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Abstract

Many complex systems can be modeled via Markov jump processes. Applications include
chemical reactions, population dynamics, and telecommunication networks. Rare-event
estimation for such models can be difficult and is often computationally expensive,
because typically many (or very long) paths of the Markov jump process need to be
simulated in order to observe the rare event. We present a state-dependent importance
sampling approach to this problem that is adaptive and uses Markov chain Monte Carlo
to sample from the zero-variance importance sampling distribution. The method is
applicable to a wide range of Markov jump processes and achieves high accuracy, while
requiring only a small sample to obtain the importance parameters. We demonstrate
its efficiency through benchmark examples in queueing theory and stochastic chemical
kinetics.
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1. Introduction

Many real-world random systems can be described mathematically via Markov jump pro-
cesses. Typical examples can be found in stochastic chemical kinetics [10], [17], [20], [25],
population dynamics [5], [19], and queueing networks [1], [13], [26].

Rare-event probability estimation by direct simulation of the model (crude Monte Carlo) is
computationally difficult because typically a huge simulation effort is required to observe only a
few rare events. A more sophisticated approach is to use importance sampling, where the system
is simulated under a change of measure; see, e.g. [2], [11], and [14]. However, the efficiency
of this technique depends crucially on (a) the appropriate choice of a parameterized family of
importance sampling distributions, and (b) the judicious selection of an appropriate member
within that family; that is, the correct choice of an importance sampling parameter. Adaptive
techniques such as the cross-entropy method [22] are useful for estimating good importance
sampling parameters, but in high-dimensional settings it may take a large simulation effort [4].
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The matter is further complicated by the fact that good importance sampling distributions often
need to be state dependent, where the importance sampling parameter depends on the state of
the process.

In this paper we propose a new method for obtaining state-dependent importance sampling
parameters that exploits the dynamic nature of Markov jump processes. We demonstrate how to
obtain, for a broad class of Markov jump processes, a state-dependent change of measure that
gives improved accuracy compared to standard importance sampling approaches and recent
state-dependent methods [3], [7], [8], [9], [21]. The method requires a considerably smaller
sample run than current techniques to obtain suitable importance sampling parameters, due
to the fact that the pilot samples are generated directly from the zero-variance distribution,
using the hit-and-run Markov chain Monte Carlo sampler [23], [24]. The effectiveness of the
approach is demonstrated via a range of examples in stochastic chemical kinetics and queueing
theory, showing a marked improvement over existing benchmark models.

The rest of the paper is organized as follows. In Section 2 we present the underlying frame-
work for Markov jump processes used in this paper. In Section 3 we outline the background
for rare-event estimation and explain current approaches to estimating rare-event probabilities.
We then present various improvements involving sampling from the zero-variance distribution
and state-dependence importance sampling. In Section 4 we describe how to sample from the
zero-variance distribution using hit-and-run Markov chain Monte Carlo sampling. In Section 5
we demonstrate the applicability and improved accuracy of the new methods via comparisons
with benchmark cases in stochastic chemical kinetics and queueing theory.

2. Markov jump processes

The class of Markov jump processes (henceforth abbreviated to MJPs) that we wish to
consider has some particular structure. Firstly, the transition rates are assumed to be of the
form

q(x, x + yi ), i = 1, . . . , p, (1)

where y1, . . . , yp are fixed vectors. Thus, from each state x, there are (at most) p different
transition types that can be made by the MJP. Secondly, the transition rates depend on parameter
vector u = (u1, . . . , up) (with ui > 0, i = 1, . . . , p), in such a way that

qi(x; ui) := q(x, x + yi; ui) = ui hi(x), i = 1, . . . , p, (2)

where hi(x), i = 1, . . . , p, are nonnegative functions of x. Finally, we only study the MJP in
some fixed interval [0, T ]. In practice, many MJPs are of this form with small or moderate p.

Any path {X(t), t ∈ [0, T ]} corresponds uniquely to a sequence (t1, r1), . . . , (tK, rK),
where tk is the time at which the kth transition occurs and rk is the kth transition type. The
random variable K is the number of transitions before, and including, time T . We call J =
(t1, r1, . . . , tK, rK) the trajectory vector, or simply the trajectory.

Since the sojourn times {sk}, where sk = tk − tk−1, are exponentially distributed, and the
jump probabilities are proportional to the transition rates, for a fixedK , the probability density
function (PDF) of a trajectory J is given by

f (j ; u) =
K∏
k=1

qrk (x(tk−1); urk )exp

(
−

( p∑
i=1

qi(x(tk−1); ui)
)
(tk − tk−1)

)
. (3)

Simulation of the sojourn times and the transition types is straightforward via the inverse-
transform method [14].
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3. Rare-event probability estimation for MJPs

We wish to accurately estimate small probabilities of the form

� = P(J ∈ J),

where J is the set of all possible trajectories under which the rare event occurs. The crude
Monte Carlo (CMC) estimator for � is

�̂CMC = 1

N

N∑
n=1

1{J (n)∈J},

where J (1), . . . ,J (N)
i.i.d.∼ f (j ; u). A measure for the accuracy of any unbiased estimator �̂ of

� is the relative error of the estimator, defined as RE =
√

var[�̂]/�.
3.1. Importance sampling

A well-known technique to estimate rare-event probabilities more accurately than CMC is
importance sampling [2], [11], [14]. The idea is to simulate the trajectories J (1), . . . ,J (N)

from a different PDF g rather than f in (3), and to estimate � via the importance sampling
estimator

�̂ = 1

N

N∑
n=1

1{J (n)∈J}W(J (n)), (4)

where {J (n)} i.i.d.∼ g and

W(J (n)) = f (J (n); u)

g(J (n))

is the likelihood ratio.
Ideally, we would like an importance sampling PDF g that results in the importance sampling

estimator having the smallest possible variance. The best possible PDF is the zero-variance
importance sampling PDF g∗ defined as the conditional PDF of J ∼ f (·; u) given J ∈ J, that
is,

g∗(j) = f (j ; u) 1{j∈J}
�

. (5)

An obvious difficulty is that g∗ cannot be evaluated, since � is typically not known. A useful
strategy is to restrict g to the same parametric family as f and then choose from this family
a member that is close, in some sense, to g∗. Thus, we consider g(j) of the form f (j ; v),
where v = (v1, . . . , vp) is the changed parameter (instead of u = (u1, . . . , up)), and aim to
find a suitable v under which to carry out the importance sampling. A possible method to
use is the cross-entropy (CE) method [22], which selects a v∗ that minimizes the Kullback–
Leibler (or cross-entropy) distance between g∗ and f (·; v). The standard CE method uses a
multistage approach, where the final importance sampling parameter v̂∗ (an estimate of v∗) is
adaptively obtained through a sequence of parameters v[1] = u, v[2], . . . , v̂∗ corresponding to
a sequence of increasingly smaller sets J[1] ⊃ J[2] ⊃ · · · ⊃ J. The optimal CE parameter v∗
is the solution to the cross-entropy optimization program [22, Section 3.3]

max
v

Eu[W(J ; u, v) 1{J∈J} log f (J ; v)], (6)
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where f is given in (3) and W(J ; u, v) = f (J ; u)/f (J ; v). Moreover, v∗ can be estimated
from simulation by solving the stochastic counterpart of (6), replacing the expectation with
a sample average. For the type of MJPs considered in this paper, this leads to the following
updating formula for the importance sampling parameters at the bth stage of the CE procedure:

v
[b]
i =

∑N
n=1W(J

(n); u, v[b−1])m(n)i 1{J (n)∈J[b]}∑N
n=1W(J

(n); u, v[b−1])
∑K(n)

k=1 hi(x
(n)(t

(n)
k−1))(t

(n)
k − t

(n)
k−1) 1{J (n)∈J[b]}

. (7)

Here v[b]
i is the ith component of v[b], with b = 1, 2, 3, . . . , m(n)i is the number of type-i

transitions in J (n), and J (1), . . . ,J (N)
i.i.d.∼ f (j ; v[b−1])) are the trajectories generated at stage

b−1. At the bth stage of the CE procedure, J[b] is defined as the set containing all possible tra-
jectories (not only those that are generated) that are ‘at least as rare’(according to some problem-

dependent criterion) as the Nρth rarest from the sample J (1), . . . ,J (N)
i.i.d.∼ f (j ; v[b−1]). The

parameter ρ ∈ (0, 1) is fixed in advance; we typically choose ρ = 0.1. We can simply define
J[1] as the set of all possible trajectories J .

3.2. State-dependent importance sampling

The family of importance sampling PDFs obtained by changing the parameters {ui} to {vi}
in (2) may not be close enough to the ideal importance sampling PDF g∗ to yield accurate
importance sampling estimates. It is natural to seek to enlarge the class of importance sampling
distributions to include state-dependent changes of measure, in which the parameters {vi}
depend on the state of the process. We propose to replace the transition rate of type-i transitions,
qi(x; ui) in (2), with the transition rate qi(x; vi(x)) = hi(x)vi(x), where

vi(x) =
βi∑
j=1

vij 1{x∈Bij }, i = 1, . . . , p, (8)

where the bins Bij , j = 1, . . . , βi , i = 1, . . . , p, form p separate partitions of the state space
E of the MJP, that is, for each i, the sets Bi1, . . . , Biβi are disjoint and their union is E. Thus,
if x ∈ Bij , the transition rate from x to x + yi (see (1)) is vijhi(x). This family includes the
original PDF—set βi = 1, and take Bi1 = E and vi1 = ui for i = 1, . . . , p.

Because the corresponding family of importance sampling distributions includes the state-
independent importance sampling discussed in the previous section, importance sampling with
the extended family can offer higher accuracy in estimation, provided the parameters {vij } are
chosen appropriately. Again, this can be achieved adaptively via the CE method. Similarly to
(7) and (12), the parameters in the multilevel CE procedure are updated as

v
[b]
ij =

∑N
n=1 1{J (n)∈J[b]}W(J (n); u, v[b−1])

∑K(n)

k=1 (1{rk=i} 1{x(tk−1)∈Bij })∑N
n=1 1{J (n)∈J[b]}W(J (n); u, v[b−1])

∑K(n)

k=1 (hi(x(tk−1))(tk − tk−1) 1{x(tk−1)∈Bij })
,

(9)
where J (1), . . . ,J (N)

i.i.d.∼ f (j ; v[b−1]). Note that we have suppressed the superscript ‘(n)’ on
rk , x, tk , and tk−1 for ease of notation. Also, the set of importance sampling parameters {v[b]

ij }
is summarized as v[b].

How to determine the partition {Bij } for each i is problem dependent. A natural approach is
to partition the state space into regions within which the transition rates are roughly constant.
Of course, there is a tradeoff between a higher number of smaller regions with near-constant
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transition rate (thus leading to a more accurate change of measure) and fewer regions that
possibly differ significantly but offer much less computational burden. A convenient way to
partition the state space is to assign, for each type of transition i, a numerical value to the states,
say φi(x) ∈ [0, 1], and to define

Bij = {x : φi(x) ∈ (c(j−1)
i , c

(j)
i ]}, j = 1, . . . βi, i = 1, . . . , p,

where, for each i, the values 0 = c
(0)
i < c

(1)
i < · · · < c

(βi)
i = 1 partition the unit interval (0, 1].

Such an approach was taken in [21], where the function φi is defined as the probability that the
MJP leaves state x via the ith type of transition under the original measure, that is,

φi(x) = qi(x; ui)/
p∑
k=1

qk(x; uk), i = 1, . . . , p. (10)

We use such a partition for all the chemistry-related examples in this paper. In general, the
choice of the partition function is problem dependent and might require some experimentation
to identify the regions {Bij } of interest. In, e.g. the queueing example, Example 4 below, we
use instead φi(x) = min{xj /Ci, 1} for some constant Ci and some index j ∈ {1, . . . , d}.

We next describe a simple automatic procedure for choosing the {c(j)i } at the bth stage
of the CE method, based on an independent and identically distributed (i.i.d.) sample of
trajectories J (1), . . . ,J (N) from f (j ; v[b−1]). Let x

(n)
k , k = 1, . . . , K(n), n = 1, . . . , N , be

the subsequent states visited by the trajectories/paths, and denote by φmin
i the smallest of the

φi(x
(n)
k ) for which the rare event at the bth stage is reached. Thus, we take into account only

those x
(n)
k for which J (n) ∈ J[b]. Similarly, for such x

(n)
k , let φmax

i be the maximum of the φi
values. For a given βi (say βi = 10), choose

c
(j)
i = φmin

i + φmax
i − φmin

i

βi
j, j = 1, . . . , βi − 1. (11)

Recall that c(0)i = 0 and c(βi)i = 1 by definition.
Although (11) provides a convenient initial construction of the partitions, the {c(j)i } (or,

equivalently, the {Bij }) should be chosen such that the CE optimal parameters v∗
ij can be

accurately estimated via (9). This requires that enough transitions of type i occur when the
MJP is in each set {Bij , j = 1, . . . , βi}. In particular, we require that there are at least ω type-i
transitions occurring in each set, where ω is specified in advance; in this paper we take ω = 20
for all examples.

For partitions of the form (10), this requirement can be met (and automated) by merging
adjacent intervals (c(j)i , c

(j+1)
i ] and (c(j+1)

i , c
(j+2)
i ]. The merging can be implemented in

various ways.
As a numerical example, let ω = 5 and suppose (for a certain i) that the interval (0, 1]

is initially partitioned as (0, 0.3], (0.3, 0.4], (0.4, 0.5], (0.5, 0.6], (0.6, 0.7], (0.7, 1]. Suppose
that 20 type-i transitions have taken place that have reached the (intermediate) rare event
and that the counts of the numbers of times that φi(x) falls in one of the above six sets are
2, 3, 4, 2, 8, 1. Merging intervals from left to right until the combined count is more than ω,
the modified partition is (0, 0.4], (0.4, 0.6], (0.6, 1], with counts 5, 6, 9.

Algorithms 1 and 2 below explain how the corresponding state-dependent cross-entropy
method is implemented, using the method described above and as in [21]. Below, Nv is the
size of the sample used to calculate the importance parameter vector v. Typically,Nv is smaller
than N which is used in the final simulation (4) to estimate �.
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Algorithm 1. (Adaptive state-dependent cross-entropy method.)

1. Choose parameters ω,N ,Nv , ρ, β1, . . . , βp, and functions φi, i = 1, . . . , p. Set b = 1,
and Bi1 = E and vi1 = ui for all i = 1, . . . , p.

2. Generate via Algorithm 2 below an i.i.d. sample J (1), . . . ,J (Nv) from f (j ; v[b]).

3. Let b = b + 1, and identify the elite sample as the Nvρ rarest of the J (1), . . . ,J (Nv)

(according to some problem-dependent criterion). If more than Nvρ of the generated
samples fall in J, set J[b] = J; otherwise, define J[b] as the set containing all possible
trajectories that are ‘at least as rare’ as the worst of the elite sample.

4. Using the elite sample, determine the c(j)i according to (11) and further modify these to
obtain at least ω counts in each set Bij (this may change the βi).

5. Use the same elite sample to find the importance sampling parameters v[b]
ij via (9).

6. If J �= J[b], repeat steps 2 to 5; otherwise, proceed to step 7.

7. Calculate �̂ via (4) using J [1], . . . ,J [N ] i.i.d.∼ f (j ; v̂∗), where v̂∗ = v[b].

In general, the trajectory J = (t1, r1, . . . , tK, rK) should be generated long enough to
produce the entire path {X(t), t ∈ [0, T ]}. However, often the rare event is of the form
(t1, r1, . . . , tM, rM) ∈ J for some stopping time M < K (with respect to the sequence of
(t1, r1), (t2, r2), . . .). In that case the generation of J can be stopped immediately after the rare
event occurs, say at some random stopping time τ < T . All numerical examples in this paper
are of this form and the following generation algorithm is formulated accordingly.

Algorithm 2. (Trajectory/path generation with importance sampling.)

1. Identify J[b] and the importance sampling parameters v[b]
ij . Let Nv be the sample size,

and let T be the maximum time length. Set n = 1.

2. Set t0 = 0,W(n) = 1, and k = 1; initialize X(0) = x(0).

3. Generate the transition type rk and sojourn time sk using qi(x; vi(x)) = hi(x)vi(x)

instead of qi(x; ui), where vi(x) is given in (8). Set k = k + 1.

4. If tk−1 + sk > T , stop the trajectory generation and continue to step 5. Otherwise,
set X(tk) = X(tk−1) + yrk , tk = tk−1 + sk , and update the likelihood ratio of the nth
trajectory using

W(n) = W(n)
urk exp

( − (
∑p
i=1 uihi(x(tk−1)))sk

)
vrk (x(tk−1)) exp

( − (
∑p
i=1 vi(x(tk−1))hi(x(tk−1)))sk

) .
If the current J ∈ J, stop the trajectory generation and continue to step 5. Otherwise,
repeat from step 3.

5. If n = Nv , stop and output J (1), . . . ,J (Nv) and the corresponding likelihood ratios
W(1), . . . ,W(Nv); otherwise, set n = n+ 1 and repeat from step 2.
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3.3. Improved CE

The standard multilevel CE approach requires a large enough sample in each level to estimate
the final importance sampling parameter vector v∗ accurately enough. Difficulties may arise
when the number of parameters to be estimated is large. An alternative approach, discussed
in [4] is to estimate v∗ via a single step, by (approximately) generating directly from the zero-
variance PDF g∗ using, for example, Markov chain Monte Carlo methods. Specifically, the
estimate v̂∗ of the optimal importance sampling parameter v∗ is in this case the solution to the
optimization problem

max
v

N∑
n=1

log f (J (n); v),

where J (1), . . . ,J (N)
i.i.d.∼ g∗. Note that this solution is simply the maximum likelihood

estimate of v based on the data from g∗. Here every simulated trajectory J (n) is in J and,
therefore, the optimal importance parameter for the MJP is estimated in a single step with a
simpler version of (7):

v̂∗
i =

∑N
n=1m

(n)
i∑N

n=1
∑K(n)

k=1 hi(x
(n)(t

(n)
k−1))(t

(n)
k − t

(n)
k−1)

(12)

for a sample ofN trajectories J (1), . . . ,J (N)
i.i.d.∼ g∗. This parameter updating formula is more

accurate than (7). Therefore, only a very small sample from g∗ is required. In Section 4 we
discuss how the hit-and-run sampler can be used efficiently to sample (approximately) from g∗.

We extend the idea of state-dependent importance sampling outlined in Section 3.2 by
capitalizing on the improved CE formula (12). As a direct result of improved statistical inference
due to sampling from g∗, the number of bins β described in Section 3.2 can be increased. An
increase in the number of bins, all with a reduced size, results in a more ‘fine-tuned’ change
of measure that offers more accuracy in estimation. The importance sampling parameters are
calculated, similarly to (9), via

v̂∗
ij =

∑N
n=1

∑K(n)

k=1 (1{rk=i} 1{x(tk−1)∈Bij })∑N
n=1

∑K(n)

k=1 (hi(x(tk−1))(tk − tk−1) 1{x(tk−1)∈Bij })
, (13)

where J (1), . . . ,J (N)
i.i.d.∼ g∗. Note that here there are no likelihood ratio terms and the

parameters are updated in a single step.

4. Sampling from the zero-variance distribution

In this section we explain how Markov chain Monte Carlo, in particular hit-and-run sampling,
can be used to sample trajectories that are approximately from the zero-variance distribution.
The hit-and-run sampler has been shown to be very useful in rare-event simulation (and
estimation) in [12]. We present a new and powerful adaptation of hit-and-run sampling.
Specifically, we apply it to static uniform vectors representing transformed dynamic MJPs.

Via the inverse transform method a vector ξ = (ξ1, . . . , ξV ) of i.i.d. U(0, 1) random variables
can be transformed into a sequence of exponential and categorical random variables to simulate
random trajectories as in (3). Here V is a fixed integer large enough to account for the times
and types of any trajectory. Any given trajectory J can therefore be represented as J = ψ(ξ)

for some function ψ .
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Our aim is to generate a Markov chain of trajectories ξ (0), . . . , ξ (Nv) that, when transformed,
approximately give a random sample J (0), . . . ,J (Nv) from g∗ given in (5). In Section 4.2 we
explain how to obtain the initial trajectory J (0).

4.1. Zero-variance sampling via hit-and-run sampler

In this section we explain how the hit-and-run sampler [23], [24] is used to construct a
Markov process that converges in distribution to the uniform distribution on the set

{ξ ∈ [0, 1]V : ψ(ξ) = j ∈ J}. (14)

The hit-and-run method was chosen, instead of, for example, the Metropolis–Hastings or Gibbs
samplers, because of its fast mixing properties [16] and ease of implementation. In this paper
we use a modification of the hit-and-run sampler in [14, Example 6.5, p. 242]. The idea is that
sampling uniformly on a region R in the hypercube is equivalent to first sampling from an n-
dimensional standard normal distribution in a region
(R) ⊂ R

n, where
 is the n-dimensional
normal cumulative distribution function (CDF), and then applying the inverse map 
−1. The
sampling in R

n can be done via ordinary hit-and-run. We found that this approach leads to much
faster convergence to the target distribution than direct hit-and-run sampling on the hypercube.
The intuitive reason is that the ordinary hit-and-run sampler will spend a lot of time in the
corners of the hypercube, whereas the transformed sampler will search the hypercube more
evenly. Algorithm 3 outlines how, starting from an initial random vector ξ (0) ∈ [0, 1]V such
that ψ(ξ (0)) = J (0) ∈ J, we can generate a Markov chain whose limiting distribution is the
uniform distribution on (14).

Algorithm 3. (Hit-and-run sampler.)

1. Obtain a ξ (0) such that ψ(ξ (0)) = J (0) ∈ J, and set n = 0.

2. Generate a random direction column vector d uniformly on the surface of the n-dimen-

sional hypersphere. This can be done via d = d1/

√
d

�
1 d1, with d1 ∼ N(0, IV ).

3. Generate a point η(n+1) = 
(
−1(ξ (n))+ λd) on the line segment L, via

λ = −d
�

−1(ξ (n))+ Z,

where Z ∼ N(0, 1), and 
 and 
−1 are the n-dimensional normal CDF and n-dimen-
sional inverse normal CDF, respectively.

4. If ψ(η(n+1)) = J (n+1) ∈ J, set ξ (n+1) = η(n+1). Otherwise, repeat step 3.

5. Let n = n+ 1, and repeat from step 2.

Since the vectors ξ (0), ξ (1), ξ (2), . . . in the Markov chain are dependent, it is necessary to
apply thinning in order to obtain an approximately i.i.d. sample (of size Nv) from the zero-
variance distribution. In particular, we can keep the kth, 2kth, 3kth, etc. generated vectors
and discard the rest. There is obviously a tradeoff between computational time to generate a
sample and how closely the sample resembles a true random sample that is i.i.d. from g∗. For
the types of MJPs investigated in this paper, we have selected k to be rather high, because in
general Markov samplers in high-dimensional spaces tend to mix poorly. Therefore, a total of
kNv vectors corresponding to rare events should be generated to obtain a sample of Nv i.i.d.
vectors from g∗. After transforming, the resulting 	kNv/k
 vectors represent a random sample
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from the zero-variance distribution: J (k),J (2k),J (3k), . . .
i.i.d.∼ g∗. Note that J (0) should be

discarded as it was not generated from g∗.

4.2. Markov sampling to obtain the initial rare-event trajectory

Hit-and-run sampling is used to obtain the initial rare-event trajectory J (0) = ψ(ξ (0))which
is then used to generate the Markov chain described in Algorithm 3. Beginning with a
random uniform vector ξ ∈ U(0, 1)V , hit-and-run Markov sampling is applied such that every
subsequent vector in the chain is rejected unless it is ‘as rare’ or ‘more rare’ than the current
step. Algorithm 4 below describes this process.

Algorithm 4. (Generate rare-event trajectory.)

1. Generate ξ (0) ∼ U(0, 1)V , and set n = 0.

2. Same as step 2 in Algorithm 3.

3. Same as step 3 in Algorithm 3.

4. Set

ξn+1 =
{

η(n+1) if ψ(η(n+1)) = J (n+1) is ‘at least as rare’ as ψ(ξ (n)) = J (n),

ξ (n) otherwise.

5. Let n = n+ 1, and repeat steps 2 to 4 until ψ(ξ (n+1)) = J (n+1) ∈ J.

Remark 1. Steps 3 and 4 in Algorithm 3 involve standard acceptance–rejection sampling on
a line. We denote the average ‘acceptance rate’ by κ , that is, the expected number of samples
required to generate a new point in the hit-and-run algorithm. Therefore, the total number
of trajectories required to be simulated in order to obtain Nv i.i.d. trajectories from g∗ is
approximately kκNv . For all the problems in this paper, we have used ω = 20, k = 100, and
V = 1000. All of these parameters could have been lower without significantly compromising
accuracy.

We have found that the computational effort required to (i) generate J (0), (ii) merge the
Bij , (iii) calculate the importance parameters (via CE formulae), and (iv) select the appro-
priate importance parameter at each step in the trajectory, is mostly negligible compared
to the subsequent effort required to generate J (1), . . . ,J (Nv). Therefore, it is reasonable
to compare the effort required for rare-event estimation in this paper by simply comparing
N +Nv(number of iterations necessary to obtain v∗), for the iterative importance sampling
approaches, to N + kκNv for the zero-variance approach. Note that often the final simulation
is more computationally intensive than the techniques of obtaining the importance parameters.
Thus, this investigation focuses primarily on the accuracy of rare-event estimation techniques.

Empirical results have shown that our proposed approach of combining Algorithms 3 and 4
is a practical method for generating rare events from the types of MJPs investigated in this
paper. The computational effort required by our method is discussed and compared with the
outlined importance sampling approaches where relevant in this paper.

5. Numerical results

In this section we demonstrate, via a range of examples, that the proposed method provides an
effective approach to rare-event estimation for MJPs. The improvement outlined in Section 3.3
is completely adaptive and automatic. In particular, no prior knowledge of any optimal

https://doi.org/10.1239/jap/1409932671 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1409932671


750 A. W. GRACE ET AL.

importance distribution is required. The advantages of the approach are greater accuracy in
estimating rare-event probabilities, general applicability, and only a small size is required to
estimate the importance sampling parameters via standard maximum likelihood.

We also illustrate that Markov chain Monte Carlo can be effective, even for multidimensional
MJPs, in sampling from the zero-variance distribution. In particular, the inverse transform
method combined with hit-and-run sampling is a practical way to sample vectors that are
from, or extremely close to, g∗. This has another advantage in that even specific structures in
trajectories from g∗ are preserved when using this method, as will be illustrated in Example 5.

5.1. Stochastic chemical kinetics

In this section we consider rare-event estimation for MJPs that represent the numbers of
species in a chemical reaction.

Example 1. (Chemical reaction with two species.) In [21] a chemical reaction with two species
of molecules is considered which can be modeled via an MJP {(X1(t), X2(t)), t ≥ 0} on the
positive integers, with reaction rates

q((x1, x2), (x1 − 1, x2 + 1)) = u1x1,

q((x1, x2), (x1 + 1, x2 − 1)) = u2x2.

In Table 1 we present the results of three importance sampling procedures for the estima-
tion of the probability P(max0≤t≤10X2(t) ≥ 30). The first method (standard CE) uses the
standard state-independent CE method, where the change of measure involves the change of
parameters from (u1, u2) to (v1, v2). The second method (state-dependent CE) implements
the state-dependent multilevel Algorithm 1. In the third method (zero-variance (ZV) state-
dependent CE), the single-level, state-dependent CE procedure is used, where the importance
sampling parameters are found via (13) by sampling from the zero-variance distribution. Recall
thatNv is the sample size required to estimate v and β is the number of bins for each transition
(reaction) type.

As can be seen in Table 1 the relative error decreases when β is increased, even whenNv , the
sample size used to obtain the importance sampling parameters, is decreased. Two parameter
updates were required for the first two methods but only a single update was necessary for the
ZV state-dependent CE method. The acceptance rate value was κ ≈ 1.2. These estimates are
consistent with the true value � = 1.191 × 10−5 in [21].

The numerical results below show that the proposed method(s) can deal effectively with
much more elaborate systems.

Example 2. (Protein cycle process.) As a benchmark model for stochastic chemical kinet-
ics, we consider a pheromone-induced G-protein cycle in Saccharomyces cerevisiae (see [6]
and [21]), which can be modeled via a seven-dimensional MJP with system state at time t

Table 1: Numerical comparisons for P(max0≤t≤10 X2(t) ≥ 30) starting from X(0) = (100, 0).

Method Relative error �̂ N Nv β

Standard CE 0.093 1.42 × 10−5 106 105 —
State-dependent CE 0.0016 1.192 × 10−5 106 105 10
ZV state-dependent CE 0.000 79 1.191 × 10−5 106 103 50
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Table 2: Estimation of P(max0≤t≤5X6(t) ≥ 40) starting from X(0) = (50, 2, 0, 50, 0, 0, 0).

Method Relative error �̂ N Nv β

Standard CE 0.14 2.48 × 10−11 106 105 —
State-dependent CE 0.031 2.35 × 10−11 106 105 10
ZV state-dependent CE 0.017 2.35 × 10−11 106 103 50

represented by the vector

X(t) = (X1(t), X2(t), X3(t), X4(t), X5(t), X6(t), X7(t))
�

and with transition rates

q((x1, x2, x3, x4, x5, x6, x7), (x1 + 1, x2, x3, x4, x5, x6, x7)) = u1,

q((x1, x2, x3, x4, x5, x6, x7), (x1 − 1, x2, x3, x4, x5, x6, x7)) = u2x1,

q((x1, x2, x3, x4, x5, x6, x7), (x1 − 1, x2, x3 + 1, x4, x5, x6, x7)) = u3x1x2,

q((x1, x2, x3, x4, x5, x6, x7), (x1 + 1, x2, x3 − 1, x4, x5, x6, x7)) = u4x3,

q((x1, x2, x3, x4, x5, x6, x7), (x1, x2, x3 − 1, x4 − 1, x5 + 1, x6 + 1, x7)) = u5x3x4,

q((x1, x2, x3, x4, x5, x6, x7), (x1, x2, x3, x4, x5 − 1, x6, x7 + 1)) = u6x5,

q((x1, x2, x3, x4, x5, x6, x7), (x1, x2, x3, x4 + 1, x5, x6 − 1, x7 − 1)) = u7x6x7,

q((x1, x2, x3, x4, x5, x6, x7), (x1, x2, x3 + 1, x4, x5, x6, x7)) = u8.

In this example there are p = 8 transition types corresponding to eight different types of
chemical reactions, where

u = (0.0038, 0.0004, 0.042, 0.010, 0.011, 0.100, 1050, 3.21).

Suppose that the rare event of interest here is {max0≤t≤5X6(t) ≥ 40}, starting from state
X(0) = (50, 2, 0, 50, 0, 0, 0). We implemented the standard CE, the state-dependent multilevel
CE, and the state-dependent improved CE method to calculate v, and, for each method, used
importance sampling with the same sample size N = 106. The results are shown in Table 2.

The results improve those in [21] by providing a significantly lower relative error for the
last method, while requiring a similar sized pilot run. For this problem, the acceptance rate
was κ ≈ 2.58, giving an initial sample size of approximately κkNv = 258 000. Note that the
discrepancy in reported values of �̂ in Table 2 and [21] is due to rounding errors in the reported
transition vector u in [21].

We see that ZV state-dependent CE achieved higher accuracy than state-dependent CE (and
standard CE). Increasing the number of bins β increases the accuracy of the estimate, as long
as the importance sampling parameters for each bin can be calculated with sufficient accuracy.
The minimum number of samples per bin ω was set at 20.

The standard CE and state-dependent CE methods required four parameter updates, each
using Nv = 105 for each update to obtain the importance sampling parameters. Sampling
from the zero-variance distribution needed a single update with only Nv = 103. As the rare
event � to be estimated becomes smaller, sampling from g∗ becomes increasingly more efficient
compared with standard updating CE methods.
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5.2. Tandem Jackson queue

Rare-event probability estimation problems have been studied extensively in the context of
queueing systems. An important benchmark model is the tandem Jackson network. In this
system customers arrive to the first queue according to a Poisson process with rate λ and are
served by a single server in the order in which they arrive. If a customer arrives when the server
is busy serving another customer, the arriving customer joins the end of the waiting line. Once
the service is completed, the customer moves on to the second queue, where the customer waits
until served by the second server. The first and second servers have exponential service times
with rates μ1 and μ2, respectively.

LetX1(t) andX2(t) be the number of customers in the first and second queues, respectively
(including the customers who are being served), at time t . Then {(X1(t), X2(t)), t ≥ 0} is an
MJP with p = 3 transition types, with transition rates

q((x1, x2), (x1 + 1, x2)) = λ,

q((x1, x2), (x1 − 1, x2 + 2)) = μ1 1{x1≥1},
q((x1, x2), (x1, x2 − 1)) = μ2 1{x2≥1},

where 1{xi≥1} is the indicator that there is at least one customer in the ith queue.
This model is known to exhibit interesting rare-event behavior depending on the choice of

the parameters λ, μ1, and μ2. A typical rare-event quantity of interest is the probability that
the second queue reaches some high level y before it becomes empty. When μ1 > μ2 (the
second queue is the bottleneck), a simple and effective way to estimate the rare event is to use
state-independent importance sampling with the change of parameters λ̃ = μ2, μ̃1 = μ1, and
μ̃2 = λ. However, for the case μ1 < μ2 (the first queue is the bottleneck), a state-independent
change of measure does not work. In [15] a state-dependent change of measure is derived using
the theory of Markov-additive processes. Similar changes of measure are outlined in [18].
The effort required to obtain v̂∗ in [15] and [18] is considered negligible compared to the total
simulation effort.

Example 3. (Tandem queue (simple).) Consider a tandem queue with transition rates λ = 1,
μ1 = 4, and μ2 = 2. Thus, the second queue is the bottleneck. We wish to estimate the
probability � that the second queue reaches 25 before it becomes empty, starting from state
(1, 1). In Table 3 we compare the estimates and relative error from [15] (KN) with the zero-
variance state-dependent CE method. For the latter, we used a function φi of the form (10) to
partition the state space. Note that in this case there are only two possible values for each φi .
This is because the MJP stops as soon as X2 = 0, thus making

φi(x) = qi/(λ+ μ1 + μ2) or φi(x) = qi/(λ+ μ2),

the latter occurring when x1 = 0, where qi = λ,μ1 1{x1≥1}, and μ2 1{x2≥1} for i = 1, 2, and 3,
respectively.

Table 3: Estimation of the probability � that the second queue reaches level 25 before becoming empty,
starting from X(0) = (1, 1).

Method Relative error �̂ N Nv β

KN state dependent 0.0011 4.47 × 10−8 106 — —
ZV state-dependent CE 0.0011 4.48 × 10−8 106 104 2
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We see that both methods had the same level of accuracy, showing that the automated method
successfully finds the state-independent importance sampling parameters for this case.

Example 4. (Tandem queue (difficult 1).) We consider the same problem as in the previous
example, but now with parameter values λ = 1, μ1 = 2, and μ2 = 3, which makes queue 1 the
bottleneck. As mentioned before, in this case state-independent importance sampling does not
work. For this problem, the bins were calculated in relation to the population sizes at each queue,
rather than the relative probabilities as in (10). In particular, we took φ1(x) = min(x1/C1, 1),
φ2(x) = min(x1/C2, 1), and φ3(x) = x2/C3, where C1, C2, and C3 are all 20. This is
somewhat similar to the type of dependence along the state space boundaries used in general
in [18]. The nature of φ1, φ2, and φ3 used here is more suitable for this problem, and queueing
problems in general. This is because the transition functions have indicator variables in relation
to the distribution (population in each queue). As such, φi functions similar to (10), which was
implemented in Example 3, do not utilize all of the possible statistical information to break up
the state space and assign importance sampling parameters—Example 3 only had two bins for
each transition! The method applied to this particular example takes into account how many
customers are in each queue at every step of the Markov process. We applied zero-variance
state-dependent CE and compared it with the state-dependent method in [15] (KN). The results
are shown in Table 4.

This particular choice for the φ functions (which are similar in nature to [18]) results here
in a better change of measure than in [15], as is evident from the reduction in relative error
for the ZV state-dependent CE method compared to the KN state-dependent method used
in [15]. The state-dependent approach in [15] requires a numerical calculation of the importance
parameters at each predefined bin in the state space, which is done prior to the main Monte Carlo
simulation. The two other methods are adaptive and automatic in their approach to calculate
the state-dependent importance parameters via deterministic equations.

Example 5. (Tandem queue (difficult 2).) As a further illustration of the methodology, consider
the same model as in Example 4 where � is now the probability that the second queue reaches
level 20 before both queues become empty, starting from (1, 1). In Table 5 we present the results
for the combination-specific importance sampling, using the same φi functions as Example 4.

A typical rare-event trajectory for this example is shown in Figure 1. HereX1 builds up first,
and while it empties into the second buffer, X2 increases ‘linearly’ towards level 20. We have
included this plot to show how sampling from the zero-variance distribution via the hit-and-run
sampler can yield important information on the manner in which a rare event takes place.

Table 4: Estimation of the probability � that the second queue reaches level 20 before becoming empty,
starting from X(0) = (1, 1).

Method Relative error �̂ N Nv β

KN state dependent 0.0049 2.05 × 10−11 106 — —
ZV state-dependent CE 0.0024 2.04 × 10−11 106 104 10

Table 5: Estimation of the probability that the second queue reaches level 20 before both queues become
empty, starting from X(0) = (1, 1).

Method Relative error �̂ N Nv β

ZV state-dependent CE 0.0021 1.263 × 10−9 106 104 10
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Figure 1: The first queueX1 fills up, at which point the second queueX2 proceeds to overflow whileX1
proceeds to empty.
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