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Abstract. The game of Cops and Robber is usually played on a graph, where a group of cops attempt
to catch a robber moving along the edges of the graph. The cop number of a graph is the minimum
number of cops required to win the game. An important conjecture in this area, due to Meyniel,
states that the cop number of an n-vertex connected graph is O(

√
n). In 2016, Prałat and Wormald

showed that this conjecture holds with high probability for random graphs above the connectedness
threshold. Moreover, Łuczak and Prałat showed that on a log-scale the cop number demonstrates a
surprising zigzag behavior in dense regimes of the binomial random graph G(n, p). In this paper, we
consider the game of Cops and Robber on a hypergraph, where the players move along hyperedges
instead of edges. We show that with high probability the cop number of the k-uniform binomial
random hypergraph Gk(n, p) is O (

√
n
k log n) for a broad range of parameters p and k and that

on a log-scale our upper bound on the cop number arises as the minimum of two complementary
zigzag curves, as opposed to the case of G(n, p). Furthermore, we conjecture that the cop number
of a connected k-uniform hypergraph on n vertices is O (

√
n
k ).

1 Introduction and results

1.1 Motivation

The game of Cops and Robber was introduced by Quilliot [25] and independently by
Nowakowski and Winkler [23]. It is a two-player game played on a simple connected
graph G = (V , E), with one player controlling a set of m cops and the other player
controlling a single robber. For convenience, we will sometimes refer to the cops and
the robber as pieces. At the start of the game, the first player chooses a starting vertex
for each of the cops, then the second player chooses a starting vertex for the robber.
Subsequently, the players take alternating turns and in each turn a player can move
each of their pieces to an adjacent vertex (i.e., the pieces move along the edges of G).
Note that more than one cop can simultaneously occupy a single vertex and that not
every piece must be moved in every turn. The position of all the pieces is known to
both players throughout the game. The cops win if at some point in the game a cop
occupies the same vertex as the robber, otherwise the robber wins. As this is a game
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with full information, for each graph G and each number of initial cops m, one of the
two players has a winning strategy. The cop number c(G) of a graph G is defined as
the minimum number m ∈ N such that m cops have a winning strategy on G. The cop
number has been extensively studied since the introduction of this game.

While there is a structural characterization of the graphs with cop number 1 [23], in
general the problem of determining the cop number of a graph is EXPTIME-complete
[19], and so research in this area has been focused on bounding the cop number of
particular graph classes. For example, a classic result of Aigner and Fromme [2] shows
that the cop number of a connected planar graph is at most 3. More generally, it is
known that the cop number is bounded for any proper minor-closed class of graphs
[3], and there has been much research into determining the largest cop number of a
graph that can be embedded in a fixed surface [7, 11, 22, 17, 26, 27].

Perhaps the most well-known conjecture in this area is Meyniel’s conjecture
(communicated by Frankl [13]).

Conjecture 1.1 Let G be a connected graph on n vertices. Then c(G) = O (
√

n).
Despite much interest in this conjecture, there has been relatively little improve-

ment to the trivial bound of O(n). Frankl [13] gave the first nontrivial upper bound
on the cop number of O ( n log log n

log n ), and this bound was improved to O ( n
log n ) by

Chiniforooshan [10]. As of today, the best known general upper bound on the cop
number is n2−(1+o(1))

√
log n , given independently by Lu and Peng [20] and by Scott

and Sudakov [28], which was later generalized to different variations of the Cops and
Robber game by Frieze, Krivelevich, and Loh [14]. We note that this bound is still
Ω (n1−o(1)), and it remains an open question as to whether the cop number can be
bounded by O (n1−ε) for any fixed ε > 0 [4].

A natural step toward understanding Conjecture 1.1 is to consider the cop number
of the binomial random graph G(n, p). For p constant, it was shown by Bonato, Hahn,
and Wang [6] that whp1 the cop number of G(n, p) is logarithmic in n, and hence
Conjecture 1.1 holds for almost all graphs. However, if we let p vary as a function of
n, then more interesting behavior can be seen to develop. Indeed, Łuczak and Prałat
[21] showed that the cop number of G(n, p) behaves in a rather interesting manner in
dense regimes. Their result can be roughly summarized as follows, where we use Θ̃(⋅)
to indicate a bound which holds up to logarithmic factors.

Theorem 1.2 [21, Theorem 1.1] Let 0 < α < 1 and d = np = nα+o(1).
(1) If 1

2 j+1 < α < 1
2 j , for some j ∈ N, then whp

c (G(n, p)) = Θ (d j) .

(2) If 1
2 j < α < 1

2 j−1 , for some j ∈ N, then whp

c (G(n, p)) = Θ̃( n
d j ) .

1Throughout the paper, all asymptotics are considered as n →∞ and so, in particular, whp (with
high probability) means with probability tending to one as n →∞.
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Catching a robber on a random k-uniform hypergraph 1137

Figure 1: Zigzag shape of the function f.

In particular, Theorem 1.2 implies that the function f ∶ (0, 1) → R, defined as

f (x) =
log (c̄ (G (n, nx−1)))

log n
,(1.1)

where c̄ denotes the median of the cop number, has a characteristic zigzag shape (see
Figure 1).

In particular, Theorem 1.2 implies that whp c (G(n, p)) = Õ (
√

n) throughout this
range of p and that conversely there are choices of p where whp c (G(n, p)) = Θ̃ (

√
n)

and Conjecture 1.1 is close to tight for almost all graphs of this density. Note that,
although Theorem 1.2 does not explicitly deal with the case d = n 1

k +o(1) with k ∈ N,
the proofs for the upper bounds in [21] also cover this case, and the authors indicate
how to extend the lower bound to this range of d. Bollobás, Kun, and Leader [5] gave
a similar bound which holds also for sparser regimes of p.

Meyniel’s conjecture was finally resolved for all random graphs above the connect-
edness threshold by Prałat and Wormald [24]. In fact, their result holds for all random
graphs with density above 1

2 log n.

Theorem 1.3 [24, Theorem 1.2] Let ε > 0 and p(n − 1) ≥ ( 1
2 + ε) log n. Then whp

c (G(n, p)) = O (
√

n) .

In this paper, we consider a variant of the Cops and Robber game on hypergraphs,
and in particular k-uniform hypergraphs, which we call k-graphs, for k ∈ N≥2. The
game is defined analogously to the 2-graph case, with the only difference being that the
pieces move along hyperedges instead of edges. For the sake of brevity, when it is clear
from the context that we are talking about a hypergraph, we will refer to hyperedges as
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Figure 2: An example of the blow-up construction to generate a 2k-graph H from a 2-graph
that has the same cop number. In this case, k = 5, ∣V(H)∣ = 20 and c (H) = 2.

simply edges. Similarly to 2-graphs, we define the cop number of a hypergraph H to be

c (H) ∶=min{m ∈ N∶m cops have a winning strategy to catch a robber on H}.

This game was first considered by Gottlob, Leone, and Scarcello [15] and by Adler [1].
For more recent results on the hypergraph game, we refer the reader to [29], where
some classic results on the cop number of 2-graphs are generalized to this setting.

Note that by replacing every edge in a hypergraph by a clique, we arrive at an
equivalent 2-graph game on the same vertex set. Thus, the game of Cops and Robber
on hypergraphs is equivalent to the 2-graph game played on a restricted class of graphs.
On the other hand, we can transform a graph G into a 2k-uniform hypergraph H
with c(G) = c (H) via a simple blow-up construction: We replace each vertex v in G
by k vertices {v1 , v2 , . . . vk} and form a hypergraph H = H(G) on {v i ∶ v ∈ V(G), i ∈
[k]} by taking an edge of the form {u1 , u2 , . . . , uk , v1 , v2 , . . . , vk} for each edge e =
{u, v} of G (see Figure 2). It is then easy to check that c(G) = c (H), and moreover
∣V(H)∣ = k∣V(G)∣.

From these two observations, it is easy to see that the following holds:

max{c (G) ∶G a graph , ∣V(G)∣ = 2n
k
} ≤max{c (H) ∶H a k-graph , ∣V(H)∣ = n}

(1.2)

≤max{c (G) ∶G a graph , ∣V(G)∣ = n}.

In particular, as there are graphs with c(G) = Ω (
√

n), there are also k-graphs with
c (H) = Ω (

√ n
k ). It would seem surprising that such a simple construction, which

is essentially graphical in nature, could capture the worst-case behavior for the cop
number in hypergraphs of higher uniformity, but we conjecture that this bound is in
fact tight.

Conjecture 1.4 Let H be a connected k-graph on n vertices. Then c (H) = O (
√ n

k ).
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Clearly, Conjecture 1.4 is a generalization of Meyniel’s conjecture, but we note
further that for any polynomial function k ∶= k(n) = nα with α < 1, Conjecture
1.4 implies Meyniel’s conjecture. Indeed, if c (H) = O (

√
n

k(n)) = O (n 1−α
2 ) for all

n-vertex nα-graphs, then by (1.2),

max{c (G) ∶G a graph , ∣V(G)∣ = 2m}

≤max{c (H) ∶H a m
α

1−α -graph , ∣V(H)∣ = m
1

1−α } ≤ O (
√

m) .

As with Meyniel’s Conjecture, a first step toward Conjecture 1.4 is to consider the
behavior of the cop number of random k-graphs.

1.2 Main results

The k-uniform binomial random hypergraph, which we denote by Gk(n, p), is a
random k-graph with vertex set [n] in which each edge, that is, each subset of [n]
of size k, appears independently with probability p. Although the main focus of this
paper is Gk(n, p), the strategies we develop for the cops work in a more general class
of k-graphs, those satisfying certain expansion properties.

Very roughly, if we denote by N r
V(v) the vertices that are at most at a fixed distance

r from v, then in Gk(n, p) we expect this set to be growing exponentially quickly in
r, with its size tightly concentrated around its expectation. Furthermore, for different
vertices v and w, we do not expect the neighborhoods N r

V(v) and N r
V(w) to have a

large intersection, and so, for small subsets A ⊆ [n], we expect the number of vertices
at most at a fixed distance r from A to be around ∣A∣ times the size of N r

V(v). Similarly,
we expect the set of edges N r

E(v) at most at a fixed distance r − 1 from v to be growing
at some uniform exponential rate, and for ranges of p where the random hypergraph is
sparse enough, and so few pairs of edges have a large intersection, this rate of growth
should be roughly 1

k times that of the vertex-neighborhoods.
Informally, given ξ > 0, we say that a graph is ξ-expanding if the sizes of its

vertex and edge-neighborhoods have this uniform exponential growth, up to some
multiplicative error in terms of ξ. See Definition 2.1 for a precise definition of this
notion.

Our first result supports Conjecture 1.4 up to a log-factor for k-graphs that are
ξ-expanding for a fixed expansion constant ξ.

Theorem 1.5 Let k ∈ N≥2, let ξ > 0 and let G be a ξ-expanding k-graph on n vertices.
Then

c (G) ≤ 20ξ−2
√n

k
log n.

In fact, depending on the relationship between the average degree d of the hyper-
graph, its uniformity k, and its order n, we can give a more refined bound for the cop
number of a ξ-expanding hypergraph.
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Theorem 1.6 Let k ∈ N≥2 , ξ ∈ (0, 1] be fixed and let G be a ξ-expanding k-graph on n
vertices with average vertex degree2 d = d(G). For all j ∈ N, the cop number of G satisfies
the following.

(1) If n
1

2 j+1 ≤ d ≤ ( n
k )

1
2 j , then with λ = ⌈ n

d2 j+1 log n⌉,

c (G) ≤ 20ξ−2d j λ.

(2) If ( n
k )

1
2 j ≤ d ≤ n

1
2 j , then

c (G) ≤ 20ξ−1 n
kd j log n.

(3) If n
1

2 j ≤ d ≤ (nk)
1

2 j , then with λ =max {⌈ n
d2 j log n⌉ , ⌈ k

d j log n⌉},

c (G) ≤ 20ξ−2 d j

k
λ.

(4) If (nk)
1

2 j ≤ d ≤ n
1

2 j−1 , then

c (G) ≤ 20ξ−1 n
d j log n.

Let us explain in more detail the bounds in Theorem 1.6. In general, the upper
bounds in Theorem 1.6 are increasing in d in the regimes (1) and (3) and decreasing in
d in the regimes (2) and (4). In particular, and perhaps surprisingly, if we fix k and n
and vary d, in certain regimes, increasing the average degree, and hence the number
of edges, can help the cops, and in other regimes, increasing the number of edges can
help the robber.

We note that some of the regimes of Theorem 1.6 can “collapse” if the left border
of a regime is larger than its right border. Specifically, this can happen in regime (1),
if we have d ≤ n

1
2 j and n

1
2 j+1 > ( n

k )
1

2 j or equivalently k > n
1

2 j+1 and it can happen in
regime (4), if d ≤ n

1
2 j−1 and (nk)

1
2 j > n

1
2 j−1 , or equivalently k > n

1
2 j−1 . However, under

the reasonable assumption that G is connected, we have k ≤ d, and so this second case
does not occur, and the first case only occurs if n

1
2 j+1 ≤ k ≤ d ≤ n

1
2 j holds for some

j ∈ N. In this case, regime (1) collapses and the cop number is bounded as in (2).
Furthermore, we note that the second argument of the maximum in the definition
of λ in regime (3) is only relevant in the special case where k ≥

√
n. In that case, the

factor takes its largest value of log n for the smallest possible value of d, namely d = k.
For increasing d, the factor then decreases until d is larger than k by a log-factor, at
which it attains its smallest value of 1. Otherwise, in regimes (1) and (3), the factor λ
takes its largest value of log n at the left border of the respective regimes of d. Again,
it then decreases with increasing d until it takes the value of 1, which happens as soon
as d is bound away from the left border by a sufficiently large multiplicative factor
(log

1
2 j+1 n in (1) and log

1
2 j n in (3)).

2Here, the degree of a vertex v is the number of vertices which share an edge with v, rather than the
number of edges containing v.
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Our final result shows that whp Gk(n, p) satisfies the desired expansion properties
as long as k is growing with n and p is not too small.

Theorem 1.7 There exists a universal constant ξ > 0 such that if k = k(n), p= p(n)>0
are such that k = ω(log n) and n

k ≥ p(n−1
k−1) = ω (log3 n), then whp Gk(n, p) is

ξ-expanding.

Let us give some intuition for the conditions on k and p. The value p(n−1
k−1) is roughly

the expected number of edges every vertex in Gk(n, p)meets, and the lower bound on
this quantity ensures that we can assume this is concentrated around its expectation.
On the other hand, pk(n−1

k−1) is roughly the expected degree of a vertex in Gk(n, p),
and so it is natural to restrict this to be at most n.

Note that it follows from Theorems 1.5 and 1.7 that Conjecture 1.8 holds for the
same range of n, p, and k up to polylogarithmic factors.

Corollary 1.8 If k = k(n), p = p(n) > 0 are such that k = ω(log n) and n
k ≥ p(n−1

k−1) =
ω(log3 n), then whp c (Gk(n, p)) = Õ (

√ n
k ).

Furthermore, Theorem 1.7 allows us to apply Theorem 1.6 to Gk(n, p) for a broad
range of parameters and we can bound c (Gk(n, p))more precisely in certain ranges.
It turns out that a sensible parameterization to take is as follows. Let us define d̂ =
d̂(n, p, k) ∶= pk(n−1

k−1), which is roughly the expected degree of a vertex in Gk(n, p) and
let d̂ = nα and k = nβ for some 0 < β ≤ α ≤ 1. We consider the function fβ ∶ (β, 1) → R

defined as

fβ(α) ∶=
log (c̄ (Gk(n, p)))

log n
,

with c̄ being the upper bound for the cop number obtained from Theorem 1.6. It
follows that fβ again has a characteristic zigzag shape (see Figure 3). In contrast to the
case of G(n, p) (see Figure 1), the zigzag shape in Gk(n, p) arises as the intersection
of two complementary zigzags, coming from two different strategies, and so has twice
as many peaks and troughs. In particular, it can be seen that fβ(α) ≤ (1 + o(1)) 1−β

2 for
all α ∈ (β, 1), corresponding to the bound of Õ (

√ n
k ) on the cop number.

1.3 Techniques

To give a lower bound for the cop number, we need to exhibit a strategy for the cops. As
in the work of Łuczak and Prałat [21], we show the existence of a strategy for the cops
to surround the robber using a probabilistic argument. While in [21] the strategies
focused solely on surrounding a small vertex-neighborhood of the robber, we also
consider a second type of strategy which aims to surround a small edge-neighborhood,
and utilize both these strategies in our result.

Assuming the robber starts on a vertex v, after his first r moves, the robber has to
be in the rth vertex-neighborhood N r

V (v), and specifically in some edge of the rth
edge-neighborhood N r

E (v). The cops aim to occupy each edge in N r
E (v) before the

robber has had time to leave this set. Since the cops move first and a cop can catch the
robber in a single move once they occupy the same edge, the cops need to occupy each
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Figure 3: Alternating zigzag shape of the function fβ(α) for β = 2
19 . The blue (dashed) line is the

upper bound coming from the edge strategy, the red (dotted) line is the upper bound coming
from the vertex strategy. As can be seen, the two strategies give rise to two alternating zigzag
shapes, that together make up the single zigzag with increased frequency. We note that the worst
bounds occur at the intersection points of the two lines, which all lie on the green (solid) line
at 1−β

2 .

edge in N r
E (v) within their first r moves (see Figure 4). The strategy of surrounding

via vertices works similarly, the only difference being that the cops surround the rth
vertex-neighborhood and have r + 1 moves before the robber can escape. The payoff
in choosing to surround via vertices or edges can be seen as follows – in the former,
we can use cops at a larger distance, and so in general we will have more cops to work
with, whereas in the latter, since each edge contains many vertices, we will not have
to occupy as many edges as we would have vertices, and so perhaps we can catch the
robber with fewer cops.

For a fixed vertex v and a fixed distance r, the existence of such a strategy can then
be reduced to a matching problem – for instance, in the case of the edge strategy, for
each edge e at distance at most r from v, we need to assign a unique cop at distance at
most r from e, whose strategy is to occupy e within the first r turns of the game. We
aim to show (see Claims 1 and 2) that such an assignment of cops can be found with
positive probability if we choose a random set of cops, assigning a cop to each vertex
in the graph independently with some probability q (see Figure 4).

Assuming that our k-graph G is ξ-expanding, we have quite good control over the
sizes of N r

V (v) and N r
E (v), and also over the number of vertices at a fixed distance

from each vertex and edge contained in these sets. Using some standard probabilistic
and combinatorial tools, we can show that for an appropriate choice of q, with positive
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Figure 4: A visualization of the edge-surrounding strategy. The cops try to cover all edges of the
third edge-neighborhood of v in three moves, which is possible if there is a matching between
N3

E (v) and all vertices occupied by cops within distance three of these edges, which covers all
edges of N3

E (v).

probability, we can find an appropriate assignment of cops for each possible starting
vertex v and bound the number of cops m we use in such a strategy, which in general
depends not only on r but also on the uniformity k and average degree d of G.

This leads to a family of bounds on the cop number, one for each r ∈ N, for both
the vertex and edge surrounding strategy. For a fixed choice of parameters k and d, we
then have to solve an integer optimization problem to find which choice of r (and of a
vertex or edge surrounding strategy) leads to the best bound on the cop number, from
which we can derive the bounds in Theorem 1.6.

1.4 Outline of the paper

The rest of the paper is structured as follows. In Section 2, we introduce some notation
and important definitions and state some auxiliary results. In Section 3, we prove
Theorems 1.5 and 1.6, and in Section 4, we prove Theorem 1.7. We conclude in Section 5
by discussing some unresolved questions and possible directions for future research.

2 Preliminaries

All asymptotics in the paper are taken as n tends to infinity. We say that a statement
A(n) holds with high probability (whp for short) if limn→∞ P [A(n)] = 1. We use
standard Landau notation for all asymptotics. Furthermore, we omit floors or ceilings
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in proofs to improve readability. Let N0 = N ∪ {0} and N≥2 = {2, 3, . . .}. Throughout
the paper, we assume k ∈ N≥2.

Let G be a k-uniform hypergraph, or k-graph, on vertex set [n]. The distance
between two different vertices dG(x , y) is equal to the smallest length of a loose path
between them, that is, the smallest t ∈ N such that there exists a sequence e1 , e2 , . . . , et
of edges such that x ∈ e1 , y ∈ et and e i ∩ e i+1 ≠ ∅ for all 1 ≤ i ≤ t − 1. Furthermore, we
define dG(x , x) = 0, for all x ∈ V(G). The distance between two sets of vertices A and
A′ is defined as the minimum distance between all pairs of vertices from the two sets:

dG(A, A′) ∶=min
u∈A

min
v∈A′

dG(u, v).

For a set of vertices A ⊆ V(G) and r ∈ N0, we denote the closed rth vertex-
neighborhood of A by N r

V (A). Formally,

N r
V (A) ∶= {v ∈ V(G) ∶ dG(A, v) ≤ r}.

For a set of edges B ⊆ E(G), we write

VB ∶= {v ∈ e ∶ e ∈ B}

for the set of all vertices contained in at least one of the edges in B. We extend the
definition of the closed rth vertex-neighborhood to sets of edges in the obvious way
by setting

N r
V (B) ∶= N r

V (VB) = ⋃
v∈VB

N r
V (v) .

Furthermore, for a set of vertices A ⊆ V(G) and r ∈ N, we define the closed rth edge-
neighborhood of A as

N r
E (A) ∶= {e ∈ E(G) ∶ dG(e , A) ≤ r − 1} .

Note that to be included in the rth edge-neighborhood, an edge has to be within
distance r − 1 of the respective vertex set. The motivation behind this parameter
shift is that the amount of “discovered” vertices is the same for the rth vertex- and
edge-neighborhood, or in other words N r

V (A) = VN r
E(A). For notational convenience,

we will omit the superscript for the first vertex- and edge-neighborhood and write
NV (A) ∶= N 1

V(A) and NE (A) ∶= N 1
E(A), respectively.

We denote the average vertex degree of G by

d(G) ∶= 1
∣V(G)∣ ∑v∈V

∣NV (v) ∣,

where we consider the degree of a vertex v to be ∣NV(v)∣, and not ∣NE(v)∣which is also
sometimes referred to as the degree of a vertex in a hypergraph.

Note that the average vertex degree of Gk(n, p), i.e., d ∶= d (Gk(n, p)), is a random
variable that is concentrated around its expectation, which is given as

E [d] = (n − 1) (1 − (1 − p)(
n−2
k−2)) .(2.1)
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For appropriate ranges of p and k, we can estimate E [d] as follows:

E [d] = (n − 1) (1 − (1 − p)(
n−2
k−2)) = np(n − 2

k − 2
)(1 + o(1)) = pk(n − 1

k − 1
)(1 + o(1)) ,

(2.2)

where the penultimate equation holds when p(n−2
k−2) = o(1) and the final equation

holds for k = o(n). In the context of Cops and Robber games on random hypergraphs,
these are reasonable assumptions, as otherwise either each edge-neighborhood (deter-
ministically) or each vertex-neighborhood (in expectation) covers a constant fraction
of the vertex set. If the graph is also connected, it can be shown in both cases that the
cop number is then whp at most logarithmic in n. We will also restrict ourselves to
the case d ≥ k ≥ 2, since for d < k the hypergraph will contain isolated vertices. Since
the cop number is additive over disjoint unions, it is natural to restrict our attention
to connected hypergraphs.

For convenience, rather than working with d, we will work with the following
explicit quantity:

d̂ = d̂(n, p, k) ∶= pk(n − 1
k − 1
).(2.3)

We will show later (see Lemma 4.3) that the size of the first vertex-neighborhood
of every vertex in Gk(n, p) lies close to d̂, from which it then follows, that d is
approximately d̂.

Definition 2.1 Let G be a k-graph on n vertices with average vertex degree d ≥ k.
Given a positive constant 0 < ξ ≤ 1, which we call the expanding constant, we say G is
ξ-expanding if G has the following properties.

(A.1) For every vertex v ∈ V(G) and r ∈ N satisfying d r ≤
√

nk,

∣N r
E (v)∣ ≤

1
ξ

d r

k
.

(A.2) For every subset A ⊆ V(G) of vertices and r ∈ N,

ξ min{∣A∣dr , n} ≤ ∣N r
V (A)∣ ≤

1
ξ
∣A∣d r .

(A.3) For every subset B ⊆ E(G) of edges and r ∈ N,

ξ min{∣B∣kd r , n} ≤ ∣N r
V (B)∣ .

Throughout the paper, we use the following corollaries of the Chernoff bounds (see,
for example, [18, Theorem 2.1 and Corollary 2.3]).

Theorem 2.1 Let X ∼ Bin(n, p). Then, for any t > 0, we have

P [ ∣X −E [X] ∣ ≥ t ] ≤ 2 exp(− t2

2 (E [X] + t/3))(2.4)
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and

P [X ≤ E [X] − t ] ≤ exp(− t2

2E [X]) .(2.5)

In particular, if a ≤ 10E [X], then

P [X ≤ a] ≤ exp (−4a) .(2.6)

An important step in the proof of the main theorems is constructing matchings
in specific bipartite graphs which cover one partition class. To this end, we use Hall’s
marriage theorem, which we state here for the sake of completeness.

Theorem 2.2 [16, Theorem 1], Theorem 1 Let (A∪ B, E) be a bipartite graph. The
following two statements are equivalent.
(1) There is a matching covering all vertices of A.
(2) ∣NV(X)/X∣ ≥ ∣X∣ for all X ⊆ A.

3 Proofs of Theorems 1.5 and 1.6

We start by proving Theorem 1.6, from which Theorem 1.5 follows as a direct conse-
quence.

Proof Let G be a ξ-expanding k-graph on n vertices. Note that, as the stated bounds
on the cop number are all clearly at least 20, we can assume w.l.o.g. that n ≥ 20.

Our strategy is to choose the initial placement of our cops in such a way that we
can catch the robber in j moves for some j ∈ N. In order to show the existence of such
a choice of initial positions, we will use the expansion properties of G to show that a
random choice succeeds with positive probability.

In regimes (1) and (4), we will catch the robber by surrounding its ( j − 1)st
vertex-neighborhood. In fact, cops that start too far from the robber will not actively
participate in the game. The following key claim characterizes how many cops we need
in the respective regimes to guarantee that sufficiently many cops are close enough to
the starting vertex of the robber to make this strategy work. The proof of the claim is
deferred to the end of this section. ∎

Claim 1 Let j ∈ N. There exists a subset Y ⊆ V(G) such that for every vertex v ∈ V(G),
there exists an injection f ∶N j−1

V (v) → Y such that for every vertex x ∈ N j−1
V (v), we have

dG(x , f (x)) ≤ j. Furthermore,

(a) if j ≠ 1 and n
1

2 j−1 ≤ d ≤ ( n
k )

1
2 j−2 , then ∣Y ∣ ≤ 20ξ−2d j−1 ⌈ n

d2 j−1 log n⌉;
(d) if (nk)

1
2 j ≤ d ≤ n

1
2 j−1 , then ∣Y ∣ ≤ 20ξ−1 n

d j log n.

Given Y as in the claim, the cops’ strategy is to initially occupy the vertices of Y.
The robber starts on some vertex v. By Claim 1, there exists an injection f such that for
every vertex x ∈ N j−1

V (v), the cop on vertex f (x) is within distance j of x at the start of
the game. Each cop which starts on a vertex w in the image f (N j−1

V (v))moves to the
vertex f −1(w) in the first j moves. After j − 1 moves, the robber is positioned at some
vertex w ∈ N j−1

V (v). Since the cops move first, in the next turn, the cop that started
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on the vertex f (w)moves to the vertex w and catches the robber. Note that in regime
(1), we use the described strategy after applying the index shift j → j + 1 to obtain the
desired result.

In regimes (2) and (3), we instead catch the robber by surrounding his jth edge-
neighborhood. Similar to the previous case, it suffices to prove the following claim,
which we will do at the end of this section.

Claim 2 Let j ∈ N. There exists a subset Z ⊆ V(G) such that for all vertices v ∈ V(G)
there exists an injection g∶N j

E (v) → Z, such that for every edge e ∈ N j
E (v), we have

dG(e , g(e)) ≤ j. Furthermore,

(b) if ( n
k )

1
2 j ≤ d ≤ n

1
2 j , then ∣Z∣ ≤ 20ξ−1 n

kd j log n;
(c) if n

1
2 j ≤ d ≤ (nk)

1
2 j , then ∣Z∣ ≤ 20ξ−2 d j

k ⌈
n

d2 j log n⌉ ⌈ k
d j log n⌉.

Indeed, given such a set Z, the cops’ strategy is to initially occupy the vertices of Z.
The robber starts on some vertex v. By Claim 2, there exists an injection g such that
for every edge e ∈ N j

E (v), we have dG(e , g(e)) ≤ j. Each cop which starts on a vertex
w in the image g (N j

E (v)) moves to some vertex u in the edge g−1(w) in the first j
moves. After j moves, the robber is on some vertex x in some edge e ∈ N j

E (v). Since
the cops move first, the cop that started at g(e) is currently at some vertex u ∈ e, and
hence can catch the robber in the next move.

It remains to prove the two claims.

Proof of Claim 1 Clearly, such a set Y exists if we do not make any restrictions
on its size, so we may assume that one of (a) or (d) holds. We will choose our set
Y by specifying some probability q and letting each vertex lie in Y independently with
probability q. We show that with positive probability a random choice of Y satisfies
the conclusions of the claim, and hence there must exist some suitable set Y.

Let us start with case (d), so we are assuming that (nk)
1

2 j ≤ d ≤ n
1

2 j−1 . In this case,
we set q = 10ξ−1d− j log n, where we note that our assumptions on d ensure that q ≤ 1.
Since ∣Y ∣ ∼ Bin(n, q), it follows from the Chernoff bound (2.4) that ∣Y ∣ ≤ 20 n

ξd j log n
with probability at least 2

3 . We will show that an injection as stated in the claim exists
with probability at least 2

3 , and hence Y satisfies the conclusion of the claim with
probability at least 1

3 > 0.
Given a fixed vertex v ∈ V , an injection of the desired form corresponds

to a matching in the bipartite graph H = (N j−1
V (v) ∪ Y , E) with edge set

E = {(a, b)∶ a ∈ N j−1
V (v) , b ∈ Y , dG(a, b) ≤ j}, which covers all vertices of N j−1

V (v).
To find a matching as described above, it is enough to check that Hall’s condition (see
Theorem 2.2) is satisfied for all A ⊆ N j−1

V (v).
We split into two cases. First, suppose that A ⊆ N j−1

V (v)with a ∶= ∣A∣ ≤ n
d j . Slightly

abusing notation, we write NH(A) for the vertices at exactly distance 1 from A in
the auxiliary graph H. By Property (A.2), it follows that ∣N j

V (A) ∣ ≥ ξad j . Thus, by
our choice of Y, we have ∣NH(A)∣ = ∣Y ∩ N j

V (A) ∣ stochastically dominates a binomial
random variable Bin (ξad j , q), the expectation of which satisfies E [Bin (ξad j , q)] =
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ξad jq ≥ 10a log n. Therefore, by the Chernoff bound (2.6), it follows that

P [ ∣NH(A)∣ < ∣A∣ ] ≤ P [Bin (ξad j , q) < a]
≤ P [Bin (ξad j , q) ≤ a log n] ≤ exp(−4a log n) = n−4a .

Then, using a union bound over all sets A ⊆ N j−1
V (v) with ∣A∣ ≤ n

d j , we can bound the
probability that there exists such a set A that violates Hall’s condition from above by

n
d j

∑
a=1
(∣N

j−1
V (v)∣

a
)n−4a ≤

n
d j

∑
a=1
(n

a
)n−4a ≤

n
∑
a=1

n−3a ≤ 1
6n

.(3.1)

In the second case, when a ∶= ∣A∣ > n
d j , we note that since A ⊆ N j−1

V (v), by Prop-
erty (A.2), we have a ≤ ∣N j−1

V (v)∣ ≤ ξ−1d j−1 and ∣N j
V (A) ∣ ≥ ξn. Hence, ∣NH(A)∣ =

∣Y ∩ N j
V (A) ∣ stochastically dominates a binomial random variable Bin (ξn, q), the

expectation of which satisfies

E [Bin (ξn, q)] = ξnq = 10n
ξd j log n ≥ 10ξ−1d j−1 log n.

Here, we used the fact that in this regime we have d ≤ n
1

2 j−1 . From the Chernoff bound
(2.6), it follows that

P [ ∣NH(A)∣ < ∣A∣ ] ≤ P [Bin (ξn, q) < a]

≤ P [Bin (ξn, q) ≤ ξ−1d j−1 log n] ≤ exp(−4d j−1 log n) = n−4d j−1
.

Again, using the union bound and the fact that a ≤ ξ−1d j−1, we can bound the
probability that there is such a set A violating Hall’s condition from above by

ξ−1 d j−1

∑
a= n

d j +1
(∣N

j−1
V (v)∣

a
)n−4d j−1

≤ 2∣N
j−1
V (v)∣n−4d j−1

≤ 2−ξ−1 d j−1
n−4d j−1

≤ 1
6n

.(3.2)

Thus, for every vertex v, an injection of the desired form exists with probability at
least 1 − 1

3n . Using another union bound over all vertices, we can bound the probability
that there exists a vertex for which there is no such injection by 1

3 , concluding the proof
in the case (d).

In the case (a), where n
1

2 j−1 ≤ d ≤ ( n
k )

1
2 j−2 , we proceed similarly as in case (d), but

with a slightly different value of q. We let q = 10ξ−2 d j−1

n ⌈
n

d2 j−1 log n⌉, noting again that
our assumptions on d ensure that q ≤ 1.

Arguing as before, splitting into cases according to whether or not ∣A∣ > n
d j , we see

that it suffices to prove the following two inequalities:
n

d j

∑
a=1
(∣N

j−1
V (v)∣

a
)P [Bin (ξad j , q) < a] ≤ 1

6n
(3.3)
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and

ξ−1 d j−1

∑
a= n

d j +1
(∣N

j−1
V (v)∣

a
)P [Bin (ξn, q) < a] ≤ 1

6n
.(3.4)

To show (3.3), we note that

E [Bin (ξad j , q)] = ξad jq ≥ 10a d2 j−1

n
⌈ n

d2 j−1 log n⌉ ≥ 10a log n.

Then, as before, it is clear that (2.6) yields the desired concentration to bound the sum
as in (3.1).

Similarly, to show (3.4), we first note that, since ⌈ n
d2 j−1 log n⌉ ≥ 1, it follows that

E [Bin (ξn, q)] = ξnq ≥ 10ξ−1d j−1. Hence, by (2.6),

P [Bin (ξn, q) > ξ−1d j−1] ≤ e−4ξ−1 d j−1
,

and since a ≤ ξ−1d j−1 by Property (A.2), we can bound the sum as in (3.2), although
we have to be more careful in our estimates. Plugging into (3.4), we obtain

ξ−1 d j−1

∑
a= n

d j +1
(∣N

j−1
V (v)∣

a
)e−4ξ−1 d j−1

≤ 2ξ−1 d j−1
e−4ξ−1 d j−1

(3.5)

≤ e−3ξ−1 d j−1
≤ e−3n

1
3 ≤ 1

6n
,

where we used the facts that d j−1 ≥ n
j−1

2 j−1 ≥ n 1
3 , as j ≥ 2, and that n ≥ 20. ∎

Proof of Claim 2 As in the previous claim, the existence of such a set Y is clear if
we make no assumptions on its size, so we may assume that one of (b) or (c) holds.
Again, we will choose the set Y by letting each vertex lie in Y independently with
some fixed probability q and show that with positive probability such a set Y satisfies
the conclusions of the claim.

Let us start with case (c), where n
1

2 j ≤ d ≤ (nk)
1

2 j . Here, we set q =
10ξ−2 d j

nk ⌈
n

d2 j log n⌉ ⌈ n
d2 j log n⌉. As in the previous claim, it follows from (2.4)

that ∣Y ∣ ≤ 20 d j

ξ2 k ⌈
n

d2 j log n⌉ ⌈ n
d2 j log n⌉with probability at least 2

3 . We will show that an
injection as stated in the claim exists with probability at least 2

3 , and hence Y satisfies
the conclusion of the claim with probability at least 1

3 > 0.
Given a fixed v ∈ V , an injection of the desired form corresponds

to a matching in the bipartite graph H = (N j
E (v) ∪ Y , F) with F =

{(e , b)∶ e ∈ N j
E (v) , b ∈ Y , dG(e , b) ≤ j}, which covers all of N j

E (v). To find
such a matching, it is enough to check that Hall’s condition (see Theorem 2.2) is
satisfied for all B ⊆ N j

E (v). We again split into two cases, depending on the size of B.
First, suppose that b ∶= ∣B∣ ≤ n

kd j . Then, by Property (A.3), it follows that ∣N j
V (B)∣ ≥

ξbkd j and so ∣NH(B)∣ = ∣Y ∩ N j
V (B)∣ stochastically dominates a binomial random
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variable Bin (ξbkd j , q) with expectation

E [Bin (ξbkd j , q)] = ξbkd jq ≥ 10b d2 j

n
⌈ n

d2 j log n⌉ ≥ 10b log n.

Similarly to the previous case, using the Chernoff bound (2.6), we can bound the
probability that Hall’s condition fails for such a set B from above by

P [∣NH(B)∣ < b] ≤ P [Bin (ξbkd j , q) < b] ≤ n−4b .

Taking a union bound over all sets B ⊆ N j
E (v) with ∣B∣ ≤ n

kd j as in (3.1), we see that
the probability that any such set violates Hall’s condition is at most 1

6n .
In the second case when b ∶= ∣B∣ > n

kd j , we note that as B ⊆ N j
E (v), by Property

(A.1) we have b ≤ d j

ξk and by Property (A.3) we have ∣N j
V (B) ∣ ≥ ξn. Hence, ∣NH(B)∣ =

∣Y ∩ N j
V (B)∣ stochastically dominates a binomial random variable Bin (ξn, q) with

expectation E [Bin (ξn, q)] = ξnq ≥ 10 d j

ξk . Hence, from (2.6), it follows that

P [Bin (ξn, q) < b] ≤ P [Bin (ξn, q) ≤ d j

ξk
] ≤ e−4d j/(ξk) .

Again, taking a union bound over all sets B of size n
kd j < ∣B∣ ≤ d j

ξk , we can bound
from above the probability that Hall’s condition fails for some B with ∣B∣kd j > n from
above as in (3.5). Note that in the case j = 1 and k ≥ d̂

log n , we need the additional factor
⌈ n

d2 j log n⌉ for this union bound to work.
Hence, for every vertex v, an injection of the desired form exists with probability at

least 1 − 1
3n . Using another union bound over all vertices, we can bound the probability

that there exists a vertex for which there is no such injection by 1
3 , concluding the proof

in the case (c).
The proof in the case (b) is again analogous, using q = 10

ξkd j log n. Since the calcu-
lations are similar in nature to cases (a), (c), and (d), we omit them. ∎

Theorem 1.5 then follows by checking that in each regime the bounds given by
Theorem 1.6 are not significantly larger than

√ n
k .

Proof of Theorem 1.5 Let j ∈ N be such that the average degree d ∶= d(G) of G falls
into one of the regimes defined in Theorem 1.6. We note that the upper bound in
regimes (1) and (3) is increasing in d and the upper bound in regimes (2) and (4) is
decreasing in d. Hence, the bound obtained by applying Theorem 1.6 to G is at least
as good as the bound given at the beginning of regime (2), where d = ( n

k )
1

2 j , or at the
beginning of regime (4), where d = (nk)

1
2 j .

In the first case, the cop number is bounded from above by

c (G) ≤ 20ξ−2 n
kd j log n = 20ξ−2 n

k

√
k
n

log n = 20ξ−2
√n

k
log n,
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and in the second case by

c (G) ≤ 20ξ−2 n
d j log n = 20ξ−2 n√

nk
log n = 20ξ−2

√n
k

log n. ∎

4 Proof of Theorem 1.7

To show the existence of a ξ ∈ (0, 1] such that whp Gk(n, p) is ξ-expanding, we will
proceed as follows: First, we will show that Gk(n, p) expands very well (in terms
of the expansion constant) in the first edge-neighborhood and in the first vertex-
neighborhood. Then we will inductively use these results to extend the expansion
properties to larger distance neighborhoods. As might be expected, the expansion
constant remains quite good until the neighborhoods come close to containing the
whole graph. We begin by showing that the first edge-neighborhoods of subsets of
Gk(n, p) expand well. In fact, for our inductive step, it will be necessary to show
a stronger property that unless a subset A is too large, the size of its first edge-
neighborhood will be quite tightly concentrated around the value d̂

k ∣A∣, where we recall
from (2.3) that d̂ = pk(n−1

k−1). In order to get good estimates in larger neighborhoods,
we need to calculate the deviation in the first neighborhood quite precisely. To this
end, we set

δ ∶=
√

log log n
log n

.

Lemma 4.1 Assume the parameters of G = Gk(n, p) are such that d̂
k = ω (log3 n) and

k ≤ n
4 . Then whp the following holds:

For every subset A ⊆ [n] satisfying ∣A∣ ≤ 2n
k log n ,

(1 − δ) ∣A∣ d̂
k
≤ ∣NE (A) ∣ ≤ (1 + δ) ∣A∣ d̂

k
.(4.1)

Moreover, for every subset A ⊆ [n],

∣NE (A) ∣ ≥
1

16
min{∣A∣ d̂

k
, n

k
} .(4.2)

Proof We will start by proving the first statement. Let A ⊆ [n] be given where
a ∶= ∣A∣ ≤ 2n

k log n and let X = ∣NE (A) ∣ denote the number of edges in G that contain
at least one vertex of A. Let us write M for the number of edges meeting A in the
complete k-uniform hypergraph Kk(n) on n vertices. A standard inclusion–exclusion
type argument implies that

M =
min{a ,k}
∑
j=1

(a
j
)(n − j

k − j
)(−1) j+1 .
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The (absolute) ratio of consecutive terms in the sum is given as

(a
j)(

n− j
k− j)

( a
j−1)(

n− j+1
k− j+1)

= (a − j + 1)(k − j + 1)
j(n − j + 1) < ak

n
≤ 1

2
, for all 2 ≤ j ≤min{a, k} .(4.3)

Hence, M is dominated by the first term of the sum and the total contribution from
all latter terms is at most an O ( ak

n )-fraction of this value. More formally,

M =
min{a ,k}
∑
j=1

(a
j
)(n − j

k − j
)(−1) j+1 = a(n − 1

k − 1
)(1 + O ( ak

n
)) .

Since X ∼ Bin(M , p), it follows from d̂ ∶= pk(n−1
k−1) (see (2.3)) and the fact that ak

n =
O ( 1

log n ) = o(δ) that

E [X] = M p = pa(n − 1
k − 1
)(1 + O ( 1

log n
)) = ad̂

k
(1 + o(δ)) .

Hence, by the Chernoff bound (2.4), it follows that

P [∣X − ad̂
k
∣ > ad̂δ

k
] ≤ 2 exp(− ad̂δ2

3k
) .

Therefore, by a union bound, the probability that there exists a set A ⊆ [n] with
∣A∣ ≤ 2n

k log n such that ∣NE (A) ∣ differs from ∣A∣ d̂k by more than ∣A∣d̂ δ
k is at most

2n
k log n

∑
a=1

2(n
a
) exp(− ad̂δ2

3k
) ≤

∞
∑
a=1

2na n−aω(1) = o(1),

where we used our assumption that d̂
k = ω (log3 n) = ω (δ−2 log n). Therefore, whp

(1 − δ) ad̂
k
≤ ∣NE (A) ∣ ≤ (1 + δ) ad̂

k
.

To show the second statement, we split into two cases. First, let us assume that
a ∶= ∣A∣ ≤ n

2k . Let X and M be defined as above and note that by our assumption on
the size of A (4.3) still holds. Hence, M is an alternating sum with decreasing terms,
and therefore is bounded from below by the difference of the first two terms, and it
follows from (4.3) that

M ≥ a
2
(n − 1

k − 1
).

Again, since X ∼ Bin(M , p) and using d ∶= pk(n−1
k−1), we have

E [X] = M p ≥ p a
2
(n − 1

k − 1
) = ad̂

2k
,
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and hence, by the Chernoff bound (2.5),

P [X ≤ ad̂
4k
] ≤ P [X ≤ 1

2
E [X]] ≤ exp(−E [X]

8
) ≤ exp(− ad̂

16k
) .

Thus, by a union bound, we can bound the probability that there exists a set A ⊆ [n]
with ∣A∣ ≤ n

2k and ∣NE (A) ∣ ≤ ad̂
4k from above by

n
2k

∑
a=1
(n

a
) exp(− ad̂

16k
) ≤

∞
∑
a=1

na n−aω(1) = o(1),

where we used our assumption that d̂
k = ω(log n). Therefore, whp for every set A ⊆ [n]

with ∣A∣ ≤ n
2k ,

∣NE (A) ∣ ≥
ad̂
4k

.

If A is such that a > n
2k , we pick the largest possible subset A′ ⊆ A such that

a′k ∶= ∣A′∣k ≤ n/2. Therefore, (a′ + 1)k > n/2, and so a′k ≥ n/2 − k > n/4. Using the
previous argument and the fact that d̂ ≥ k, we see that

∣NE (A) ∣ ≥ ∣NE (A′)∣ ≥
a′d̂
4k
≥ a′k

4k
≥ n

16k
.

In total, the previous two cases yield that whp for all subsets A ⊆ [n],

∣NE (A) ∣ ≥min{ ad̂
4k

, n
16k
} ≥ 1

16
min{ ad̂

k
, n

k
} . ∎

To show an analogous result for the vertex-neighborhood, we recall that for a set
of edges B we defined VB = {v ∈ e∶ e ∈ B} and that the vertex-neighborhood NV (A)
of a set A can be written as VNE(A). Thus, to show that the first vertex-neighborhood
expands well, it will suffices to show that in Gk(n, p) sets of edges are unlikely to have
large overlaps.

Lemma 4.2 Assume the parameters of G = Gk(n, p) are such that k = ω(log n),
k ≤ 2−11n and d̂ ≤ n. Then whp the following holds.

For every subset B ⊆ E(G) of edges and every ε = ε(n) ∈ (0, 1
2 ] such that

( ∣B∣kn )
ε
≤ 2−5,

∣VB ∣ ≥ (1 − ε) ∣B∣k.(4.4)

Moreover, for every subset B ⊆ E(G) of edges,

∣VB ∣ ≥ 2−12 min{∣B∣k, n}.(4.5)

Proof We start by showing the first statement. Let b = b(n) ∈ N and ε = ε(n) ∈
(0, 1

2 ] be such that ( bk
n )

ε ≤ 2−5. We set tb ∶= bk(1 − ε) and denote by Xb the number
of edge sets B in G with ∣B∣ = b and ∣VB ∣ ≤ tb .

To bound the expectation of Xb , we count the number of possible choices for such
an edge set B as follows: We think of B as a partition of the multiset V̂B , which is given
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by including each element x of VB with multiplicity equal to the number of edges in
B which contain x, into k-sets. In particular, each such edge set B can be specified by
fixing the set VB of size t ≤ tb , the vector (x1 , . . . , xt) determining the multiplicity of
each vertex in B, and a partition of the multiset V̂B into b many k-sets.

Now, there are at most (n
t)many possible sets VB and, since∑t

i=1 x i = bk, it follows
that there are at most (bk+t−1

t ) ways to choose the vector (x1 , . . . , xt). Finally, a crude
upper bound for the number of partitions is bbk , since each of the bk vertices in V̂B
has to be assigned to one of the b many k-sets. It follows that

E [Xb] ≤
tb
∑
t=1
(n

t
)(bk + t − 1

t
)bbk pb .(4.6)

Using our assumption that d̂ ≤ n, we get that

p ≤ n
k(n−1

k−1)
≤ n

k ( n−1
k−1 )

k−1 ≤ (
k
n
)

k−2
,

and hence, using the fact that (n
t) is increasing for 1 ≤ t ≤ tb , we can bound E [Xb]

from above by

E [Xb] ≤
tb

∑
t=1
(n

t
)(bk + t − 1

t
)bbk pb

≤ tb (
en
tb
)

tb

22bk bbk ( k
n
)

b(k−2)

= (t
1

bk
b (

n
k
)

2
k 4e1−ε

(1 − ε)1−ε (
bk
n
)

ε
)

bk

.

However, since k = ω(log n) and bk ≤ n, it follows that t
1

bk
b (

n
k )

2
k ≤ 2. Furthermore, it

is easy to check that (1 − ε)(1−ε) is decreasing on (0, 1
2 ] and hence

E [Xb] ≤ (
8e√

2
(bk

n
)

ε
)

bk

≤ (24 (bk
n
)

ε
)

bk

= o ( 1
n
) ,

where we used our assumption 24 ( bk
n )

ε ≤ 1
2 and bk = ω(log n). In particular, since

b ≤ 2− 5
ε n

k ≤ n, we can conclude by a union bound over all possible values of b that
whp there are no edge sets violating the first part of the lemma.

To show the second statement, suppose that B ⊆ E(G) is given. If ∣B∣ ≤ n
210 k , then

( ∣B∣k
n
)

1
2

≤ 2−5 ,

and so by the first part of the lemma with ε = 1
2 , we have

∣VB ∣ ≥
1
2
∣B∣k ≥ 2−12 min{∣B∣k, n}.
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If ∣B∣ > n
210 k , we simply pick a largest subset B′ ⊂ B such that b′ ∶= ∣B′∣ ≤ n

210 k . Then,
b′ > n

210 k − 1 ≥ n
211 k , for large enough n. By the previous observation, it follows that

∣VB ∣ ≥ ∣VB′ ∣ ≥ b′k/2 ≥ n
212 ≥ 2−12 min{∣B∣k, n},

proving also the second statement. ∎

We note that an immediate corollary of Lemmas 4.1 and 4.2 is that not too large
sets in Gk(n, p) have relatively uniform vertex expansion.

Lemma 4.3 Assume that the parameters of G = Gk(n, p) are such that d̂
k = ω(log3 n),

k = ω(log n), and d̂ ≤ n. Then whp the following holds. For every subset A ⊆ V(G) and
every ε = ε(n) ∈ (0, 1

2 ] such that ( ∣A∣d̂n )
ε
≤ 2−6,

(1 − ε) (1 − δ) ∣A∣d̂ ≤ ∣NV(A)∣ ≤ (1 + δ) ∣A∣d̂ .(4.7)

Moreover, for every subset A ⊆ [n],

2−16 min{∣A∣d̂ , n} ≤ ∣NV(A)∣ ≤ 212∣A∣d̂ .(4.8)

Proof We start by showing the first statement. Given a set A and ε satisfying the
conditions of the corollary, we note that, since d̂ = ω (k log3 n) and ε ≤ 1

2 ,

∣A∣ ≤ 2−
6
ε

n
d̂
= o( n

k log n
) .

Hence, we can apply the first part of Lemma 4.1 to conclude that whp

(1 − δ) ∣A∣ d̂
k
≤ ∣NE (A) ∣ ≤ (1 + δ) ∣A∣ d̂

k
.(4.9)

If we let B = ∣NE (A) ∣, then it is immediate that

∣NV(A)∣ = ∣VB ∣ ≤ k∣B∣ ≤ (1 + δ) ∣A∣d̂ .

On the other hand, by (4.9) and our assumption on ∣A∣,

( ∣B∣k
n
)

ε

≤ ((1 + δ) ∣A∣ d̂
n
)

ε

≤ 2(∣A∣ d̂
n
)

ε

≤ 2−5 .

Hence, we can apply Lemma 4.2 to conclude that

∣NV(A)∣ = ∣VB ∣ ≥ (1 − ε)∣B∣k ≥ (1 − ε) (1 − δ) ∣A∣d̂

as claimed.
To show the second statement, let A ⊆ [n] and assume first that ∣A∣d̂ ≤ 2−12n. Then,

by the first statement with ε = 1
2 ,

1
4
∣A∣d̂ ≤ 1

2
(1 − δ) ∣A∣d̂ ≤ ∣NV(A)∣ ≤ (1 + δ) ∣A∣d̂ ≤ 2∣A∣d̂ ,
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showing the second statement in this case. On the other hand, for ∣A∣d̂ > 2−12n, note
first the trivial upper bound

∣NV (A) ∣ ≤ n ≤ 212∣A∣d̂ .

For the lower bound, we can apply the second part of Lemma 4.1 to conclude that

∣NE (A) ∣ ≥ 2−4 min{∣A∣ d̂
k

, n
k
} .

Setting B = NE (A), it now follows from Lemma 4.2 that

∣NV(A)∣ = ∣VB ∣ ≥ 2−12 min{∣B∣k, n} ≥ 2−16 min{∣A∣d̂ , n} ,

concluding the proof. ∎

Note that, in particular, Lemma 4.3 implies that ∣NV (v) ∣ is roughly d̂ for every
vertex v of Gk(n, p). To prove Theorem 1.7, we will first show that neighborhoods in
Gk(n, p) expand well in terms of d̂ and then finally conclude by showing that d is whp
close to d̂.

Proof of Theorem 1.7 We note first that by our assumptions on k and p, Gk(n, p)
satisfies the conditions of Lemmas 4.1–4.3. We therefore assume in what follows that
the conclusions of these lemmas hold deterministically in Gk(n, p).

For i ∈ {1, 2, 3}, we say a graph G satisfies Property (A.i)’, if there exists a constant
0 < ξ′i ≤ 1 such that G satisfies Property (A.i) for this constant, but when d is replaced
by d̂ in Definition 2.1. We will start by showing that Gk(n, p) satisfies the Proper-
ties (A.i)’. Taking a minimum over all respective constants, we obtain a universal
constant ξ′ such that G satisfies all properties (A.i)’ for this constant. We conclude
by showing that d̂ lies sufficiently close to d and in particular that properties (A.i)’
imply properties (A.i) for a universal constant ξ that is only a constant factor smaller
than ξ′.

Our first step will be to show that the size of the vertex-neighborhoods in Gk(n, p)
grow relatively uniformly for small enough sets, by inductively applying Lemma 4.3.
However, we will need to carefully pick the parameter ε in each step so that the
cumulative error in these approximations is not too large.

Let A ⊆ [n] with a ∶= ∣A∣ and let r ∈ N be such that ad̂ r ≤ n
2 log n . Note that, since

d̂ = ω (log4 n), it follows that r ≤ log n
4 log log n . Our aim will be to show the following:

2−5ad̂ r ≤ ∣N r
V (A)∣ ≤ 2ad̂ r .(4.10)

In particular, note that if we take A = {v} to be a single vertex, then, since
√

nk ≤
√

n d̂
log3 n ≤

n
2 log n , it follows from (4.10) that Property (A.1)’ holds for v with

ξ′1 = 2.
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In order to apply Lemma 4.3, let us set ε0 = 0 and

ε i ∶=
5

log n − log (2ad̂ i)
for 1 ≤ i ≤ r.(4.11)

Note that, since ad̂ i ≤ n
2 log n , it follows that ε i = o(1) for each i ≤ r.

We claim inductively that the following bound holds for each 0 ≤ i ≤ r:
i
∏
j=0
(1 − ε j) (1 − δ)i ad̂ i ≤ ∣N i

V (A) ∣ ≤ (1 + δ)i ad̂ i ,(4.12)

where the statement is clear for i = 0.
Suppose that (4.12) holds for some i < r. Then, since i < r = o ( 1

δ ), we have

1
2

i
∏
j=0
(1 − ε j) ad̂ i ≤

i
∏
j=0
(1 − ε j) (1 − δ)i ad̂ i ≤ ∣N i

V (A)∣ ≤ (1 + δ)i ad̂ i ≤ 2ad̂ i(4.13)

and so

⎛
⎝
∣N i

V (A)∣ d̂
n

⎞
⎠

ε i+1

≤ (2ad̂ i+1

n
)

5
log n−log(2ad̂ i+1)

≤ 2−6 .

Hence, we can apply Lemma 4.3 to N i
V (A) to conclude that

i+1
∏
j=0
(1 − ε j) (1 − δ)i+1 ad̂ i+1 ≤ ∣NV (N i

V (A))∣ = ∣N i+1
V (A)∣ ≤ (1 + δ)i+1 ad̂ i+1 ,

and so the induction step holds.
In particular, taking i = r, it follows from (4.13) that

1
2

r
∏
j=0
(1 − ε j) d̂ r ≤ ∣N r

V (A)∣ ≤ 2d̂ r .(4.14)

Hence it remains to bound the term ∏r
j=0 (1 − ε j). The following claim, whose

verification we defer to the end of the proof, provides such a bound.

Claim 3 Let a ≤ n and r be such that ad̂ r ≤ n
2 log n , and let ε i be defined as in (4.11).

Then
r
∏
j=0
(1 − ε j) ≥ 2−4 .(4.15) ∎

It is now clear that (4.14) and Claim 3 together imply (4.10).
Now let us turn to Property (A.2)’. Let us fix a subset A ⊆ [n]with a ∶= ∣A∣ and r ∈ N.

We let r0 =min{r, max {i ∶ ∣A∣d̂ i ≤ n
2 log n}} and let A′ = N r0

V (A). Then, by (4.10), we
have

2−5ad̂ r0 ≤ ∣A′∣ ≤ 2ad̂ r0 .(4.16)

In particular, if r = r0, then (4.16) implies that (A.2)’ holds for A with ξ′2 = 2−5.
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If r = r0 + 1, then by (4.16) and the second part of Lemma 4.3,

2−21 min{ad r , n} ≤ ∣NV (A′) ∣ = ∣N r
V (A) ∣ ≤ 213ad r ,(4.17)

implying that Property (A.2)’ holds for A with ξ′2 = 2−21. Finally, for r ≥ r0 + 2,
note that since d̂ = ω(log3 n), we have ad̂ r ≥ n, and so applying the second part of
Lemma 4.3 to NV (A′) yields together with (4.17)

2−37n = 2−37 min{ad r , n} = 2−37 min{ad r0+2 , n} ≤ ∣N2
V (A′) ∣ ≤ ∣N r

V (A) ∣ ≤ n ≤ ad r ,

and hence Property (A.2)’ holds also in this case with ξ′2 = 2−37.
Let us finally turn to Property (A.3)’. Let B ⊆ E(G). By the second part of

Lemma 4.2, we conclude that

∣VB ∣ ≥ 2−12 min{∣B∣k, n} .

However, since N r
V(B) = N r

V(VB), we can apply (A.2)’ to VB to conclude that

∣N r
V (B) ∣ = ∣N r

V (VB) ∣ ≥ 2−37 min{∣VB ∣d̂ r , n}

≥ 2−37 min{2−12 min{∣B∣k, n} d̂ r , n}

≥ 2−49 min{∣B∣kd̂ r , n} ,

and hence Gk(n, p) satisfies Property (A.3)’ with ξ′3 = 2−49. It remains to show
that Properties (A.i)’ imply Properties (A.i). To this end, we note that if r1 =
max {i ∶ d i ≤ n}, then it is sufficient to show that Properties (A.i) hold for all r ≤ r1.
It is clear then that the result follows from the following claim, which we again verify
at the end of the proof.

Claim 4 For all r ≤ r1, we have

1
237 d r ≤ d̂ r ≤ 237d r .(4.18)

This completes the proof.

It remains to prove Claims 3 and 4.

Proof of Claim 3 Note first that as ε j ≤ 1
2 for all 1 ≤ j ≤ r, we can estimate the

product as
r
∏
j=0
(1 − ε j) =

r
∏
j=1
(1 − ε j) ≥ exp(−2

r
∑
j=1

ε j).(4.19)

By reversing the order of summation, we can write this sum as
r
∑
j=1

ε j =
r
∑
j=1

5
log n − log (2ad̂ j)

= 5
r
∑
j=1

1
log n − log (2ad̂ r− j+1)

.(4.20)
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To bound the term log (2ad̂ r− j+1) from above, we first note that since ad̂ r ≤ n
2 log n , we

have

log (2ad̂ r) ≤ log( n
log n

) = log n − log log n.

Furthermore, since d̂ = ω (k log3 n) = ω (log4 n), it follows that for all j ∈ N,

log (d̂ j) ≥ 4 j log log n,

which, together with the previous equation, yields that

log (2ad̂ r0− j+1) ≤ log n − log log n − 4( j − 1) log log n.

Combining this bound with (4.20), we obtain

r0

∑
j=1

ε j ≤ 5
r0

∑
j=1

1
(4 j − 3) log log n

≤ 5
log log n

⎛
⎝

1 +
r0

∑
j=1

1
4 j
⎞
⎠
≤ 5

4
⋅ 5 + log r0

log log n
≤ 5

4
,(4.21)

where the penultimate inequality comes from a standard bound on the harmonic sum
and the last inequality uses r0 ≤ log n

e5 . Plugging (4.21) into (4.19), we obtain

r0

∏
j=0
(1 − ε j) ≥ exp(−5

2
) ≥ 1

24 ,

which concludes the proof of Claim 3. ∎

Proof of Claim 4 Clearly, it is sufficient to prove the claim for r = r1, and we note
that r1 ≥ 1, since d̂ ≤ n. If r1 = 1, we get from Property (A.2)’

1
237 d̂ ≤ ∣NV (v) ∣ ≤ 237d̂ ,

which immediately implies (4.18).
Otherwise, note that for each vertex v ∈ [n] and each ε ∈ (0, 1

2 ] such that
( d̂

n )
ε
≤ 2−6, we have by Lemma 4.3 that

(1 − ε) (1 − δ) d̂ ≤ ∣NV (v) ∣ ≤ (1 + δ) d̂ .

Therefore, recalling that d = d (Gk(n, p)) = 1
n ∑v∈[n] ∣NV (v) ∣, we have

(1 − ε) (1 − δ) d̂ ≤ d ≤ (1 + δ) d̂ .(4.22)

As r0 ≥ 2, it follows that d̂ ≤
√

n and so we can take ε = δ and by (4.22) obtain the
following:

1
2

d̂ r ≤ (1 − ε)r (1 − δ)r d̂ r ≤ d r ≤ (1 + δ)r d̂ r ≤ 2d̂ r . ∎
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5 Concluding discussion

In Theorem 1.5, we prove Conjecture 1.4 for Gk(n, p) in dense regimes up to a log-
factor. It would be interesting to remove this log-factor to match the conjectured
bound. We note that in the case of G(n, p), Prałat and Wormald [24] gave a two-stage
cop strategy with similarities to the vertex surrounding strategy of Łuczak and Prałat
[21] to show that Meyniel’s Conjecture holds whp in G(n, p) in the dense regime.
Similar ideas might be of use in order to remove this log-factor.

Furthermore, our theorems give upper bounds on the cop number. It would be
interesting to know if these upper bounds are close to tight. Łuczak and Prałat [21] gave
an escape strategy for the Robber which matches their upper bound up to logarithmic
factors, which also uses in a critical way the regular (vertex-)expansion properties of
G(n, p). However, while there are already some technical issues to overcome with
extending their analysis of such a strategy to the case of Gk(n, p) with k = ω(1),
the robber must also have to take into account in some way the “edge-expansion” of
Gk(n, p), as we know there are regimes of p where the cops can do strictly better than
the bounds given by the vertex surrounding strategy. Hence, some new ideas will be
necessary to find a corresponding robber strategy in the hypergraph game.

More generally, it seems the game of Cops and Robber on hypergraphs has been
much less well studied than the graphical counterpart. In particular, it would be
interesting to find some natural classes of hypergraphs on which the cop number is
bounded. Motivated by the classic result of Aigner and Fromme [2] on the cop number
of planar graphs, it is natural to ask such questions in relation to geometric notions of
embeddability.

However, even in the case k = 3, it is clear that there are k-graphs which are
embeddable without crossings in R

k but have arbitrary large cop number. Hence, in
order to bound the cop number, we need to make further assumptions on the structure
of the k-graphs, and a natural one in the case of 3-graphs would be to ask that the 3-
graph, when viewed as a two-dimensional simplicial complex, is simply connected.

Question 5.1 Is there a constant K such that every simply connected 3-graph G which
can be embedded without crossings in R

3 satisfies c(G) ≤ K?

For simply connected 3-graphs, it is known that embeddability in R
3, as with

Kuratowski’s theorem, has a characterization in terms of excluded minors [8, 9], here
in terms of space minors. In the case of graphs, a result of Andreae [3] shows that
excluding a fixed minor bounds the cop number of a graph, and it would be interesting
to know if, for an appropriate notion of minor, this also holds for the hypergraph game.

Question 5.2 Let H be a fixed k-graph. Does there exist a constant K ∶= K(H) such
that every k-graph G with no H-“minor” satisfies c(G) ≤ K?

Finally, we note that there are perhaps other natural ways to extend the game of
Cops and Robber to the hypergraph setting. One particularly natural variant would
be to play the game on the edges of the hypergraph, rather than the vertices. That is,
the cops and robber live on the edges of the hypergraph and are allowed to move to
incident edges, instead of adjacent vertices. Let us denote the minimum number of
cops needed to win in the edge-game on G by ce(G). In the case of graphs, the edge-
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game was considered by Dudek, Gordinowicz, and Prałat [12], who showed that it is
closely related to the vertex-game, in that for any graph G,

⌈ c(G)
2
⌉ ≤ ce(G) ≤ c(G) + 1.(5.1)

In particular, c(G) and ce(G) cannot differ by more than a fixed multiplicative
constant. In the hypergraph game, it is less clear whether c(G) and ce(G) can have
wildly different behavior.

Question 5.3 Is there a function f ∶ N→ R such that for any k-graph G,

1
f (k) c(G) ≤ ce(G) ≤ f (k)c(G)?
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