is not much

of interest to report; i.e., the ERGM and FERGM results are in agreement on all of the covariates.

In other words, in this large network with a known data generating process and little suspicion of

unobserved heterogeneity, the FERGM does no harm.23

4 Discussion

Network data, virtually regardless of the application area, are likely to exhibit unobserved

heterogeneity. It is, at the very least, difficult to rule out a priori. Our simulations show that

given heterogeneity, ERGMs often fall short. Under these circumstances, a modeling strategy

that is robust to heterogeneity is desirable. Here the FERGM looks promising. FERGMs directly

estimate theeffectsofheterogeneity,whichmake formore reliableestimatesofnetwork structure.

Moreover, when the FERGM outperforms the ERGM it generally does so by large margins.

In addition, our novel estimation approach, using a particular form of mixed-effects models,

opens up numerous avenues for future research. In simulated and substantive networks, we have

shown that using a mixed-effects model to estimate the FERGM leads to similar inferences, even

whenwe expect little to no unobserved heterogeneity. Ourmodel has the important advantage of

avoiding the issues of degeneracy that present serious obstacles to the estimation of ERGMs via

MCMC-MLE in all but the simplest networks. Further exploration of the application of well-known

mixed-effectsmodeling techniques to exponential family networkmodels could lead to advances

inmodelingmore complex network generating processes withoutmaking scholars dependent on

fragile estimation methods.

We suspect that advances in the development and application of network modeling, such as

this, will be useful throughout the social sciences and a host of other areas that are interested in

22 The ERGM was estimated with an MCMC burn-in of 65,536 with every 4,096 samples retained for a total sample size of

32,768. For the FERGM estimated in Stan, four chains of 400warm up iterations and 125 samples were taken. For this small

network, thiswas enough to get theGelman–Rubindiagnostic (GelmanandRubin 1992) of convergence R̂ to be at or below
1.05 for all estimated coefficients.

23 This should not be taken to mean that FERGM could never cause a problem. There may be some case (that we are

unaware of) where the data generating process behind the unobserved heterogeneity is not accommodated by our

rather straightforward implementation. In such a case the estimates of endogenous and exogenous parameters could be

adversely affected.
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modeling complex interdependencies. In addition, themethodologymayhelp practitioners in the

public policy and national security arenas who rely on the evaluation of coalition strategies and

relationships more accurately assess the role of policies and conditions. Further, at least one of

the applications appears to advance its own substantive literature, reducing the value of gender

in the generation of ties between lawyers.

There are, however, important caveats to this work. The simulations and substantive

applications do not comprise an exhaustive set of networks. Thus, while we believe that this

paper provides an invaluable extension to modeling network complexity where there is likely to

be unobserved heterogeneity, further work is necessary to fully understand the properties of the

FERGM and the tradeoffs with the ERGM. This is especially important given the myriad of ERGM

terms and several ways in which unobserved heterogeneity may exist in a network. Moreover, the

frailty extension is not a substitute for appropriately modeling link formation with the observed

data in the context of the ERGM. First and foremost, scholars need to embark on the nontrivial

task of specifying their models with the appropriate endogenous and exogenous terms. Provided

they have met with success there, employing the FERGM when there is believed to be remaining

unobserved heterogeneity would be a logical next step.
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