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Dense granular systems that consist of particles of disparate sizes segregate based on size
during flow, resulting in complex, coupled segregation and flow patterns. The ability to
predict how granular mixtures segregate is important in the design of industrial processes
and the understanding of geophysical phenomena. The two primary drivers of size
segregation are pressure gradients and shear-strain-rate gradients. In this work, we isolate
size segregation driven by shear-strain-rate gradients by studying two dense granular flow
geometries with constant pressure fields: gravity-driven flow down a long vertical chute
with rough parallel walls and annular shear flow with rough inner and outer walls. We
perform discrete element method (DEM) simulations of dense flow of bidisperse granular
systems in both flow geometries, while varying system parameters, such as the flow rate,
flow configuration size, fraction of large/small grains and grain-size ratio, and use DEM
data to inform continuum constitutive equations for the relative flux of large and small
particles. When the resulting continuum model for the dynamics of size segregation is
coupled with the non-local granular fluidity model – a non-local continuum model for
dense granular flow rheology – we show that both flow fields and segregation dynamics
may be simultaneously captured using this coupled, continuum system of equations.

Key words: rheology

1. Introduction

Dense granular systems in nature and industry are often non-monodisperse – i.e. consisting
of particles of disparate sizes. In non-monodisperse granular systems, the constituent
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grains segregate based on size during flow, forming complex patterns (e.g. Shinbrot
& Muzzio 2000; Gray & Thornton 2005; Hill & Fan 2008; Fan & Hill 2010; Schlick
et al. 2015; Gray 2018; Umbanhowar, Lueptow & Ottino 2019). The ability to predict
the dynamics of segregation is important across applications. For example, in geophysics,
granular size segregation can manifest in landslides and debris flows (Johnson et al. 2012),
in which larger grains segregate to the top of the flow, potentially causing more damage,
while in industry, size segregation can be an undesirable effect when blending granular
constituents of various sizes.

The current understanding is that there are two driving forces for size segregation in
dense granular flows. The first is pressure gradients, which are typically induced by gravity.
In pressure-gradient-driven size segregation, small particles move more readily through
the interstitial spaces that open and close during flow through a process referred to in the
literature as ‘kinetic sieving’, leading to a system stratified along the direction of pressure
gradients (Savage & Lun 1988; Gray & Thornton 2005; Gray & Chugunov 2006; Thornton
et al. 2012; Fan et al. 2014). While pressure-gradient-driven segregation has been the
focus of significant study, Hill and coworkers (Hill & Fan 2008; Fan & Hill 2010, 2011b;
Hill & Tan 2014) demonstrated that grains can also segregate in inhomogeneous flows
along directions orthogonal to gravitationally induced pressure gradients, driven instead
by gradients in the shear strain rate. As an example, this mechanism has been observed
in the split-bottom cell experiments of Hill & Fan (2008). In these experiments, not
only do the larger particles segregate to the top of the cell, but they also segregate
perpendicular to the direction of pressure gradients towards more rapidly shearing regions.
Shear-strain-rate-gradient-driven segregation has received comparatively less attention in
modelling efforts.

Due to the complexity of flow and segregation patterns, developing a general, predictive,
continuum model for coupled size segregation and flow in dense granular materials
remains an open challenge. Although much progress has been made over recent decades
(e.g. Savage & Lun 1988; Gray & Thornton 2005; Gray & Chugunov 2006; Fan & Hill
2011b; Fan et al. 2014; Tunuguntla, Weinhart & Thornton 2017; Gray 2018; Umbanhowar
et al. 2019), the development of continuum models that are capable of simultaneously
predicting the evolution of both segregation and flow fields, based solely on the geometry
of the flow configuration, applied loads and boundary/initial conditions is still in its
infancy. Instead, most continuum models for size segregation require some flow field
quantity, such as the velocity or stress fluctuation field, to be measured first from
experiments or discrete element method (DEM) simulations and then used as model input.
A crucial reason for the incompleteness of current models is the lack of a dense granular
flow rheology theory that may be coupled to segregation models. A widely used class
of viscoplastic models for steady, dense granular flow is based on the μ(I) rheology
(MiDi 2004; da Cruz et al. 2005; Jop, Forterre & Pouliquen 2005; Srivastava et al. 2021),
where μ is the stress ratio and I is the inertial number. One recent work that couples
rheology and segregation in dense granular flows is that of Barker et al. (2021), which
combines a regularized version of the μ(I) rheology (Barker & Gray 2017) with a model
for gravity-driven segregation. However, it has been well documented in the literature (e.g.
Kamrin 2019) that the μ(I) rheology, even in its regularized form, can break down in the
presence of spatial flow inhomogeneity, which can be attributed to non-local effects not
accounted for in the μ(I) rheology.

To address this point, significant effort has gone into the development of size-dependent,
non-local continuum constitutive theories for dense granular flow rheology, and coupling
a non-local rheological model with a segregation model provides a route to robust,
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simultaneous prediction of flow and segregation fields. In this paper, we focus on
the non-local granular fluidity (NGF) model of Kamrin and coworkers (Kamrin &
Koval 2012; Henann & Kamrin 2013; Kamrin 2019), which has been successfully
applied to predicting dense flows of monodisperse grains in a wide variety of flow
geometries. Then, the overarching aim of this paper is to formulate a continuum
theory for simultaneous prediction of flow and size segregation in dense granular
systems by integrating the NGF model with a phenomenological size-segregation
model. This is a broad goal, and in this paper, we narrow our focus to several
simpler, quasi-one-dimensional flow configurations. In most real-world flows, both the
pressure-gradient-driven and shear-strain-rate-gradient-driven segregation mechanisms
are present, making it difficult to disentangle them. Therefore, our plan for this paper is
to isolate and examine the shear-strain-rate-gradient-driven mechanism. Specifically, we
study the shear-strain-rate-gradient-driven segregation mechanism by considering flows
of dense, bidisperse systems of both disks and spheres in two flow geometries in which
the pressure field is spatially uniform: (i) vertical chute flow and (ii) annular shear flow.
Therefore, shear-strain-rate gradients are the sole drivers of segregation. In order to inform
continuum model development, we perform DEM simulations using the open-source
software LAMMPS (Plimpton 1995), which function as ‘numerical experiments’. The
coupled continuum model that we develop is then validated by comparing its predictions
of the transient evolution of the segregation field and the steady-state flow field against
additional DEM simulation results.

This paper is organized as follows. In § 2, we discuss the continuum model that we use
to describe flow and size segregation in bidisperse, dense granular materials. Specifically,
§§ 2.1 and 2.2 introduce the mixture theory framework used to describe dense, bidisperse
granular mixtures, and in § 2.3, we briefly revisit the μ(I) rheology and the NGF model for
monodisperse granular systems and discuss their extension to bidisperse systems. Then, in
§ 2.4, we propose a model for shear-strain-rate-gradient-driven size segregation. In §§ 3
and 4, we consider granular diffusion and shear-strain-rate-gradient-driven segregation,
respectively, and independently determine the two dimensionless material parameters that
appear in the size-segregation model for both disks and spheres. Then, in § 5, the proposed
segregation model is coupled with the NGF model and applied to both vertical chute flow
and annular shear flow to predict the transient evolution of the segregation dynamics,
and the predicted continuum fields are compared against DEM measurements. In the
end, our model demonstrates a level of fidelity in simultaneously predicting the flow and
segregation dynamics that has not been previously achieved. We close with a discussion
of the segregation model and some concluding remarks in § 6.

2. Continuum framework

In this section, we discuss the continuum framework used to describe dense, bidisperse
granular systems and propose constitutive equations for rheology and size segregation.
Throughout, we utilize a mixture-theory-based approach, which is common in continuum
modelling of dense, bidisperse mixtures (e.g. Gray & Thornton 2005; Gray & Chugunov
2006; Fan & Hill 2011b; Gray 2018; Umbanhowar et al. 2019; Bancroft & Johnson 2021;
Barker et al. 2021; Duan et al. 2021), and we use standard component notation, which
supposes an underlying set of Cartesian basis vectors {ei|i = 1, 2, 3}, and in which the
components of vectors, v, and tensors, σ , are denoted by vi and σij, respectively. The
Einstein summation convention is employed, and the Kronecker delta, δij, is utilized to
denote the components of the identity tensor.
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dl

ds

Figure 1. A representative schematic of a dense, bidisperse granular system consisting of two-dimensional
disks.

2.1. Bidisperse systems
We consider granular mixtures consisting of particles with two sizes – large grains with
an average diameter of dl and small grains with an average diameter of ds. We consider
both two-dimensional systems of disks, as illustrated in figure 1, and three-dimensional
systems of spheres. To eliminate the effect of density-based segregation (e.g. Tripathi
& Khakhar 2013) and isolate size-based segregation, all particles are made of the same
material with mass density ρs, which represents the area density for disks and the volume
density for spheres. Throughout, we utilize the notational convention in which we denote
large-grain quantities using a superscript l and small-grain quantities using a superscript s.
The species-specific solid fractions – i.e. the areas occupied by each species per unit total
area for disks and the volumes occupied by each species per unit total volume for spheres
– are φl and φs, respectively, and the total solid fraction is φ = φl + φs. The concentration
of each species then follows as cl = φl/φ and cs = φs/φ, so that cl + cs = 1. The average
mixture grain size is defined as the sizes of both species weighted by their concentrations,
d̄ = cldl + csds. We make the common idealization that the total area for dense systems of
disks or total volume for dense systems of spheres does not change (Savage 1998; Gray &
Thornton 2005; Gray & Chugunov 2006; Fan & Hill 2011b), and therefore φ is idealized
as constant at each point in space and at each instant in time during the segregation
process. We have verified in our DEM simulations that area (or volume) dilatation at
flow initiation occurs over a much shorter time scale than the process of segregation,
and that, subsequently, the solid fraction field is approximately uniform both spatially and
temporally. Moreover, we have verified that dilatancy-driven secondary flows (e.g. Dsouza
& Nott 2021) are not observed in the dense flows considered in this work. Therefore,
the idealization of a constant solid fraction is reasonable. Throughout this study, we use
φ = 0.8 for disks, and φ = 0.6 for spheres.

Regarding the kinematics of flow, each species has an associated partial velocity, vl
i and

vs
i , and the mixture velocity is given by vi = clvl

i + csvs
i . The mixture strain-rate tensor

is then defined using the mixture velocity in the standard way: Dij = (1/2)(∂vi/∂xj +
∂vj/∂xi), where Dkk = 0 since we have assumed that the mixture area (or volume) does
not change. The equivalent shear strain rate is defined as γ̇ = (2DijDij)

1/2.
Then, the relative area (or volume) flux for each grain type, ν = l or s, is defined through

the difference between its partial velocity and the mixture velocity as wν
i = cν(vν

i − vi),
so that wl

i + ws
i = 0. Conservation of mass for each species requires that Dcν/Dt +

∂wν
i /∂xi = 0, where D(•)/Dt is the material time derivative. Due to the fact that cl + cs =

1, only one of cl and cs is independent. Therefore, we utilize cl as the field variable that
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describes the dynamics of size segregation in the following discussion, and the evolution
of cl is governed by its conservation of mass equation

Dcl

Dt
+ ∂wl

i
∂xi

= 0. (2.1)

2.2. Stress and the equations of motion
We recognize that the symmetric Cauchy stress tensor σij = σji represents the Cauchy
stress of the mixture, rather than the partial stress of either species. Regarding
stress-related quantities for the granular mixture, we define the pressure P = −(1/3)σkk,
the stress deviator σ ′

ij = σij + Pδij, the equivalent shear stress τ = (σ ′
ijσ

′
ij/2)1/2 and the

stress ratio μ = τ/P. The Cauchy stress is then governed by the standard equations of
motion

φρs
Dvi

Dt
= ∂σij

∂xj
+ bi, (2.2)

where φ is the constant total solid fraction, and bi is the non-inertial body force per unit
volume (typically gravitational). In order to close the system of equations, we require (i)
rheological constitutive equations for the Cauchy stress σij and (ii) a constitutive equation
for the flux wl

i, each of which is discussed in the following subsections.

2.3. Rheological constitutive equations for bidisperse mixtures
In this section, we discuss the rheology of dense, bidisperse granular mixtures. Our
strategy for formulating rheological constitutive equations for bidisperse mixtures is to
relate mixture-related quantities, such as the Cauchy stress σij and the strain-rate tensor
Dij, instead of specifying constitutive equations for species-specific partial stresses and
then combining them to obtain the mixture stress.

The starting point of this discussion is the local inertial, or μ(I), rheology (MiDi 2004;
da Cruz et al. 2005; Jop et al. 2005), which follows from dimensional arguments. For a
dense, monodisperse system of dry, stiff grains with mean grain diameter d subjected to
homogeneous shearing, the local inertial rheology asserts that the stress ratio μ is given
through the equivalent shear strain rate γ̇ and the pressure P through the dimensionless
relationship μ = μloc(I), where I = γ̇

√
d2ρs/P is the inertial number, representing the

ratio of the microscopic time scale associated with particle motion
√

d2ρs/P to the
macroscopic time scale of applied deformation 1/γ̇ . As shown by Rognon et al. (2007) and
Tripathi & Khakhar (2011), the inertial rheology function μloc(I) may be straightforwardly
generalized from monodisperse to bidisperse systems by defining the inertial number
for a bidisperse system as I = γ̇

√
d̄2ρs/P, where the average mixture grain size for a

bidisperse system d̄ has been used in place of d for a monodisperse system. Then, the
same local rheology function μloc(I) utilized for the monodisperse system may be used
for bidisperse systems without any changes to the parameters appearing in the fitting
function. This approach neglects potential effects of new dimensionless quantities that
arise in a bidisperse granular system, such as the grain-size ratio dl/ds, but has been shown
to capture DEM data well (Rognon et al. 2007; Tripathi & Khakhar 2011).

To demonstrate this point, consider DEM simulations of homogeneous, simple shearing
of a dense, bidisperse system of disks, illustrated in figure 2(a) for the case of dl/ds =
1.5 and a system-wide large-grain concentration of cl = 0.5. Details of the simulated
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Figure 2. (a) Configuration for two-dimensional DEM simulations of bidisperse simple shear flow. Upper and
lower layers of black grains denote rough walls. Dark grey grains indicate large flowing grains, and light grey
grains indicate small flowing grains. A 10 % polydispersity is utilized for each species to prevent crystallization.
(b) The local inertial rheology (μ vs I = γ̇

√
d̄2ρs/P) for monodisperse as well as bidisperse mixtures of disks

for grain-size ratios of dl/ds = 1.5, 2.0, 2.5 and 3.0 and cl = 0.5. The solid black line represents the best fit
to the monodisperse DEM data using (2.3) with μs = 0.272 and b = 1.168. (c) The local inertial rheology
for monodisperse and bidisperse mixtures of spheres for grain-size ratios of dl/ds = 1.5 and 2.0 and cl = 0.5
along with the DEM data of Tripathi & Khakhar (2011). The solid black curve represents the best fit to the
monodisperse DEM data using (2.4) with μs = 0.37, μ2 = 0.95, and I0 = 0.58.

granular systems, including grain interaction properties, for both two-dimensional disks
and three-dimensional spheres are given in Appendix A.1. The large particles are dark
grey, and the small particles are light grey. With the system-wide mean grain size
denoted by d̄0 = cldl + (1 − cl)ds, the rectangular domain has a length of L = 60d̄0 in
the x-direction and a height of H = 60d̄0 in the z-direction, which is filled with ∼5000
flowing grains. Shearing is driven through the relative motion of two parallel, rough
walls, which each consist of a thin layer of touching glued grains, denoted as black in
figure 2(a). Walls consisting of glued grains are utilized to minimize slip between the walls
and the adjacent granular medium and mitigate any potential boundary effects associated
with slip. The bottom wall is fixed, and the top wall moves with a velocity vw along the
x-direction. Following previous works in the literature (da Cruz et al. 2005; Koval et al.
2009; Kamrin & Koval 2012; Zhang & Kamrin 2017; Liu & Henann 2018; Kim & Kamrin
2020), the z-position of the top wall is not fixed but continuously adjusted using a feedback
scheme so that the normal stress applied by the top wall is maintained at a target value of
σzz(z = 0) = −Pw. Periodic boundary conditions are applied along the x-direction. For
homogeneous simple shearing, no segregation will occur since the flow is homogeneous
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and no pressure or strain-rate gradients are present. We utilize the DEM procedures
described in detail in Liu & Henann (2018) in order to extract the relationship between
μ and I for bidisperse mixtures with grain-size ratios of dl/ds = 1.5, 2.0, 2.5 and 3.0 and
cl = 0.5. The simulated relationships are plotted in figure 2(b) using triangular symbols
of different colours, along with the monodisperse data from Liu & Henann (2018) plotted
as grey circles. The relationship between μ and I for dense systems of disks is observed to
be approximately independent of dl/ds. As for the monodisperse case, the DEM data for
bidisperse mixtures of disks may be fitted by a linear, Bingham-like functional form

μloc(I) = μs + bI, (2.3)

as shown by the solid line in figure 2(b), where μs = 0.272 and b = 1.168 are the
dimensionless material parameters for monodisperse disks (Liu & Henann 2018).

Similarly, we consider DEM simulations of homogeneous, simple shearing of dense,
bidisperse systems of spheres. The simulation domain consists of a rectangular box of
length L = 20d̄0 in the x-direction (i.e. the shearing direction), width W = 10d̄0 in the
y-direction (i.e. the direction perpendicular to the plane of shearing) and height H = 40d̄0
in the z-direction. The domain is filled with ∼10 000 flowing grains, and periodic boundary
conditions are applied along both the x- and y-directions. The simulation domain is
bounded along the z-direction by two parallel, rough walls, consisting of touching glued
grains, and as for the case of disks, shearing along the x-direction and normal stress along
the z-direction are applied by the walls. We perform DEM simulations of steady simple
shearing for size ratios of dl/ds = 1.5 and 2.0 for a system-wide large-grain concentration
of cl = 0.5 as well as for the monodisperse case over a range of top wall velocities. The μ

vs I relationship extracted from DEM simulations for these cases along with data from the
prior DEM study of Tripathi & Khakhar (2011) collapse quite well, as shown in figure 2(c),
showing minimal dependence on dl/ds. This relationship for dense systems of spheres may
be fitted using the nonlinear functional form of Jop et al. (2005) for μloc(I)

μloc(I) = μs + μ2 − μs

I0/I + 1
, (2.4)

as shown by the solid curve in figure 2(c), where {μs = 0.37, μ2 = 0.95, I0 = 0.58}
are the dimensionless parameters for frictional spheres. (We note that these parameters
are nearly the same as those determined by Zhang & Kamrin (2017) for monodisperse
frictional spheres.) In this way, one may capture the rheology of bidisperse mixtures of
both disks and spheres in homogeneous simple shearing without introducing additional
fitting functions or adjustable parameters beyond those used for the monodisperse case.

Despite the successes of the local inertial rheology in capturing steady, homogeneous
shear flow, it has been well established in the literature that a local rheological modelling
approach cannot be applied to a broad set of inhomogeneous flows that span the
quasi-static and dense inertial flow regimes (I � 10−1), such as annular shear flow
(Koval et al. 2009; Tang et al. 2018), split-bottom flow (Fenistein & van Hecke 2003)
and gravity-driven heap flow (Komatsu et al. 2001). In these dense, inhomogeneous
flows, significant deviation from a one-to-one constitutive relationship μ = μloc(I) is
observed (Koval et al. 2009; Kamrin & Koval 2012), stemming from the fact that local
rheological modelling does not account for cooperative effects, which become dominant in
the quasi-static regime. Therefore, to consider inhomogeneous flows of dense, bidisperse
granular systems, it is necessary to generalize a non-local rheological modelling approach
to the case of dense, bidisperse mixtures. In the present work, we focus attention on the
NGF model of Kamrin & Koval (2012), which has been shown to robustly capture a variety
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of inhomogeneous, steady flows of monodisperse granular systems (Kamrin 2019). As is
standard in the NGF model, we introduce the granular fluidity g, which is a positive, scalar
field quantity, and recognize that g represents the fluidity of the mixture. (See Zhang
& Kamrin (2017) and Kim & Kamrin (2020) for further discussion of the kinematic
description of the granular fluidity field for monodisperse granular systems.) Then, we
utilize the steady-state form of the NGF model, which relates the stress state, the strain
rate, and the granular fluidity through two constitutive equations: (i) the flow rule and (ii)
the non-local rheology.

First, invoking the common idealization that the Cauchy stress deviator and the
strain-rate tensor are co-directional (Rycroft, Kamrin & Bazant 2009), the flow rule relates
the Cauchy stress tensor σij, the strain-rate tensor Dij and the granular fluidity through

σij = −Pδij + 2
P
g

Dij. (2.5)

Taking the magnitude of the deviatoric part of (2.5) and rearranging leads to the following
scalar form of the flow rule:

γ̇ = gμ. (2.6)

Second, the granular fluidity of the bidisperse mixture is governed by the following
differential relation:

g = gloc(μ, P) + ξ2(μ)
∂2g

∂xi∂xi
, (2.7)

where gloc(μ, P) is the local fluidity function and ξ(μ) is the stress-dependent
cooperativity length. The grain size enters (2.7) through (i) the time scale associated with
microscopic particle motion that appears in the local fluidity function gloc(μ, P) and (ii)
the length scale that scales the cooperativity length ξ(μ), and both of these roles must be
considered when generalizing the NGF model from monodisperse to bidisperse systems.

The local fluidity function gives the granular fluidity during steady, homogeneous shear
flow at a given state of stress and is related to the local inertial rheology function μloc(I).
Denote the inverted form of the local inertial rheology function μloc(I) as

Iloc(μ) =
{
μ−1

loc(μ) if μ > μs,
0 if μ ≤ μs,

(2.8)

which is a function of the stress ratio μ. Then, following the generalization of the local
inertial rheology discussed above, in which the time scale associated with microscopic
particle motion is taken to be

√
d̄2ρs/P for a bidisperse mixture, the local fluidity function

is gloc(μ, P) =
√

P/d̄2ρs Iloc(μ)/μ. For the case of bidisperse disks, using (2.3), the local
fluidity function is

gloc(μ, P) =

⎧⎪⎨
⎪⎩

√
P

d̄2ρs

(μ − μs)

bμ
if μ > μs,

0 if μ ≤ μs,

(2.9)

with {μs = 0.272, b = 1.168}, and for the case of bidisperse spheres, using (2.4), the local
fluidity function is

gloc(μ, P) =

⎧⎪⎨
⎪⎩I0

√
P

d̄2ρs

(μ − μs)

μ(μ2 − μ)
if μ > μs,

0 if μ ≤ μs,
(2.10)
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Coupled continuum modelling of size segregation and flow

with {μs = 0.37, μ2 = 0.95, I0 = 0.58}. No additional adjustable parameters beyond
those used to describe the local inertial rheology for the monodisperse case are introduced
in the local fluidity function.

As discussed in several of our previous works (Henann & Kamrin 2014; Kamrin
& Henann 2015; Liu & Henann 2017), the manner in which the cooperativity length
ξ(μ) depends on the stress ratio μ is also connected to the choice of the μloc(I)
function. Without going into details here, the functional forms for the cooperativity length
corresponding to (2.3) and (2.4) are

ξ(μ) = Ad̄√|μ − μs|
and ξ(μ) = Ad̄

√
(μ2 − μ)

(μ2 − μs)|μ − μs| , (2.11a,b)

respectively. The parameter A is a dimensionless material constant, referred to as the
non-local amplitude, which quantifies the spatial extent of cooperative effects. In the
monodisperse case, the cooperativity length is directly proportional to the grain size
d, and motivated by the success in generalizing the local inertial rheology, we follow
an analogous approach to generalize the cooperativity length to the bidisperse case.
We replace d for monodisperse grains with d̄ for bidisperse grains, resulting in the
expressions for the cooperativity length (2.11a,b), in which ξ(μ) is proportional to d̄.
Regarding the non-local amplitude A, we also follow an approach that is analogous to the
generalization of the local inertial rheology and utilize values of A previously determined
for monodisperse frictional disks and spheres – namely, A = 0.90 as determined by Liu &
Henann (2018) for monodisperse disks and A = 0.43 as determined by Zhang & Kamrin
(2017) for monodisperse spheres. The generalization of the cooperativity length and the
choices of A for bisdisperse mixtures will be tested in later sections by comparing flow
fields predicted by the NGF model with measured flow fields in DEM simulations of
bidisperse, inhomogeneous flows.

2.4. Segregation model
The segregation model consists of the constitutive equation for the large-grain flux wl

i. In
the present work, we focus on dense flows in the absence of pressure gradients, and we
take the large-grain flux wl

i to comprise two contributions: (i) a diffusion flux wdiff
i and (ii)

a shear-strain-rate-gradient-driven segregation flux wseg
i , so that

wl
i = wdiff

i + wseg
i . (2.12)

First, the diffusion flux acts counter to segregation to mix the species and is taken to be
given in the standard form, in which the diffusion flux is driven by concentration gradients:
wdiff

i = −D(∂cl/∂xi), where D is the binary diffusion coefficient (Utter & Behringer 2004;
Artoni et al. 2021; Bancroft & Johnson 2021). Following prior works (e.g. Barker et al.
2021; Duan et al. 2021; Trewhela, Ancey & Gray 2021), based on dimensional arguments,
we take the diffusion coefficient for a bidisperse system to be

D = Cdiff d̄2γ̇ , (2.13)

where Cdiff is a dimensionless material parameter which remains to be calibrated.
Therefore, we have that the diffusion flux is

wdiff
i = −Cdiff d̄2γ̇

∂cl

∂xi
. (2.14)
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D. Liu, H. Singh and D.L. Henann

Second, regarding segregation, a major question is what field quantity drives the
segregation flux in the absence of pressure gradients. Gradients of a number of kinematic
quantities are possible – e.g. strain rate, velocity fluctuations or fluidity. For perspective,
we note that recent works (Fan & Hill 2011b; Hill & Tan 2014; Tunuguntla, Thornton &
Weinhart 2016; Tunuguntla et al. 2017) have shown that gradients in kinetic stress, which
are defined through the velocity fluctuations, correlate well with segregation flux. In the
present work, we adopt the simplest approach and hypothesize that the segregation flux is
driven by gradients in the shear strain rate γ̇ and take the segregation flux to be given in
the following phenomenological form:

wseg
i = CS

segd̄2cl(1 − cl)
∂γ̇

∂xi
. (2.15)

The factor cl(1 − cl) ensures that segregation ceases when the bidisperse mixture becomes
either all large (cl = 1) or all small (cl = 0) grains, and the factor d̄2 is present for
dimensional consistency. The quantity CS

seg is a dimensionless material property. While
it is possible for CS

seg to depend on the size ratio dl/ds, we will demonstrate that this
effect is negligible over the range of size ratios considered in the DEM simulations of § 4
and therefore treat CS

seg as a constant, dimensionless material parameter, which will be
determined by fitting to DEM simulation results for disks and spheres, respectively.

Combining (2.14), (2.15) and (2.12) with conservation of mass (2.1), we obtain the
following differential relation governing the dynamics of cl:

Dcl

Dt
+ ∂

∂xi

(
−Cdiff d̄2γ̇

∂cl

∂xi
+ CS

segd̄2cl(1 − cl)
∂γ̇

∂xi

)
= 0, (2.16)

where {Cdiff , CS
seg} represent two constant dimensionless material parameters that remain

to be determined.
We close this section by noting that the incompressibility constraint, the equations

of motion (2.2), the non-local rheology (2.7) and the segregation dynamics equation
(2.16) represent a closed system of equations for the velocity field vi, the pressure field
P, the fluidity field g and the large-grain concentration field cl, which may be used to
simultaneously predict flow fields and the segregation dynamics in the absence of pressure
gradients.

3. Diffusion flux

In this section, we determine values of Cdiff for dense, bidisperse systems of frictional
disks and spheres. Consider homogeneous simple shear flow of such a bidisperse
mixture, as shown in figure 2(a) for disks. Again, no segregation occurs in this setting,
since neither of the segregation driving forces (pressure gradients or shear-strain-rate
gradients) are present (Tripathi & Khakhar 2011). During steady, simple shearing,
the motion of individual grains in the direction transverse to flow (the z-direction in
figure 2a) approximates a random walk for both two-dimensional systems of disks
and three-dimensional systems of spheres. Therefore, by measuring the mean square
displacement (MSD) of a system of N particles as a function of time, we may determine
the binary diffusion coefficient D (e.g. Natarajan, Hunt & Taylor 1995; Campbell 1997;
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(b)(a)

Figure 3. The binary diffusion coefficient D, calculated using the MSD (3.1), vs γ̇ d̄2 in homogeneous,
steady simple shear DEM simulations. (a) Data for bidisperse mixtures of disks for grain-size ratios of
dl/ds = 1.5, 2.0, 2.5 and 3.0. Both axes are normalized by ds√Pw/ρs. Each symbol represents D calculated
from one DEM simulation of a specified size ratio at one shearing rate. The solid line represents the best fit of
a linear relation with Cdiff = 0.20. (b) Data for bidisperse mixtures of spheres for the monodisperse case and
for grain-size ratios of dl/ds = 1.5, 2.0 and 2.5. The solid line represents the best fit of a linear relation with
Cdiff = 0.045.

Utter & Behringer 2004; Cai et al. 2019; Bancroft & Johnson 2021) through

MSD(t) = 1
N

N∑
n=1

(zn(t) − zn(0))2 = 2Dt, (3.1)

where zn(t) is the z-coordinate of the nth grain at time t. We simulate homogeneous,
steady simple shear flows of disks for grain-size ratios of dl/ds = 1.5, 2.0, 2.5 and 3.0
and at various shearing rates. We also simulate homogeneous, steady simple shear flows
of spheres for the monodisperse case as well as for grain-size ratios of dl/ds = 1.5, 2.0
and 2.5 over a range of shearing rates. To avoid wall effects in the calculation of the MSD
(3.1), grains that are initially within 15d̄0 of either the top or bottom wall in figure 2(a)
are excluded from the system of particles used to calculate the MSD for disks, leaving a
set of N ≈ 2400 grains. For spheres, particles initially within 5d̄0 of the top and bottom
walls are excluded, so that a set of N ≈ 9000 grains are used to calculate the MSD. Both
large and small grains are included in the calculation of the MSD for the mixture. After a
sufficiently long time, the calculated MSD is linear in time in all cases for both disks and
spheres, allowing one to extract the diffusion coefficient D for each case.

The diffusion coefficient D is plotted against γ̇ d̄2 (with both quantities normalized by
ds√Pw/ρs) for disks in figure 3(a) and for spheres in figure 3(b). The DEM data for the
binary diffusion coefficient collapse to a nearly linear relation with D ∼ γ̇ d̄2 across the
range of size ratios and shearing rates considered. A best fit of the slopes of the linear
relations – the solid black lines in figures 3(a) and 3(b) – yields

Cdiff = D
γ̇ d̄2

= 0.20 for disks and Cdiff = D
γ̇ d̄2

= 0.045 for spheres. (3.2)

These results are consistent with previous results in the literature. For example, for
dense, frictional spheres, the recent work of Bancroft & Johnson (2021) found a value
of Cdiff ≈ 0.05 with a weak dependence on the inertial number, and Duan et al. (2021)
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estimated a value of Cdiff = 0.046. In order to further assess the fitted value of Cdiff in a
diffusion-dominated setting, we have performed a consistency test for disks by considering
simple shearing of an initially fully segregated cell, which is described in Appendix B. In
this case, diffusion drives remixing of the two species. Using the fitted value of Cdiff for
disks in (3.2), we are able to quantitatively capture the diffusive remixing process, which
provides confidence in our fitted value of Cdiff .

4. Shear-strain-rate-gradient-driven segregation flux

Having independently determined the material parameter Cdiff for both frictional
disks and spheres, we next turn to testing the constitutive equation for the
shear-strain-rate-gradient-driven segregation flux (2.15) and determining the material
parameter CS

seg by studying two representative flow configurations in the absence of
pressure gradients: (i) vertical chute flow and (ii) annular shear flow.

4.1. Vertical chute flow
Consider a dense, bidisperse granular mixture flowing down a long vertical chute with
parallel, rough walls separated by a distance W under the action of gravity G. This
flow geometry has been utilized extensively in the literature to study dense flows of
monodisperse, frictional disks (Kamrin & Koval 2012; Liu & Henann 2018) and spheres
(Zhang & Kamrin 2017; Kim & Kamrin 2020) as well as flows of bidisperse, frictional
spheres (Fan & Hill 2011a,b). Beginning with the case of bidisperse disks, the DEM set-up
is shown in figure 4(a) for W = 60d̄0, where d̄0 is the system-wide average grain size. In
all cases for disks, we take the chute length to be L = 60d̄0 and apply periodic boundary
conditions along the z-direction. The parallel, rough walls consist of touching glued large
grains, denoted as black in figure 4(a). The left vertical wall is fixed, and the right wall is
fixed in the z-direction but can move slightly in the x-direction so as to maintain a constant
compressive normal stress Pw on the granular material, utilizing the same wall-position
control method described in Liu & Henann (2018). We have verified that the chute length
L is sufficiently large, so that it does not affect the resulting flow and segregation fields and
all fields are invariant along the z-direction. In the resulting flow fields, the only non-zero
component of the velocity is vz, which only depends on the cross-channel coordinate x.
A typical steady velocity field is qualitatively sketched in figure 4(a), illustrating that the
shear strain rate is greatest at the walls (x = ±W/2).

In all of our DEM simulations of vertical chute flow of bidisperse disks, we observe
that the stress field quickly becomes independent of time, so that macroscopic inertia
(i.e. the left-hand side of (2.2)) may be neglected. Moreover, we observe that the normal
stresses are approximately equal, i.e. σzz ≈ σxx. Therefore, due to the force balance along
the z-direction, the equivalent shear stress field is τ(x) = |σxz(x)| = |σzx(x)| = φρsG|x|,
where x is measured from the centreline of the chute, and due to the force balance along the
x-direction, the pressure field is P(x) = −σxx(x) = Pw. The stress ratio field then follows
as

μ(x) = μw

( |x|
W/2

)
, (4.1)

where μw = φρsGW/2Pw is the maximum value of μ, occurring at the walls (x = ±W/2).
We note that while flow is driven by gravity, the pressure field is constant throughout the
chute and no pressure gradients are present. Therefore, segregation occurs only due to
shear-strain-rate gradients, enabling us to consider this effect in isolation.
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Figure 4. (a) Initial well-mixed configuration for two-dimensional DEM simulation of bidisperse vertical
chute flow with 4327 flowing grains. The chute width is W = 60d̄0. As in figure 2, black grains on both
sides represent rough walls. (Only large particles are used as wall grains here.) (b) Segregated configuration
after flowing for a total simulation time of t̃ = t/(ds√ρs/Pw) = 4.3 × 105. (c) Spatio-temporal evolution of the
large-grain concentration field. Spatial profiles of (d) the concentration field cl and (e) the normalized velocity
field (vcen − vz)

√
ρs/Pw at three times (t̃ = 4 × 103, 4 × 104 and 4 × 105) as indicated by the horizontal lines

in (c).

Apart from the grain interaction properties that are held constant throughout this work
(Appendix A.1), there are four important dimensionless parameters that fully describe
each case of vertical chute flow of dense, bidisperse granular mixtures: (i) W/d̄0, the
dimensionless chute width; (ii) μw, the maximum stress ratio, which occurs at the walls
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and controls the total flow rate; (iii) cl
0(x), the initial large-grain concentration, which

is not necessarily constant but can be a spatially varying field; and (iv) dl/ds, the
bidisperse grain-size ratio. This list of system parameters {W/d̄0, μw, cl

0, dl/ds} specifies
the geometry, loads and initial conditions of a given case of vertical chute flow. As a
representative base case, we consider the parameter group {W/d̄0 = 60, μw = 0.45, cl

0 =
0.5, dl/ds = 1.5}. We then run the corresponding DEM simulation starting from the
well-mixed initial configuration shown in figure 4(a) and observe that, after a simulation
time of t̃ = t/(ds√ρs/Pw) = 4.3 × 105, the large, dark-grey grains segregate towards the
regions near the walls where the shear strain rate is greatest, while the small, light-grey
grains gather in bands just inside these regions, as shown in figure 4(b). A well-mixed
core persists along the centre of the vertical chute where the shear strain rate is nearly
zero. To obtain a more quantitative picture of the segregation process, we coarse grain
the concentration field cl in both space and time and plot contours of the spatio-temporal
evolution of cl in figure 4(c). The large-grain concentration field evolves rapidly in time
during the initial stages of the segregation process. Then, over longer times, the evolution
becomes slower. Spatial profiles of the concentration and velocity fields at three snapshots
in time – specifically, t̃ = t/(ds√ρs/Pw) = 4 × 103, 4 × 104 and 4 × 105 as indicated
by the horizontal lines in figure 4(c) – are plotted in figures 4(d) and 4(e). These three
snapshots correspond to early, medium, and late times with respect to the segregation
process. The spatial cl profiles shown in figure 4(d) demonstrate the transition from a
well-mixed state to a segregated state with large-grain-rich and small-grain-rich regions.
In figure 4(e), the normalized velocity fields (vcen − vz)

√
ρs/Pw, relative to the velocity

at the centre of the chute, vcen = vz(x = 0), show that the velocity field rapidly develops
into a steady flow field, even while the segregation process is still ongoing, and the cl field
continues to evolve.

At long times, near the end of the simulated time window (t̃ = t/(ds√ρs/Pw) � 3 ×
105), the concentration field evolves very slowly, so that Dcl/Dt ≈ 0, and the state of
segregation may be regarded as quasi-steady. Therefore, according to (2.1) and (2.12) and
the no-flux boundary condition at the walls, the total flux is approximately zero (wl

i =
wdiff

i + wseg
i ≈ 0i) at each x-position, meaning that the segregation flux is approximately

balanced by the diffusion flux in this quasi-steady flow regime. Then, using the expressions
for the two fluxes, (2.14) and (2.15), this observation implies that

Cdiff d̄2γ̇
∂cl

∂x
≈ CS

segd̄2cl(1 − cl)
∂γ̇

∂x
. (4.2)

The field quantities appearing in this expression may be obtained by coarse graining the
DEM data in the quasi-steady flow regime. Therefore, since Cdiff has been previously
determined, (4.2) may be used to determine the parameter CS

seg as follows. First, we
acquire the field quantities cl (and hence d̄) and vz by spatially coarse graining 152 evenly
distributed snapshots in time in the quasi-steady regime (t̃ > 3 × 105). (Results are not
particularly sensitive to the quasi-steady regime criterion, and this value is only provided
as a guideline.) Then, we arithmetically average these fields in time, yielding fields
that only depend on the spatial coordinate x, and take spatial gradients, as described in
Appendix A.2, to obtain ∂cl/∂x, γ̇ = ∂vz/∂x and ∂γ̇ /∂x = ∂2vz/∂x2. Next, as suggested
by (4.2), we plot Cdiff d̄2γ̇ (∂cl/∂x) vs d̄2cl(1 − cl)(∂γ̇ /∂x) in figure 5(a), in which
each symbol represents a unique x-position. A linear relation is observed, supporting
our choice for the form of the constitutive equation for the segregation flux (2.15).
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Figure 5. Collapse of Cdiff d̄2γ̇ (∂cl/∂x) vs d̄2cl(1 − cl)(∂γ̇ /∂x) for several cases of vertical chute flow of
(a) bidisperse disks and (b) bidisperse spheres. Symbols represent coarse-grained, quasi-steady DEM field
data, and the solid lines are the best linear fits using (a) CS

seg = 0.23 for disks and (b) CS
seg = 0.08 for spheres.

In order to obtain further evidence for this choice, we consider four additional cases: (i)
a lower flow rate case {W/d̄0 = 60, μw = 0.375, cl

0 = 0.5, dl/ds = 1.5}; (ii) a narrower
channel case {W/d̄0 = 40, μw = 0.45, cl

0 = 0.5, dl/ds = 1.5}; (iii) a more large grains
case {W/d̄0 = 60, μw = 0.45, cl

0 = 0.75, dl/ds = 1.5}; and (iv) a larger size ratio case
{W/d̄0 = 60, μw = 0.45, cl

0 = 0.5, dl/ds = 3.0}. Coarse graining the quasi-steady fields
for each case and including the field data in figure 5(a), we observe a strong linear collapse.
Finally, the dimensionless material parameter CS

seg may be obtained from the slope of the
linear relation in figure 5(a) (indicated by the solid line). We determine the numerical value
for disks to be CS

seg = 0.23 and note that this value indeed appears to be independent of
the grain-size ratio dl/ds over the range of 1.5 to 3.0 for disks.

We carry out an analogous set of DEM simulations for dense, bidisperse mixtures of
spheres to determine the value of CS

seg for spheres. The DEM set-up for spheres is similar to
that shown in figure 4(a) for disks with a domain size of length L = 20d̄0 in the z-direction,
width W in the x-direction, which is varied in our DEM simulations, and out-of-plane
thickness H = 10d̄0 in the y-direction. Periodic boundary conditions are applied along
both the y- and z-directions for spheres, and a constant compressive normal stress σxx =
−Pw is applied using the same feedback scheme as utilized for disks. In DEM simulations
of dense flows of spheres, we observe normal stress differences, in which the normal
stresses σyy and σzz are slightly different from the prescribed value of σxx = −Pw, which
is a widely reported feature of dense flows of spheres in the literature (e.g. Srivastava et al.
2021). However, all normal stresses, and hence the pressure field, are spatially uniform, and
segregation occurs only due to shear-strain-rate gradients. As for disks, the set of system
parameters {W/d̄0, μw, cl

0, dl/ds} specifies the geometry, loads and initial conditions for
a given case of vertical chute flow. Here, the dimensionless parameter μw = φρsGW/2Pw
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continues to control the total flow rate down the chute. We consider five different cases:
(i) a base case {W/d̄0 = 60, μw = 0.51, cl

0 = 0.5, dl/ds = 1.5}; (ii) a lower flow rate
case {W/d̄0 = 60, μw = 0.46, cl

0 = 0.5, dl/ds = 1.5}; (iii) a narrower channel and higher
flow rate case {W/d̄0 = 50, μw = 0.59, cl

0 = 0.5, dl/ds = 1.5}; (iv) a more large grains
and higher flow rate case {W/d̄0 = 60, μw = 0.58, cl

0 = 0.75, dl/ds = 1.5}; and (v) a
larger size ratio and higher flow rate case {W/d̄0 = 60, μw = 0.58, cl

0 = 0.5, dl/ds =
2.0}. Each case involves ∼20 000 flowing grains. After a sufficiently long simulation
time, a quasi-steady state is attained in each case, implying the flux balance (4.2). The
quasi-steady field quantities appearing in (4.2) are extracted for 1000 snapshots in time
using the coarse-graining techniques described in Appendix A.2 and then arithmetically
averaged in time. The calculated quasi-steady diffusion flux Cdiff d̄2γ̇ (∂cl/∂x) at discrete
x-positions for each of the five cases is plotted vs the calculated quantity d̄2cl(1 −
cl)(∂γ̇ /∂x) in figure 5(b), and we observe a linear relation. Therefore, the form of the
constitutive equation for the segregation flux (4.2) is also applicable to dense, bidisperse
systems of spheres. The numerical value of the dimensionless material parameter CS

seg
for spheres is determined from the slope of the linear relation to be CS

seg = 0.08, which
appears to be independent of the grain-size ratio dl/ds over the range of 1.5 to 2.0 for
spheres.

4.2. Annular shear flow
The constitutive equation for the segregation flux (2.15) and the fitted values of the material
parameters should be general across different flow geometries. To test this for the case of
disks, we apply the same process described in the preceding section for vertical chute flow
to a different flow geometry – annular shear flow. In this flow geometry, flow is driven
through motion of the boundary rather than by gravity, but as in vertical chute flow, the
pressure field is spatially uniform, which eliminates hydrostatic pressure gradients so that
only shear-strain-rate-gradient-driven size segregation occurs.

Our DEM simulations of annular shear flow of a dense, bidisperse granular mixture
of disks follow the procedures utilized in prior works in the literature for monodisperse,
frictional disks (Koval et al. 2009; Kamrin & Koval 2012, 2014; Liu & Henann 2018).
Consider a dense, bidisperse granular mixture in a two-dimensional annular shear cell with
rough circular walls of inner radius R and outer radius Ro, as shown in figure 6(a) for the
case of R = 60d̄0. The inner and outer walls consist of rings of glued large grains, denoted
as black in figure 6(a). The circumferential velocity of the inner wall is prescribed to be vw,
and its radial position is fixed. The outer wall does not rotate, and its radius Ro fluctuates
slightly so as to maintain a constant imposed compressive normal stress Pw, utilizing the
wall-position control method used throughout this work (Koval et al. 2009). As in Liu &
Henann (2018), we simulate the full shear cell, as shown in figure 6(a), instead of applying
periodic boundary conditions along the circumferential direction to a slice (Koval et al.
2009; Kamrin & Koval 2012, 2014). In this flow geometry, all fields are axisymmetric
(i.e. invariant along the θ -direction), and the only non-zero component of the velocity
field is the circumferential component vθ . Moreover, flow tends to localize near the inner
wall with vθ rapidly decaying with radial position, as qualitatively illustrated by the steady
velocity field sketched in figure 6(a). We choose the outer radius Ro to be sufficiently
large so that it does not affect the resulting flow and segregation fields, and based on our
experience, we take Ro = 2R. Therefore, the role of the outer wall is simply to apply a
far-field pressure, and otherwise, it does not affect the flow and segregation fields.
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Figure 6. (a) Initial well-mixed configuration for two-dimensional DEM simulation of bidisperse annular
shear flow with 40 108 flowing grains. The inner-wall radius is R = 60d̄0, and the outer-wall radius is Ro = 2R.
The inner and outer walls consist of rings of glued large grains, denoted as black. (b) Segregated configuration
after flowing for a total simulation time of t̃ = t/(R/vw) = 584. (c) Spatio-temporal evolution of the large-grain
concentration field. Spatial profiles of (d) the concentration field cl and (e) the normalized circumferential
velocity field vθ /vw at three times (t̃ = 5, 50 and 500) as indicated by the horizontal lines in (c).

Regarding the stress field, in all of our DEM simulations of annular shear flow of
bidisperse disks, we observe that the normal stresses are approximately equal, i.e. σrr ≈
σθθ , and spatially uniform, so that the force balance along the r-direction gives that the
pressure field is P(r) = −σrr(r) = Pw. Since the pressure field is spatially uniform, all
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segregation in annular shear flow is due to shear-strain-rate gradients. The moment balance
gives that the equivalent shear stress field is τ(r) = |σrθ (r)| = |σθr(r)| = τw(R/r)2, where
τw is the inner-wall shear stress. It is important to note that τw is not directly prescribed in
our DEM simulations. Instead, the inner-wall velocity vw is prescribed, and τw arises as a
result. The stress ratio field is then

μ(r) = μw(R/r)2, (4.3)

where μw = τw/Pw is the maximum value of μ, occurring at the inner wall (r = R).
As for vertical chute flow, there are four important dimensionless parameters that

specify the geometry, loads and initial conditions for a given case of annular shear flow
of dense, bidisperse granular mixtures: (i) R/d̄0, the dimensionless inner-wall radius;

(ii) ṽw = (vw/R)

√
πd̄2

0ρs/(4Pw), the dimensionless inner-wall velocity, which determines

τw and hence μw; (iii) cl
0(r), the initial large-grain concentration field; and (iv) dl/ds,

the bidisperse grain-size ratio. We choose a representative base case of annular shear
flow identified by the parameter set {R/d̄0 = 60, ṽw = 0.01, cl

0 = 0.5, dl/ds = 1.5}. The
well-mixed initial configuration for the base-case DEM simulation is shown in figure 6(a),
and the segregated configuration after driving flow for a total simulation time of t̃ =
t/(R/vw) = 584 is shown in figure 6(b). The large, dark-grey grains segregate into a ring
near the inner wall, while the small, light-grey grains form a band just outside this region.
Outside of these bands, where the shear strain rate is very small, the large and small
grains remain well mixed. Contours of the spatio-temporal evolution of the coarse-grained
concentration field cl are plotted in figure 6(c), illustrating the time evolution of the cl

field. Spatial profiles of the concentration and velocity fields at three selected snapshots
during the segregation dynamics (t̃ = t/(R/vw) = 5, 50 and 500 as indicated by the
dashed lines in figure 6c) are shown in figures 6(d) and 6(e). The radial cl profiles in
figure 6(d) demonstrate the formation of large-grain-rich and small-grain-rich regions with
a persistent well-mixed far field. The normalized velocity fields in figure 6(e) demonstrate
that the flowing zone is localized near the inner wall with slow creeping flow observed far
from the wall. As in the case of vertical chute flow, the velocity field quickly develops into
a steady flow field, while the large-grain concentration field cl evolves over a longer time
scale.

Again, at long times, near the end of the simulated time window (t̃ = t/(R/vw) �
500), the concentration field evolves very slowly, which we identify as the quasi-steady
regime. (We note that this is not a true steady state and that over even longer times,
the concentration field will continue to evolve very slowly to more and more segregated
states.) In this regime, the segregation and diffusion fluxes approximately balance at each
r-position, implying that

Cdiff d̄2γ̇
∂cl

∂r
≈ CS

segd̄2cl(1 − cl)
∂γ̇

∂r
. (4.4)

As for vertical chute flow, we spatially coarse grain the DEM data to obtain the cl and vθ

fields for 144 evenly distributed snapshots in time in the quasi-steady regime (t̃ � 500),
which are arithmetically averaged in time to obtain the quasi-steady cl(r) and vθ (r) fields
and then spatially differentiated to obtain the remaining field quantities in (4.4). Next, we
plot Cdiff d̄2γ̇ (∂cl/∂r) vs d̄2cl(1 − cl)(∂γ̇ /∂r) in figure 7 with each symbol representing a
unique r-position. Finally, this process is repeated for four additional cases of annular
shear flow: (i) a lower inner-wall velocity {R/d̄0 = 60, ṽw = 0.001, cl

0 = 0.5, dl/ds =
976 A16-18
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Figure 7. Collapse of Cdiff d̄2γ̇ (∂cl/∂r) vs d̄2cl(1 − cl)(∂γ̇ /∂r) for several cases of annular shear flow of
bidisperse disks. Symbols represent coarse-grained, quasi-steady DEM field data, and the solid line is the
best linear fit using CS

seg = 0.23.

1.5}; (ii) a smaller inner-wall radius {R/d̄0 = 40, ṽw = 0.01, cl
0 = 0.5, dl/ds = 1.5}; (iii)

more large grains {R/d̄0 = 60, ṽw = 0.01, cl
0 = 0.75, dl/ds = 1.5}; and (iv) a larger size

ratio {R/d̄0 = 60, ṽw = 0.01, cl
0 = 0.5, dl/ds = 3.0}, and the coarse-grained, quasi-steady

fields are included in the data plotted in figure 7. Collectively, we observe a strong collapse
to a linear relation. Crucially, the slope of the linear relation in figure 7 (indicated by the
solid line) gives the same value for the dimensionless material parameter CS

seg obtained
by fitting to vertical chute flow data, CS

seg = 0.23. This observation of agreement between
the best fit values of CS

seg obtained using two different flow geometries provides support
for our choice of the constitutive equation for the segregation flux (2.15) and the fitted
value of CS

seg for disks. Having established that the parameter CS
seg is independent of the

flow geometry, driving conditions and initial conditions, we henceforth regard CS
seg as

a material parameter for a given dense granular system, analogous to how rheological
material parameters such as μs are regarded. Of course, the values of CS

seg determined
above for disks and spheres likely depend on grain interaction properties, such as the
inter-particle friction coefficient, but elucidating this dependence is beyond the scope of
the present work.

5. Validation of the continuum model in the transient regime

In the preceding section, we only used DEM data from the quasi-steady regime to test the
constitutive equation for the shear-strain-rate-gradient-driven segregation flux (2.15) and
to determine the material parameter CS

seg. In this section, we compare continuum model
predictions of the transient evolution of segregation and flow fields with the DEM data
for both vertical chute flow and annular shear flow as a validation test of the model. To
obtain continuum model predictions in the transient regime, we couple the segregation
dynamics equation (2.16) with the NGF model, (2.6) and (2.7), and use fixed sets of
material parameters for disks

{μs = 0.272, b = 1.168, A = 0.90, Cdiff = 0.20, CS
seg = 0.23}, (5.1)
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and for spheres

{μs = 0.37, μ2 = 0.95, I0 = 0.58, A = 0.43, Cdiff = 0.045, CS
seg = 0.08}. (5.2)

5.1. Vertical chute flow
First, we describe in detail how the continuum model is solved to obtain predictions for
the transient evolution of segregation and flow fields for the case of vertical chute flow
of disks. In vertical chute flow, the stress field may be straightforwardly deduced from a
static force balance, giving that the pressure field is uniform, P(x) = Pw, and that the stress
ratio field μ(x) is given through (4.1) and, therefore, the balance of linear momentum
(2.2) is satisfied and does not further enter the solution procedure. Continuum model
predictions are obtained by numerically solving the remaining governing equations using
finite differences. Summarizing the coupled boundary/initial-value problem for flow and
segregation in the context of vertical chute flow, the unknown fields are the velocity field
vz(x, t) and the accompanying strain-rate field γ̇ (x, t) = ∂vz/∂x, the granular fluidity field
g(x, t) and the large-grain concentration field cl(x, t). The governing equations are (i) the
flow rule (2.6)

γ̇ = gμ, (5.3)

(ii) the non-local rheology (2.7)

g = gloc(μ, Pw) + ξ2(μ)
∂2g
∂x2 , (5.4)

with gloc and ξ given through (2.9) and (2.11a), respectively, and (iii) the segregation
dynamics equation (2.16)

∂cl

∂t
+ ∂

∂x

(
−Cdiff d̄2γ̇

∂cl

∂x
+ CS

segd̄2cl(1 − cl)
∂γ̇

∂x

)
= 0, (5.5)

where d̄ = cldl + (1 − cl)ds.
The non-local rheology (5.4) requires non-standard boundary conditions for the granular

fluidity field at the walls. Walls consisting of touching glued grains are employed in
the DEM simulations throughout this work, and to select a reasonable fluidity boundary
condition for this type of wall, we look to DEM simulation results for the simple shear
flows of figure 2, in which we observe a spatially uniform strain-rate field with minimal
deviation near the walls. Therefore, we elect to use a fluidity boundary condition that
would predict a uniform strain-rate field when applied to these simple shear flows. There
are two options: (i) a Dirichlet boundary condition wherein the fluidity at the boundary
is a function of the stress state through the local fluidity function, i.e. g = gloc(μw, Pw)

at x = ±W/2 for vertical chute flow, or (ii) a homogeneous Neumann fluidity boundary
condition, i.e. ∂g/∂x at x = ±W/2 for vertical chute flow. Other choices for the fluidity
boundary condition would result in a non-uniform solution for the fluidity field (and
hence the strain-rate field) when applied to simple shear flow, in which deviations from a
uniform strain-rate field arise in boundary layers at the walls. We have tested both of these
options for the fluidity boundary conditions and found that continuum model predictions
are similar for all cases of vertical chute flow and annular shear flow considered in the
present work. In all continuum model predictions that follow, we impose inhomogeneous
Dirichlet fluidity boundary conditions at the walls. Regarding boundary conditions for
(5.5), we impose no-flux boundary conditions at the walls, i.e. wl

x = −Cdiff d̄2γ̇ (∂cl/∂x) +
976 A16-20
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CS
segd̄2cl(1 − cl)(∂γ̇ /∂x) = 0 at x = ±W/2. Due to the time derivative in (5.5), an initial

condition for the concentration field cl
0(x) = cl(x, t = 0) is required. In order to account

for the concentration fluctuations inherent in the initial state, we obtain the coarse-grained
cl field from the initial DEM configuration for each case and utilize this field as the initial
condition field cl

0(x) in each of the respective continuum simulations.
Then, for a given case identified through a set of input parameters {W/d̄0, μw, cl

0(x),
dl/ds}, we obtain numerical predictions of the continuum model utilizing finite differences
as follows. First, at a given point in time, the concentration field cl(x) is known, allowing
the average grain-size field to be calculated through d̄(x) = cl(x)dl + (1 − cl(x))ds. Using
the stress ratio field μ(x) for vertical chute flow (4.1), the local fluidity gloc(μ, P) and the
cooperativity length ξ(μ) ((2.9) and (2.11a)) may be calculated at each spatial grid point.
Then, the non-local rheology (5.4) may be used to solve for the fluidity field g(x) at the
current step, using central differences in space. The strain-rate field follows using (5.3),
which may be integrated to obtain the velocity field vz(x). Next, (5.5) is used to determine
the concentration field at the next time step utilizing the forward Euler method and central
differences in space with one modification – the spatial derivatives of cl appearing in the
diffusion flux term in (5.5) are treated implicitly in order to improve numerical stability.
This completes one time step, and this process is repeated to step forward in time and
calculate the transient evolution of the concentration and flow fields, cl(x, t) and vz(x, t).
In our finite-difference calculations, we utilize a fine spatial resolution of �x � d̄0, and
we have verified that the time step is sufficiently small in order to ensure stable, accurate
results.

We compare predictions of the continuum model against DEM data for all five cases of
vertical chute flow considered in § 4.1 in order to test the generality of the model. Figures 8
and 9 summarize the comparisons for these five cases. The first columns of figures 8
and 9 show the spatio-temporal contours of the evolution of the cl field measured in the
DEM simulations for each case, and the second columns show comparisons of the DEM
simulations (solid black lines) and the continuum model predictions (dashed grey lines) for
the cl field at four snapshots in time (t̃ = t/(ds√ρs/Pw) = 4 × 103, 2 × 104, 1 × 105 and
4 × 105), indicated by the horizontal lines in the first columns of figures 8 and 9. Based on
figures 8 and 9, the coupled model generally does a good job capturing the salient features
of the evolution of the cl field across all cases. For instance, for the narrower chute case
shown in figure 8(c), the segregation process nearly completes within the simulated time
window with the mixed core along the centre of the chute nearly disappearing, and the
continuum model prediction captures this observation well.

Regarding flow fields, comparisons of the quasi-steady, normalized velocity fields at
t̃ = 4 × 105 from the DEM simulations and the continuum model predictions are shown
in the third columns of figures 8 and 9. Since the velocity field evolves minimally during
the segregation process, only the flow field at long time is shown. We note that the velocity
field is well predicted in all cases, including the creeping regions far from the wall. This
favourable comparison stems from the ability of the NGF model to transition seamlessly
between the dense inertial flow regime, such as the region near the walls in vertical chute
flow where μ > μs, and the quasi-static flow regime, such as the central region of the
chute where μ < μs. Further, the good agreement provides support for the assumptions
underlying our generalization of the NGF model to bidisperse granular systems discussed
in § 2.3 – in particular, the choices to use the average grain size d̄ in the expression
for the cooperativity length (2.11a) and to continue to use the numerical value for the
non-local amplitude determined for monodisperse systems, A = 0.90, without refitting.
We note that since the diffusion and segregation fluxes in our model depend strongly
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Figure 8. Comparisons of continuum model predictions with corresponding DEM simulation results for the
transient evolution of the segregation dynamics for three cases of vertical chute flow of disks. (a) Base case
{W/d̄0 = 60, μw = 0.45, cl

0 = 0.5, dl/ds = 1.5}. (b) Lower flow rate case {W/d̄0 = 60, μw = 0.375, cl
0 =

0.5, dl/ds = 1.5}. (c) Narrower chute width case {W/d̄0 = 40, μw = 0.45, cl
0 = 0.5, dl/ds = 1.5}. Additional

cases are shown in figure 9. For each case, the first column shows spatio-temporal contours of the evolution of cl

measured in the DEM simulations. The second column shows comparisons of the DEM simulations (solid black
lines) and continuum model predictions (dashed grey lines) of the cl field at four time snapshots representing
different stages of the segregation process: t̃ = 4 × 103, 2 × 104, 1 × 105 and 4 × 105 in the sequence of top
left, top right, bottom left, bottom right. The third column shows comparisons of the quasi-steady, normalized
velocity profiles at t̃ = 4 × 105 from DEM simulations and continuum model predictions.

on the flow kinematics through the strain rate and its gradient, respectively, accurate
predictions of flow kinematics obtained using the generalized NGF model are crucial to
successfully capturing the dynamics of the concentration field using the segregation model
(5.5). To illustrate this point, the results of figure 8(a) are compared with predictions of
the segregation model when coupled with a regularized version of the μ(I) rheology rather
than the NGF model in Appendix C.
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Figure 9. Comparisons of continuum model predictions with corresponding DEM simulation results for the
transient evolution of the segregation dynamics for two cases of vertical chute flow of disks. (a) More large
grains case {W/d̄0 = 60, μw = 0.45, cl

0 = 0.75, dl/ds = 1.5}. (b) Larger size ratio case {W/d̄0 = 60, μw =
0.45, cl

0 = 0.5, dl/ds = 3.0}. Additional cases are shown in figure 8. Results are organized as described in the
caption of figure 8.

Next, we make comparisons between continuum model predictions and DEM data
for vertical chute flow of bidisperse spheres. The governing equations and boundary
conditions are the same as those used above for bidisperse disks. That is, the fluidity field
is governed by the non-local rheology (5.4) with Dirichlet fluidity boundary conditions
at the walls (g = gloc(μw, Pw) at x = ±W/2), and the concentration field is governed
by the segregation dynamics equation (5.5) with no-flux boundary conditions at the
walls (wl

x = 0 at x = ±W/2). The only difference from the process described above for
bidisperse disks is that the values Pw and μw used in the continuum simulations are
obtained from the coarse-grained stress fields in the DEM data for each case, rather
than based on the nominal value of the compressive wall stress Pw applied in the DEM
simulation. This is done to account for the normal stress differences that arise for spheres,
which slightly affect the predicted velocity fields and hence the consequent concentration
fields. We consider three different cases: (i) the base case {W/d̄0 = 60, μw = 0.51, cl

0 =
0.5, dl/ds = 1.5}, (ii) the more large grains and higher flow rate case {W/d̄0 = 60, μw =
0.58, cl

0 = 0.75, dl/ds = 1.5} and (iii) the larger size ratio and higher flow rate case
{W/d̄0 = 60, μw = 0.58, cl

0 = 0.5, dl/ds = 2.0}, which are shown in figures 10(a), 10(b),
and 10(c), respectively. The first column of figure 10 shows the spatio-temporal contours of
the evolution of the cl field from the DEM data. The second column shows comparisons
between the DEM simulations (solid black lines) and the continuum model predictions
(dashed grey lines) for the cl field at four snapshots in time (t̃ = t/(ds√ρs/Pw) = 5 × 102,
2 × 103, 1 × 104 and 4.5 × 104), indicated by the horizontal lines in the first column
of figure 10. Lastly, comparisons of the quasi-steady, normalized velocity fields at t̃ =

976 A16-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

90
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.904


D. Liu, H. Singh and D.L. Henann

x/d–0

–20 0 20

–20 0 20

–20 0 20

(v
ce

n 
–
 v

z)
�ρ

s/
P w

100

10–2
(v

ce
n 

–
 v

z)
�ρ

s/
P w

100

10–2

(v
ce

n 
–
 v

z)
�ρ

s/
P w

100

10–2

x/d–0 x/d–0

–20 0 20 –20 0 20

–20 0 20 –20 0 20

–20 0 20 –20 0 20

–20 0 20 –20 0 20

–20 0 20 –20 0 20

–20 0 20 –20 0 20
0

0.5

1.0

c l

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

c l

c l

c l

c l

c l

0

1
c l

0

1
c l

0

1
c l

–20 0 20

–20 0 20

–20 0 20

x/d–0

(×104)

0

2

1

3

4

5

t̃ 

(×104)

(×104)

0

2

1

3

4

5

t̃ 

(c)

(b)

0

1

2

t̃ =
 t/

(d
s �

ρ
s/

P w
)

3

4

(a)

DEM
Theory

t̃ = 4.5 × 104

t̃ = 4.5 × 104t̃ = 1 × 104

t̃ = 5 × 102 t̃ = 2 × 103

Figure 10. Comparisons of continuum model predictions with corresponding DEM simulation results for
the transient evolution of the segregation dynamics for three cases of vertical chute flow of spheres.
(a) Base case {W/d̄0 = 60, μw = 0.51, cl

0 = 0.5, dl/ds = 1.5}. (b) More large grains and higher flow rate
case {W/d̄0 = 60, μw = 0.58, cl

0 = 0.75, dl/ds = 1.5}. (c) Larger grain-size ratio and higher flow rate case
{W/d̄0 = 60, μw = 0.58, cl

0 = 0.5, dl/ds = 2.0}. Results are organized as described in the caption of figure 8.

4.5 × 104 from the DEM simulations and the continuum model predictions are shown in
the third column of figure 10. The continuum model is able to capture the decaying velocity
field quite well in all cases, and therefore, our choice to continue using the value of the
non-local amplitude estimated for monodisperse systems, A = 0.43, without readjustment
works well for spheres. Overall, the coupled continuum model is capable of quantitatively
predicting both the flow fields and the transient evolution of the segregation dynamics in
vertical chute flow of bidisperse spheres.

5.2. Annular shear flow
We utilize an analogous process to obtain continuum model predictions for the transient
evolution of concentration and flow fields in annular shear flow of disks. In annular shear,
based on the static force and moment balances, the pressure field is uniform, P(r) = Pw,
and the stress ratio field is given by (4.3). The governing equations (5.4) and (5.5) are
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Figure 11. Comparisons of the continuum model predictions with corresponding DEM simulation results for
the transient evolution of the segregation dynamics for three cases of annular shear flow of disks. (a) Base
case {R/d̄0 = 60, ṽw = 0.01, cl

0 = 0.5, dl/ds = 1.5}. (b) Lower inner-wall velocity case {R/d̄0 = 60, ṽw =
0.001, cl

0 = 0.5, dl/ds = 1.5}. (c) Smaller annular shear cell case {R/d̄0 = 40, ṽw = 0.01, cl
0 = 0.5, dl/ds =

1.5}. Additional cases are shown in figure 12. For each case, the first column shows spatio-temporal contours
of the evolution of cl measured in the DEM simulations. The second column shows comparisons of the DEM
simulations (solid black lines) and continuum model predictions (dashed grey lines) of the cl field at four time
snapshots representing different stages of the segregation process: t̃ = 5, 50, 200 and 550 in the sequence of top
left, top right, bottom left, bottom right. The third column shows comparisons of the quasi-steady, normalized
velocity profiles at t̃ = 550 from DEM simulations and continuum model predictions.

modified to appropriately account for the divergence and Laplacian operators in cylindrical
coordinates. Also, since vw, not μw, is specified in our DEM simulations of annular
shear, while μw is specified in our continuum simulations, we iteratively adjust the value
of μw input into our continuum simulations in order to achieve the target value of vw
in the predicted quasi-steady flow field. Otherwise, our process for obtaining numerical
predictions from the continuum model is the same. Dirichlet fluidity boundary conditions
and no-flux boundary conditions are imposed at the walls, and the initial concentration
field is extracted from the initial DEM configuration for each case.

Then, we compare continuum model predictions against DEM data for the five cases
of annular shear flow discussed in § 4.2 in order to further validate the model. Figures 11
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Figure 12. Comparisons of the continuum model predictions with corresponding DEM simulation results for
the transient evolution of the segregation dynamics for two cases of annular shear flow of disks. (a) More
large grains case {R/d̄0 = 60, ṽw = 0.01, cl

0 = 0.75, dl/ds = 1.5}. (b) Larger size ratio case {R/d̄0 = 60, ṽw =
0.01, cl

0 = 0.5, dl/ds = 3.0}. Additional cases are shown in figure 11. Results are organized as described in the
caption of figure 11.

and 12 summarize the comparisons for these fives cases and are organized in the same
manner as figures 8 and 9. Again, the coupled, continuum model does a good job capturing
the segregation dynamics and its dependence on the input parameters. Moreover, the
quasi-steady velocity fields are well predicted by the NGF model in all cases, including the
quasi-static, creeping region far from the inner wall, which is key to accurately capturing
the evolution of the concentration field. We reiterate that all continuum model predictions
are obtained using the same set of material parameters for disks (5.1). As for vertical
chute flow, to illustrate the key role played by the NGF model in capturing the segregation
dynamics, the results of figure 11(a) for the base case of annular shear flow are compared
with predictions of the segregation model when coupled with a local rheological model in
Appendix C.

6. Discussion and conclusion

In this paper, we studied coupled size segregation and flow in dense, bidisperse granular
systems of disks and spheres and developed a phenomenological continuum model that
captures the simultaneous evolution of both segregation and flow fields. We focused on
the shear-strain-rate-gradient-driven size-segregation mechanism in two configurations
in which the pressure field is uniform – vertical chute flow and annular shear flow –
and based on observations from DEM simulations, we proposed a phenomenological
constitutive equation for the shear-strain-rate-gradient-driven flux. When combined with a
standard model for granular diffusion, the segregation model involves two dimensionless
parameters {Cdiff , CS

seg}, which multiply the two fluxes appearing in the model –
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the diffusion and shear-strain-rate-gradient-driven fluxes, respectively. By coupling
the segregation model with the NGF model adapted to bidisperse systems, we may
quantitatively predict both the flow fields and the segregation dynamics for dense flows
of bidisperse disks and spheres for two distinct flow geometries and under a number of
different flow conditions.

Size segregation in granular materials is a complex and rich problem, so there
remain many avenues for model improvement and unresolved research questions to
be answered. One important question relates to the constitutive equation for the
shear-strain-rate-gradient-driven segregation flux (2.15). Although our use of a constitutive
equation driven by gradients in γ̇ does a good job capturing the DEM data, there are
other theories in the literature based on gradients of other field quantities. In particular,
Hill and coworkers (Fan & Hill 2011b; Hill & Tan 2014) have proposed that gradients in
the kinetic stress, which is related to the velocity fluctuation δv and hence the granular
temperature T = (δv)2, drive segregation. Zhang & Kamrin (2017) have found that the
granular fluidity g for a monodisperse granular system may be represented kinematically
through the velocity fluctuation δv and the solid fraction φ through g = F(φ)δv/d, where
F(φ) is a function of the solid fraction φ. Therefore, motivated by the kinematic relation
of Zhang & Kamrin (2017), other forms for the constitutive equation for wseg

i based on
gradients in g can be proposed. For example, instead of (2.15), consider the following
form for the segregation flux:

wseg
i = CS

segd̄2cl(1 − cl)
∂g
∂xi

. (6.1)

Then, applying the quasi-steady flux balance condition,

Cdiff d̄2γ̇
∂cl

∂xi
≈ CS

segd̄2cl(1 − cl)
∂g
∂xi

, (6.2)

to the quasi-steady DEM data for vertical chute flow and annular shear flow of disks, we
obtain the collapses shown in figures 13(a) and 13(b), respectively. (The coarse-grained
values of g and its gradient are obtained using the coarse-grained values of γ̇ and
its gradient, calculated as described in Appendix A.2, along with μ and its gradient,
calculated using (4.1) and not by coarse graining.) The solid lines represent the best linear
fit using CS

seg = 0.08. The collapses are reasonable but not as strong as those shown in
figures 5(a) and 7 for a segregation flux based on gradients in the shear strain rate, leading
us to make the pragmatic choice to work with the constitutive equation (2.15).

Additionally, we have tested a possible constitutive equation for the segregation flux
driven by gradients in the granular temperature T = (δv)2. The precise definitions of
the granular temperature T and the velocity fluctuation δv as well as the coarse-graining
method used to obtain these quantities from DEM data follow Zhang & Kamrin (2017).
Then, consider the following form for the segregation flux:

wseg
i = CS

seg

√
ρs/Pd̄cl(1 − cl)

∂T
∂xi

, (6.3)

where the inertial time
√

ρs/Pd̄ is included in the prefactor for dimensional reasons.
We note that due to the kinematic relation g = F(φ)δv/d, gradients in the granular
temperature are not directly proportional to gradients in the granular fluidity, and small
variations in the solid fraction φ may potentially affect the relationship between ∂T/∂xi
and ∂g/∂xi, although we have not studied this point in detail here. Therefore, (6.3) is
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0 = 60, ṽw = 0.01, c0

l = 0.5, dl/ds = 3.0

W/d–
0 = 60, μw = 0.375, c0

l = 0.5, dl/ds = 1.5

W/d–
0 = 40, μw = 0.45, c0

l = 0.5, dl/ds = 1.5

W/d–
0 = 60, μw = 0.45, c0

l = 0.75, dl/ds = 1.5

W/d–
0 = 60, μw = 0.45, c0

l = 0.5, dl/ds = 3.0

–0.5

Linear fit Linear fit

0 0.5 1.0

–5 0 5

–5

C
di

ff
d– 2

γ. ∂
cl /∂

x

C
di

ff
d– 2

γ. ∂
cl /∂

r

d
–
2cl(1 – cl)∂g/∂x

�ρs/Pd–cl(1 – cl)∂T/∂x

d
–

2cl(1 – cl)∂g/∂r

0

5

–5

C
di

ff
d– 2

γ. ∂
cl /∂

x

0

5

–0.02 –0.015 –0.01 –0.005 0
–2.0

–1.5

–1.0

–0.5

0

C
di

ff
d– 2

γ. ∂
cl /∂

r

–2.0

–1.5

–1.0

–0.5

0

(×10–3)

(×10–3)

(×10–3)

(×10–3) (×10–3)

(×10–4)

(×10–4)

–2.5 –2.0 –1.5 –1.0 –0.5 0

Vertical

chute

f low

Annular

shear

f low

�ρs/Pd–cl(1 – cl)∂T/∂r

(b)(a)

(d )(c)

Figure 13. (a) Collapse of Cdiff d̄2γ̇ (∂cl/∂x) vs d̄2cl(1 − cl)(∂g/∂x) for several cases of vertical chute flow and
(b) collapse of Cdiff d̄2γ̇ (∂cl/∂r) vs d̄2cl(1 − cl)(∂g/∂r) for several cases of annular shear flow of bidisperse
disks. (c) Collapse of Cdiff d̄2γ̇ (∂cl/∂x) vs

√
ρs/Pd̄cl(1 − cl)(∂T/∂x) for several cases of vertical chute flow

and (d) collapse of Cdiff d̄2γ̇ (∂cl/∂r) vs
√

ρs/Pd̄cl(1 − cl)(∂T/∂r) for several cases of annular shear flow of
bidisperse disks. Symbols represent coarse-grained, quasi-steady DEM field data, and the solid lines represent
the best linear fit using CS

seg = 0.08 for (a,b) and CS
seg = 0.7 for (c,d).

distinct from (6.1) as a candidate for the flux constitutive equation. As above, upon
applying the quasi-steady flux balance condition

Cdiff d̄2γ̇
∂cl

∂xi
≈ CS

seg

√
ρs/Pd̄cl(1 − cl)

∂T
∂xi

, (6.4)

to the quasi-steady DEM data, figures 13(c) and 13(d) show the collapses for
granular-temperature-gradient-driven segregation for vertical chute flow and annular shear
flow of disks, respectively. In this case, the solid lines represent the best linear fit using
CS

seg = 0.7. The collapse is quite good; however, in order to utilize the constitutive
equation (6.3) in practice, an additional constitutive equation that gives the granular
temperature field in terms of other continuum quantities – such as strain rate, stress and
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fluidity – is needed. Recent work by Kim & Kamrin (2020) offers a path forward on
this point. In closing, we acknowledge that the possibility for an alternative form for the
segregation flux wseg

i remains and that future work involving additional flow geometries is
required to conclusively judge which constitutive equation is the most predictive.

Another question regarding the constitutive equation for the segregation flux is how
the pre-factor depends on cl and the grain-size ratio dl/ds. A simple pre-factor with
symmetric dependence on cl through cl(1 − cl) (in addition to the dependence on cl

that enters through d̄) and independent of dl/ds is sufficient to capture the DEM data
in the absence of pressure gradients considered in this work. However, in the context of
pressure-gradient-driven size segregation, other researchers (e.g. Gajjar & Gray 2014; van
der Vaart et al. 2015; Tunuguntla et al. 2017; Barker et al. 2021; Trewhela et al. 2021)
have utilized flux constitutive equations that depend asymmetrically on cl and involve
the grain-size ratio dl/ds. It remains to determine whether such dependencies in the
constitutive equation for the shear-strain-rate-gradient-driven flux could lead to refined
predictions of size segregation in uniform-pressure flows or extend the applicability of the
model to grain-size ratios beyond those considered in this work.

Further, in this paper, we have focused on two simple flow geometries that have two
important features: (i) the continuum fields are one-dimensional, only varying along one
spatial direction, and (ii) the pressure field is spatially uniform. In order to apply the
proposed continuum model in more complex flow geometries, such as heap flows or
split-bottom flow, two important steps are necessary. First, this paper solely considered
shear-strain-rate-gradient-driven size segregation. Now that a predictive continuum model
for this mechanism has been established, it remains to return to pressure-gradient-driven
size segregation in order to incorporate this mechanism by introducing an additional flux
contribution to (2.12) to obtain a more general model. We anticipate that the considerable
progress in the literature on modelling pressure-gradient-driven size segregation (e.g.
Gajjar & Gray 2014; van der Vaart et al. 2015; Tunuguntla et al. 2017; Barker et al. 2021;
Duan et al. 2021; Trewhela et al. 2021) may be leveraged to this end. Second, a robust
numerical implementation of the complex system of coupled equations that is capable of
addressing problems in general geometries, involving multi-dimensional continuum fields,
is needed. One possible approach is to utilize the finite-element method, as in previous
work involving the NGF model (Henann & Kamrin 2016). These steps will be addressed
in future works.

Finally, while the model proposed in this work is expected to be applicable to dense
flows spanning the quasi-static and dense inertial flow regimes (I � 10−1), it is not
intended to be applied to flows in the dilute, or collisional, flow regime (I � 10−1), in
which particle interactions are dominated by collisions rather than enduring contacts. In
the dilute flow regime, accounting for dilatation is important, and moreover, different
segregation trends are possible. For example, Fan & Hill (2011a) showed that in the
dilute regime, the segregation trend reverses in vertical chute flow with large particles
segregating toward regions of low strain rate. Continuum theories based on granular
kinetic theory are suited for describing flows in this regime.
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Appendix A. Discrete-element method simulations and coarse-graining procedures

A.1. Simulated granular systems
We consider two types of simulated granular systems: two-dimensional systems consisting
of a dense collection of circular disks and three-dimensional systems consisting of a dense
collection of spheres. We consider bidisperse systems and denote the mean diameter of
the large particles as dl and the mean diameter of the small particles as ds for both types.
For both disks and spheres, we take dl = 3 mm and ds = 2 mm for the base case, so
that dl/ds = 1.5. For both large and small particles, the diameters of individual particles
are chosen from a uniform distribution over the range of ±10 % of the respective mean
diameters to prevent crystallization. In the two-dimensional granular system, ρs denotes
the grain-material area density, which we take to be ρs = 3.26 kg m−2 for both large and
small disks, and in the three-dimensional granular system, ρs denotes the grain-material
volume density, which is taken to be ρs = 2450 kg m−3 for both large and small spheres
to eliminate density-based segregation. For two-dimensional systems, the mass of the
large disks is given by ml = (π/4)(dl)2ρs, and the mass of the small disks is given as
ms = (π/4)(ds)2ρs, so that the characteristic grain mass is m = cl

0ml + (1 − cl
0)m

s, where
cl

0 is the initial concentration of the large grains. Similarly, for three-dimensional systems,
the mass of the large spheres is ml = (π/6)(dl)3ρs, and the mass of the small spheres is
ms = (π/6)(ds)3ρs, so that the characteristic grain mass is m = cl

0ml + (1 − cl
0)m

s.
For the grain interaction model, the interaction force is given through a spring/dashpot

contact law that accounts for elasticity, damping and sliding friction (da Cruz et al. 2005;
Koval et al. 2009; Kamrin & Koval 2014; Zhang & Kamrin 2017). The normal contact
force Fn is given linearly through the normal component of the contact overlap, denoted
by δn, with stiffness kn and the relative normal velocity, denoted by δ̇n, with damping
coefficient gn as Fn = knδn + gnδ̇n whenever δn ≥ 0 and Fn = 0 whenever δn < 0. The
normal damping coefficient is given by gn = √

mkn(−2 ln e)/
√

2(π2 + ln2 e) where e
is the coefficient of restitution for binary collisions and m is the characteristic grain
mass discussed above. We denote the tangential stiffness and damping coefficient as kt
and gt, respectively, and take gt = 0, so that the tangential force is given as Ft = ktδt
whenever δn ≥ 0, where δt is the tangential component of the contact displacement.
The magnitude of the tangential component of the contact force is limited by Coulomb
friction, which depends on the inter-particle friction coefficient μsurf . Thus, the parameter
set {kn, kt, e, μsurf } fully describes the interaction properties. Throughout, the normal
stiffness kn is taken to be sufficiently large so that grains behave as stiff and nearly
rigid. For two-dimensional systems, kn/P > 104, and for three-dimensional systems,
kn/Pd̄0 > 104, where P is the characteristic confining pressure for a given configuration
(force per unit length in two dimensions and force per unit area in three dimensions)
and d̄0 = cl

0dl + (1 − cl
0)d

s is the characteristic grain size. In the stiff grain regime, the
only interaction parameter that significantly affects the rheology of dense grains is μsurf ,
which we have kept constant as μsurf = 0.4 throughout. The other parameters, namely
the ratio kn/kt and the restitution coefficient e, have negligible effects on the rheology
(Kamrin & Koval 2014) and thus the segregation dynamics in the stiff particle regime,
so we maintain kt/kn = 1/2 and e = 0.1 throughout. Finally, the open-source software
LAMMPS (Plimpton 1995) is used to numerically integrate the equations of motion for
each particle, and we restrict the time step for numerical integration to be 0.01–0.1 of the
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binary collision time τc =
√

m(π2 + ln2 e)/4kn for stability and accuracy of the simulation
results.

A.2. Averaging methods
In this appendix, we describe the spatial and temporal averaging methods utilized to extract
continuum fields from our DEM data. We begin with the spatial averaging procedure
for a given snapshot of DEM data at a time t. All flows considered in this work are
one-dimensional, in which the continuum fields vary only along one direction – i.e. along
the z-direction in simple shear flow (figure 2), along the x-direction in vertical chute flow
(figure 4) and along the r-direction in annular shear flow (figure 6) – and periodic along
all other directions. Here, we describe the procedure for vertical chute flow of disks in
detail, which may be straightforwardly adapted to the other flow geometries. We utilize a
bin-based coarse-graining process, in which we construct a slender rectangle that spans the
simulation domain along the z-direction and is centred at a given x-position with a finite
width along the x-direction. (For annular shear flow of disks, the bins are thin, annular
rings that are centred at a given r-position with a finite thickness along the r-direction.)
Then, we assign each intersected grain i a weight Ai, defined as the area of the grain i inside
the bin. Following Tunuguntla et al. (2017) for a bidisperse system, we denote the sets of
large and small grains intersected by the bin as F l and F s, respectively, so that the set of all
grains intersected by the bin is F = F l ∪ F s with F l ∩ F s = ∅. The instantaneous solid
area fraction field for species ν is φν(x, t) = (

∑
i∈Fν Ai)/A, where A is the total area of the

bin, and the corresponding concentration field for species ν is cν(x, t) = φν(x, t)/φ(x, t)
with φ(x, t) = φl(x, t) + φs(x, t). With the instantaneous velocity of each grain i denoted
as vi(t), the instantaneous velocity field is v(x, t) = (

∑
i∈F Aivi(t))/(

∑
i∈F Ai). (We note

that this definition of the instantaneous velocity field is consistent with first defining
species-specific velocity fields – i.e. vν(x, t) = (

∑
i∈Fν Aivi(t))/(

∑
i∈Fν Ai) – and then

calculating the mixture-level field – i.e. v(x, t) = cl(x, t)vl(x, t) + (1 − cl(x, t))vs(x, t).)
Likewise, with the instantaneous stress tensor associated with grain i defined as σ i(t) =
(
∑

j /= i rij ⊗ f ij)/(πd2
i /4), where rij is the position vector from the centre of grain i to the

centre of grain j, f ij is the contact force applied on grain i by grain j, and di is the diameter
of grain i, the instantaneous stress field is σ (x, t) = (

∑
i∈F Aiσ i(t))/A.

In vertical chute flow of spheres, we utilize a similar spatial coarse-graining
approach. Instead of two-dimensional, rectangular bins, we use three-dimensional,
rectangular-cuboidal bins that span the simulation domain along the y- and z-directions
and are centred at a given x-position with a finite width along the x-direction. Then, the
weight for each grain i is the volume Vi of the grain i inside the bin. The instantaneous solid
volume fraction field for species ν is φν(x, t) = (

∑
i∈Fν Vi)/V , where V is the total volume

of the bin; the instantaneous concentration field for species ν is cν(x, t) = φν(x, t)/φ(x, t);
the instantaneous velocity field is v(x, t) = (

∑
i∈F Vivi(t))/(

∑
i∈F Vi); the instantaneous

stress tensor associated with grain i is σ i(t) = (
∑

j /= i rij ⊗ f ij)/(πd3
i /6); and the

instantaneous stress field is σ (x, t) = (
∑

i∈F Viσ i(t))/V .
Our analysis of the size-segregation process in this paper depends on obtaining accurate

and high-resolution coarse-grained cl fields from the DEM data. Therefore, the choices of
the bin width and the spatial resolution of the bins are crucial. Throughout, we take a bin
width of 4d̄0 and a spatial resolution of roughly 0.1d̄0 for both disks and spheres. Note
that for these choices, adjacent bins overlap. We have ensured that a bin width of 4d̄0 is
sufficiently small so that the coarse-grained data are not over-smoothed. Specifically, we
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have tested that the coarse-grained velocity and stress fields are insensitive to the choice
of bin width over the range of 0 to 9.6d̄0. In the limit that the bin width goes to zero,
the coarse-graining procedure reduces to that utilized successfully in the literature for
the velocity and stress fields for both disks (e.g. da Cruz et al. 2005; Koval et al. 2009)
and spheres (e.g. Zhang & Kamrin 2017; Kim & Kamrin 2020). However, as shown by
Weinhart et al. (2013), applying a coarse-graining procedure with a small or zero bin width
to the φ field – and hence the φl, φs, cl, and cs fields – will lead to spatial fluctuations due
to particle layering near the walls. We have ensured that a bin width of 4d̄0 is sufficiently
large so that these layering effects are not observed in the cl field – i.e. we are within the
‘plateau range’ (Weinhart et al. 2013) of bin widths that produce bin-width-independent,
coarse-grained continuum fields. We note that when plotting spatio-temporal contours of
the concentration fields, profiles of the concentration fields, and profiles of the velocity
fields (e.g. figure 4), we truncate the coarse-grained DEM data from bins centred within
one half of a bin width (2d̄0) from the walls. Furthermore, to ensure that the collapses of
the DEM data used to determine the dimensionless material parameter CS

seg (i.e. figures 5,
7 and 13) are representative of bulk behaviour and not wall effects, we use a more
conservative criterion and do not include DEM data from bins within 6d̄0 of the walls.

The collapses of figures 5, 7 and 13 are obtained in the long-time regime, in which the
fields evolve slowly in time. Since the flow is quasi-steady, the instantaneous concentration
and velocity fields are simply arithmetically averaged in time (using 152 instantaneous
snapshots for vertical chute flow of disks, 1000 snapshots for vertical chute flow of spheres
and 144 snapshots for annular shear flow of disks) to obtain fields that only depend on the
spatial coordinate. Then, the necessary first and second-order spatial derivatives of the
field quantities (e.g. ∂cl/∂x, γ̇ = ∂vz/∂x, and ∂γ̇ /∂x = ∂2vz/∂x2 for vertical chute flow)
are obtained from these time-averaged fields. We apply a spatial derivative filter to the
time-averaged DEM fields in order to obtain accurate estimates of the spatial derivatives.
We note that the order of time averaging and spatial differentiation does not noticeably
affect the DEM data presented in this paper for the long-time regime. Also, we have tested
using both cutoff Gaussian functions and Lucy functions (Weinhart et al. 2013; Tunuguntla
et al. 2016) for the kernel function of the derivative filter as well as a range of kernel
function widths to ensure that the reported results in this study are independent of these
choices.

Unlike for the steady concentration and velocity fields, which allow for arithmetic
time-averaging, the transient concentration fields for dense flows of disks (e.g. figure 4d)
are time averaged in a slightly different manner using a cutoff Gaussian filter. In particular,
this process is performed by applying a normalized, cutoff Gaussian time filter to the DEM
data at each x-position. Denoting the standard deviation of the Gaussian kernel function
as σt, so that the cutoff time width of the Gaussian kernel is 6σt, the time-smoothed field
quantity at a given x-position and time t is then given by the convolution of the DEM
data over a time period of 6σt, centred at time t, with the cutoff Gaussian kernel. We have
tested a range of kernel widths σt to ensure that the coarse-grained concentration fields
appearing in this paper are insensitive to this choice. For the transient concentration fields
for dense flows of spheres (second column of figure 10), no additional time smoothing is
needed, and the concentration fields are simply instantaneous snapshots in time. This is
possible primarily because spatial smoothing is being done over a greater volume and a
larger number of grains, and therefore the instantaneous concentration fields are relatively
more smooth.
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Figure 14. (a) Initially segregated configuration for two-dimensional DEM simulation of bidisperse simple
shear flow with dl/ds = 1.5 and 8649 flowing grains. Upper and lower layers of black grains denote rough
walls. Dark grey grains indicate large flowing grains, and light grey grains indicate small flowing grains. A
10 % polydispersity is utilized for each species to prevent crystallization. (b) Spatio-temporal evolution of the
large-grain concentration field, illustrating the transition width that grows with time. (c) Normalized transition
width vs square root of normalized time t̃ = t/(H/vw).

Appendix B. Diffusion flux consistency test

Our process for determining the segregation flux – and hence the material parameter CS
seg

– is based on the assumption that the segregation and diffusion fluxes balance in the
quasi-steady regime. Therefore, it is essential that the dimensionless material parameter
Cdiff appearing in the constitutive equation for the diffusion flux (2.14) has been accurately
determined, so that the coarse-grained diffusion flux is accurate. In § 3, we determined
Cdiff for dense flows of frictional disks to be 0.20 using MSD data from DEM simulations
of simple shear flow of a well-mixed bidisperse granular system. In this appendix, we
perform an independent consistency check that tests whether the constitutive equation for
the diffusion flux (2.14) using this fitted value of Cdiff for disks is capable of predicting
the evolution of the cl field in a diffusion-dominated problem.

Consider homogeneous simple shear flow of an initially segregated system with large
grains (dark grey) on the bottom and small grains (light grey) on the top, as shown in
figure 14(a) for the case of dl/ds = 1.5. The rectangular domain has a length of L = 60d̄0
in the x-direction and a height of H = 120d̄0 in the z-direction. As in §§ 2.3 and 3,
shearing along the x-direction and normal stress along the z-direction are applied by the
walls. We perform DEM simulations of simple shearing for a nominal inertial number

of (vw/H)

√
d̄2

0ρs/Pw = 0.1. We run the DEM simulation starting from the initially
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segregated configuration, and the spatio-temporal evolution of the coarse-grained cl field
is shown in figure 14(b) for dl/ds = 1.5. We observe that the interface between large and
small grains, which is initially sharp, becomes diffuse with a transition width that grows
with time. We define a transition width at a given point in time as the distance between the
positions at which cl equals 0.1 and 0.9 in snapshots of the spatial cl profile. For grain-size
ratios of dl/ds = 1.5 and 3.0, this transition width as a function of the square root of the
dimensionless time t̃ = t/(H/vw) is plotted in figure 14(c), using solid lines, displaying
roughly linear behaviour – typical of diffusive behaviour – with a slight dependence on
dl/ds.

Next, we apply the continuum model for the evolution of cl (2.16) to this problem. As
for planar shear flow of a well-mixed bidisperse system (figure 2), no pressure gradient is
present. Therefore, the evolution of cl is governed by (2.16)

∂cl

∂t
+ ∂

∂z

(
−Cdiff d̄2γ̇

∂cl

∂z
+ CS

segd̄2cl(1 − cl)
∂γ̇

∂z

)
= 0, (B1)

where d̄ = cldl + (1 − cl)ds. In this flow configuration, the shear strain rate is
approximately constant. Therefore, the shear-strain-rate gradient is approximately zero
throughout, and the diffusion flux is the dominant flux, which acts to remix the flowing
grains. This may be understood in the context of the local inertial rheology. Since the
stress ratio μ is spatially constant in homogeneous planar shear, the resulting inertial
number field I is also spatially constant. Since the inertial number depends on both d̄
and γ̇ , spatial variation in d̄ leads to spatial variation in γ̇ . This spatial variation in γ̇ is
slight, and consequently, the magnitude of the diffusion flux at each point in space is much
greater than the magnitude of the segregation flux. While the effect of segregation is small,
we still include the shear-strain-rate-gradient-driven segregation flux with CS

seg = 0.23 and
solve (B1) when analysing the problem shown in figure 14(a). We note that due to the small
effect of segregation and the dependence of d̄ on cl, (B1) is similar to but not exactly the
same as the linear diffusion equation in one dimension, so the solution is close to but not
exactly an error function.

We obtain predictions for the evolution of the cl field by solving (B1) using the fully
segregated initial condition for cl(z, t = 0), no-flux boundary conditions at z = 0 and
z = H, a spatially constant value of inertial number I consistent with that prescribed in
the DEM simulations, a given grain-size ratio dl/ds, and Cdiff = 0.20. We note that since
I is taken to be spatially constant, γ̇ = (I/d̄)

√
Pw/ρs varies slightly in space due to the

cl-dependence of d̄. We extract the transition width as a function of time from continuum
simulation results for dl/ds = 1.5 and 3.0 and include these results in figure 14(c) as
dashed lines. The continuum model predictions agree well with the DEM data and are even
capable of capturing the small difference due to the grain-size ratio. This result indicates
that the expression for the diffusion flux (2.14) and the fitted material parameter value
Cdiff = 0.20 are indeed consistent with DEM data for disks.

Appendix C. Comparison with a local rheological model

In this appendix, we compare selected continuum model predictions for bidisperse disks
from § 5 with corresponding predictions of the quasi-steady velocity fields and the
segregation dynamics using a local rheological model. In particular, we apply the partial
regularization strategy of Barker & Gray (2017) to the linear form of the local inertial
rheology (2.3) and couple the resulting rheological model with the segregation model
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Figure 15. Comparisons of continuum model predictions with corresponding DEM simulation results for the
transient evolution of the segregation dynamics for (a) the base case of vertical chute flow of disks {W/d̄0 =
60, μw = 0.45, cl

0 = 0.5, dl/ds = 1.5} and (b) the base case of annular shear flow of disks {R/d̄0 = 60, ṽw =
0.01, cl

0 = 0.5, dl/ds = 1.5}. The first column shows comparisons of the DEM simulations (solid black lines),
continuum model predictions using the NGF model (dashed grey lines) and continuum model predictions using
a local rheological model (dash-dotted grey lines) of the cl field at four time snapshots representing different
stages of the segregation process. The second column shows comparisons of the quasi-steady, normalized
velocity profiles from DEM simulations and both types of continuum model predictions.

developed in this work for dense, bidisperse flows in the absence of pressure gradients.
Upon regularization, the linear form of the local inertial rheology may be expressed as the
following local constitutive equation for the strain rate γ̇ in terms of the stress ratio μ and
the pressure P:

γ̇ (μ, P) =
√

P
d̄2ρs

⎧⎪⎪⎨
⎪⎪⎩

μ − μs

b
if μ > μN

1 ,

A− exp
(

− α

μ2

)
if μ ≤ μN

1 ,
(C1)

where {μs, b} are the dimensionless rheological parameters given in (5.1) for disks,
μN

1 = μs + bIN
1 , A− = IN

1 exp(α/(μN
1 )2) and {IN

1 , α} are dimensionless regularization
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parameters. Here, we take {IN
1 = 0.00482, α = 1.9}, which, by the criteria of Barker &

Gray (2017), gives well-posed behaviour for low to moderate inertial numbers (I � 0.91)
and, moreover, ensures that the relation between γ̇ and μ at fixed P in (C1) is smooth in
addition to being continuous.

The local rheological constitutive equation (C1) is coupled with the segregation
dynamics equation (5.5) and used to obtain predictions for vertical chute flow.
Figure 15(a) shows comparisons for the base case of vertical chute flow of disks
{W/d̄0 = 60, μw = 0.45, cl

0 = 0.5, dl/ds = 1.5}. The first column shows comparisons of
the DEM simulations (solid black lines) and the continuum model predictions using (C1)
(dash-dotted grey lines) for the cl field at the same four snapshots in time as in figure 8(a),
and a comparison of the quasi-steady, normalized velocity fields is shown in the second
column. Continuum model predictions using the NGF model from figure 8(a) are also
included as dashed grey lines. While the regularized local inertial rheology predicts a
non-zero strain rate for all x /= 0 in vertical chute flow, the strain rate and its gradient are
very small in the central region of the vertical chute where μ < μs, and this region is
predicted to behave as nearly rigid. Therefore, the local rheological model cannot capture
the velocity field in the creeping region away from the walls, and since the flow kinematics
are not accurately predicted, the segregation dynamics cannot be captured. The predicted
concentration field effectively does not evolve in the nearly rigid, central region of the
chute, which leads to inaccurate predictions of the segregation dynamics in the regions
near the walls.

Analogous observations for the base case of annular shear flow of disks {R/d̄0 =
60, ṽw = 0.01, cl

0 = 0.5, dl/ds = 1.5} are summarized in figure 15(b). The regularized
local inertial rheology cannot capture the decaying flow field – in particular, the
quasi-static, creeping behaviour far from the inner wall – because it predicts nearly rigid
behaviour in the region away from the wall where μ < μs. As a result, the predicted
evolution of the concentration field occurs in a narrow region near the inner wall, which
is not consistent with the DEM data. These observations illustrate that by accurately
predicting flow kinematics across flow geometries, the NGF model plays a key role in
the ability of the coupled continuum model to capture the segregation dynamics.
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