
JFP 26, e20, 3 pages, 2016. c© Cambridge University Press 2016

doi:10.1017/S0956796816000228

1

Special issue dedicated to ICFP 2014
Editorial

The 19th ACM SIGPLAN International Conference on Functional Programming

(ICFP) took place on September 1–3, 2014 in Gothenburg, Sweden. After the

conference, the programme committee, chaired by Manuel Chakravarty, selected

several outstanding papers and invited their authors to submit to this special

issue of JFP. We acted as editors for these submissions. This issue includes the

six accepted papers, each of which provides substantial new material beyond the

original conference version. The selected papers demonstrate both the quality and

the breadth of the conference, with a strong emphasis on types and their applications,

and ranging from compilation methods through contract verification to homotopy

type theory.

In Romeo: A System For More Flexible Binding-Safe Programming, Stansifer and

Wand present a programming language, Romeo, that allows the user to define data

types for syntax trees with complex binding structure and functions for manipulating

such trees. These functions guarantee that binding structures are respected, so that

no name can escape its scope, i.e., that alpha-equivalent programs evaluate to alpha-

equivalent results. The paper presents a type system that functions as a language for

specifying binding structure that is both simple and expressive, inspired by attribute

grammars; it goes beyond earlier work in its combination of complex binding

structures with flexible programming. The paper’s main contribution is an extension

of Herman’s system for binding-safety in a pattern-matching macro system to cover

macros defined by procedures, and thus general meta-programming for terms with

bindings.

In Higher Order Symbolic Execution for Contract Verification and Refutation,

Nguy˜̂en, Tobin-Hochstadt, and Van Horn endow symbolic execution with a new

form of higher order values, enabling verification of safety properties of functional

programs. In particular, they show how to apply the approach to the static

verification of behavioural software contracts in a functional language (Racket).

They argue that higher order symbolic execution and behavioural contracts are

mutually beneficial. The result is a system for higher order programming that

combines effective bug finding and a gradual spread of verified contracts. A key

aspect of the approach is the use of contracts to delay higher order checks so that

failures always occur with first-order witnesses. A search for counter-examples relies

on the fact that, even in a higher order setting, there are relatively few ways in

which inputs trigger program errors. This enables surprisingly strong guarantees

(soundness and relative completeness given an SMT solver that is complete for base

types). A substantial benchmarking effort indicates that the approach is competitive

with existing tools ranging from type systems to model checkers, even on their

own benchmarks. Case studies on small interactive video games that use first-class

https://doi.org/10.1017/S0956796816000228 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000228


2 Editorial

and dependent contracts demonstrate that the elimination of dynamic contract

monitoring can yield rather large speedups, and indeed that this speedup can be the

key to making a game feasible in practice.

In Gradual Type-and-Effect Systems, Bañados Schwerter, Garcia, and Tanter

develop a theory of gradual effect checking, using the framework of abstract

interpretation. This theory is motivated by the observation that effect systems

have not been widely used, because in practice it seems difficult to move from

a system where effects are implicit and unrestricted to one with a fully static

effect discipline. The use of abstract interpretation not only allows the fundamental

differences between gradual typing and gradual effect systems to be made clear,

but also guides the specification of key notions such as the meaning of unknown

effects in terms of abstraction and concretization operations. The authors take as

their starting point the generic effect system of Marino and Millstein, which they

extend into a system for gradual effects. A concrete instantiation permits the gradual

checking of exceptions and provides a compact, easily understood demonstration of

the approach. This paper expands considerably on the original conference version,

by adding a new operational semantics that does not require values to be tagged,

and by showing how gradual effect checking and gradual typing can be combined.

In Safe Zero-cost Coercions for Haskell, Breitner, Eisenberg, Peyton Jones, and

Weirich show how to support generative type abstraction—a useful feature in many

functional languages—whilst also providing the ability to coerce values at no runtime

cost between an abstract type and its underlying representation. Previous work by

Weirich et al. in POPL 2011 had proposed a way of attacking this problem through

the introduction of roles, which tracked the distinction between “nominal” and

“representational” type equality. However, that approach involved a complicated

extension to the kind language of Haskell. The present paper presents a much

simpler approach in which role information is confined to the parameters of data

types instead of invading the kind system. The resulting design loses something

in expressiveness, but more than makes up for it in practical implementability. In

addition to proving type soundness and showing how to support role inference and

simplification of coercion constraints, the authors describe the integration of their

design into the GHC compiler.

In Homotopical Patch Theory, Angiuli, Morehouse, Licata, and Harper consider

a programming application of higher inductive types, a new class of datatypes that

arises in homotopy type theory. Homotopy type theory extends Martin-Löf’s inten-

sional type theory with higher inductive types and Voevodsky’s univalence axiom,

features motivated by a correspondence between type theory, homotopy theory, and

higher category theory. Higher inductive types are specified by constructors not only

for points but also for paths between points, paths between paths and so on; these

have primarily been used to model spaces in computer-checked proofs of theorems

in homotopy theory. However, there has been a dearth of programming examples,

rendering homotopy type theory a challenging topic for non-experts. This paper fills

that gap by using higher inductive types to model patch theories, which are formal

models of version control systems. The paper considers a sequence of patch theories,

including two that did not appear in the original conference version of the paper,

https://doi.org/10.1017/S0956796816000228 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000228


Editorial 3

culminating in a patch theory of text files. So for all those readers who have been

wondering what homotopy type theory is about, this programming-oriented view

could be a good place to start.

In Eliminating Dependent Pattern Matching Without K, Cockx, Devriese, and

Piessens define a translation from a language with dependent pattern matching on

inductive families to a language with only datatype eliminators (induction principles).

Such a translation is an important piece of the implementation of a dependently

typed programming language, because it justifies a usable source syntax in terms of

the basic building blocks that are used to study the metatheory of a language. In

his thesis, Conor McBride established such a translation, which was subsequently

refined with collaborators and has been used as the basis of the implementation

of Epigram 2 and of the Equations library in Coq. However, McBride’s translation

depended on uniqueness of identity proofs (the principle that any two proofs of

x = y are themselves equal), also known as the “K” axiom. Recent work on

homotopy type theory has introduced axioms that contradict K, thus motivating the

need for a translation of dependent pattern matching that does not depend on K.

In this paper, Cockx et al. fill this gap, developing a criterion for dependent pattern

matching which ensures that it can be implemented without the K axiom. They have

implemented their criterion in Agda, and demonstrated that it is sufficient to handle

significant examples drawn from homotopy type theory.

We thank the authors and reviewers for their efforts in producing and reviewing

these papers within strict time limits. We also gratefully acknowledge the support

of the JFP editors-in-chief and editorial office, as well as Manuel Chakravarty and

the ICFP 2014 programme committee for their help in selecting the invited papers.

Derek Dreyer

Foundations of Programming Group

Max Planck Institute for Software Systems (MPI-SWS)

dreyer@mpi-sws.org

Mary Sheeran

Functional Programming Group

Computer Science and Engineering Department

Chalmers University of Technology

ms@chalmers.se

https://doi.org/10.1017/S0956796816000228 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000228

