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Abstract. We provide effective versions of theorems of Furstenberg and Rudolph–Johnson
regarding closed subsets and probability measures of R/Z invariant under the action of a
non-lacunary multiplicative semigroup of integers. In particular, we give an explicit rate at
which the sequence {anbk x}n,k becomes dense for a, b fixed multiplicatively independent
integers and x ∈ R/Z Diophantine generic.

1. Introduction
1.1. Let a, b > 1 be multiplicatively independent integers, i.e. not powers of the same
integer, or equivalently so that log a/log b 6∈Q (for example, a, b relatively prime). In [5],
Furstenberg showed that the only closed, infinite subset of R/Z invariant under the maps
ta : x 7→ a.x and tb : x 7→ b.x is R/Z (with a.x = ax mod 1). This implies that, for any
irrational x ,

{akb`.x | k, `≥ 0} = R/Z. (1.1a)

Furstenberg raised the question of what are the ta,tb-invariant measures on R/Z,
conjecturing that the only non-atomic such measure† is the Lebesgue measure λ. A
theorem of Rudolph for a, b relatively prime [9], generalized by Johnson to the case of a, b
multiplicatively independent [7], asserts that a probability measure on the circle R/Z that
is invariant and ergodic with respect to the semigroup generated by the maps ta : x 7→ ax
and tb : x 7→ bx , and has positive entropy with respect to ta , is equal to λ. We note that Bill

† That is, a measure that gives measure zero to any single point.
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Parry, to whose memory this paper is dedicated, has provided another, related but distinct,
proof of Rudolph’s theorem [8].

In this paper, we give an effective version of the Rudolph–Johnson theorem, and use
it (among other things) to obtain effective versions of Furstenberg’s theorem, in particular
giving an estimate on the rate in (1.1a) in terms of the Diophantine properties of x .

1.2. By a straightforward application of the ergodic decomposition, the Rudolph–Johnson
theorem is equivalent to the following, which avoids any assumptions regarding ergodicity.

THEOREM 1.3. (Rudolph–Johnson theorem) Let µ be a probability measure on R/Z
invariant under ta and tb for a, b multiplicatively independent. Suppose that

hµ(ta)= η log a.

Then
µ≥ ηλ, (1.3a)

i.e. for any measurable A ⊂ R/Z, µ(A)≥ ηλ(A).

Linear combinations of Lebesgue measure and measures supported on rationals show
that (1.3a) is sharp. We recall that, in this context, the ergodic theoretic entropy† hµ(ta)
is simply

hµ(ta)= lim
n→∞

Hµ(Pan ),

where Pan is the partition of R/Z into an intervals [0, 1/an), [1/an, 2/an), . . . and
Hµ(P)=−

∑
P∈Pµ(P) log µ(P) the Shannon entropy of a partition P .

We prove the following effective version of Theorem 1.3.

THEOREM 1.4. (Effective Rudolph–Johnson theorem) Let a, b be multiplicatively inde-
pendent, and µ an arbitrary probability measure on R/Z satisfying the entropy condition

Hµ(P N )≥ ρ log N for some ρ > 0, N > N0(a, b).

Let δ ≤ ρ/20 and let f ∈ C1(R/Z) be a non-negative function. Then there is an integer
m = asbt < N so that

[m.µ]( f )≥ (ρ − 3δ)λ( f )− κ1 log(N )−κ2δ‖ f ′‖2 (1.4a)

with κ1, κ2 depending only on a, b.

We give two proofs for this theorem: the first based on Host’s (not explicitly effective)
proof of Rudolph’s theorem [6] when a, b are relatively prime, and a second, related
but different proof, which works in the general multiplicative independent case. Where
applicable, the first proof is slightly more informative; in particular, when a, b are
relatively prime one can take κ2 = 1/2.

Note that here and below we have not attempted to optimize the exponents occurring,
the quality of the results being measured rather in the number of logs.

† Also known as the Kolmogorov–Sinai entropy or (somewhat confusingly) the metric entropy.
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1.5. It is interesting to compare this result, or more precisely its implications regarding
ta,tb-invariant subsets of N−1Z/Z, with the results of Bourgain [3] and Bourgain,
Glibichuk and Konyagin [2]. Applying Theorem 1.4 to the measure µ= |S|−1 ∑

x∈S δx

where S ⊂ N−1Z/Z is ta,tb-invariant we get the following corollary.

COROLLARY 1.6. Let N be an integer greater than or equal to some N0(a, b), with
(N , ab)= 1. Suppose that S ⊂ N−1Z/Z with |S|> Nρ . Then for any subinterval
J ⊂ R/Z there is an m = asbt < N so that the proportion of m.S inside J satisfies

|m.S ∩ J |

|S|
≥ ρλ(J )− κ3

log log log N

log log N
.

Moreover, the set
{m.s | m = asbt < N , s ∈ S}

is (log N )−κ2ρ/100-dense.

(For the first statement, apply Theorem 1.4 with δ = (log log log N )/(10κ2 log log N )
and suitable test function f supported on J with λ( f )≥ λ(J )− δ and ‖ f ′‖∞ < δ−1. For
the second statement, use δ = ρ/10, J an interval with λ(J )= log N−κ2ρ/100 and a test
function f supported on J with λ( f )≥ λ(J )/2 and ‖ f ′‖∞ < λ(J )−1.)

When the multiplicative subgroup generated by a, b in Z/NZ is of order Nα and if,
for example, S is ta, tb invariant, the papers [2] (for N prime) and [3] (for general N )
imply much sharper results, e.g. that S has no gaps of size N−c1 and that |S ∩ J |/|S| ≥
ρλ(J )− N−c2 for some c1, c2 depending on a, b, α but not N .

1.7. We deduce from Theorem 1.4 effective versions of Furstenberg’s theorem. We begin
by giving a quantification of (1.1a).

THEOREM 1.8. Let a, b be multiplicative independent. Suppose α ∈ R/Z is irrational
and Diophantine-generic: there exists k so that

|α − p/q| ≥ q−k, q ≥ 2, p, q ∈ Z.

Then {asbtα | s, t ≤ N } is (log log N )−κ6 -dense in R/Z for constants κ6 = κ6(a, b) and
for N ≥ N0(k, a, b).

Here we say that S ⊂ R/Z is ε-dense if any x ∈ R/Z has distance at most ε from S.

1.9. It follows from Furstenberg’s classification of closed ta ,tb-invariant sets that for any
given ε > 0 there are only finitely many rationals whose orbit under ta, tb fails to be ε-
dense. It can be effectivized as follows.

THEOREM 1.10. Let a, b be multiplicatively independent and (ab, N )= 1. Then for any
m ∈ (Z/NZ)× the set {

akbl .
m

N

∣∣∣∣ 0< k, l < 3 log N

}
is κ7(log log log N )−κ2/100-dense with κ7 depending only on a, b and κ2 as in Theorem 1.4
(in particular, if (a, b)= 1, an absolute constant, otherwise a constant depending only
on a, b).
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2. Notation and preliminaries
2.1. We use N to denote the set {0, 1, 2, . . . } and Z+ = {1, 2, . . . }. As is customary
A ⊂ B allows A = B; when B is a group we use A < B to denote that A is a subgroup of
B (again, A = B is allowed). If µ is a measure on R/Z and m ∈ Z+, we denote by m.µ the
pushforward of µ by x 7→ mx . Sometimes it will be convenient to denote the map x 7→ mx
by tm .

2.2. For any N ∈ Z+, we will use P N to denote the partition of R/Z into N equal intervals,
i.e. [0, 1/N ) ∪ [1/N , 2/N ) ∪ · · · ∪ [1− 1/N , 1). For a ∈ Z+, n1, n2 ∈ N, we let

P [n1,n2)
a =

n2−1∨
k=n1

t−1
ak (Pa),

where P ∨Q denotes the common refinement {P ∩ Q | P ∈ P, Q ∈Q} of two
partitions P , Q. In particular P [0,n)a = Pan .

2.3. Let µ be a measure on R/Z and P = {P1, P2, . . . , PN } a finite partition of R/Z. We
will use the notation

µ(P)= (µ(P1), . . . , µ(PN )).

The entropy Hµ(P) is defined to be

Hµ(P)=
∑
P∈P
−µ(P) log µ(P).

Suppose that a partition P as above refines a partition Q. For each Q ∈Q with
µ(Q) > 0, let µQ be the probability measure µ(Q)−1µ|Q . The conditional entropy
Hµ(P|Q) is given by

Hµ(P|Q)= Hµ(P)− Hµ(Q)=
∑
Q∈Q

µ(Q)HµQ (P),

where the latter sum is taken over those Q with µ(Q) > 0. If P does not necessarily
refine Q, we may still define Hµ(P|Q) := Hµ(P ∨Q|Q).

More generally, for any p > 1 define the `p-entropy by

H p
µ (P)=

−log‖µ(P)‖p

1− 1/p
.

This quantity is also often called the Rényi entropy. The function H p
µ (P) is non-increasing

in p, with limp↓1 H p
µ (P)= Hµ(P)†.

Finally, if µ is a measure on a finite set S and we use the notation above without
specifying a partition P , we shall mean to take the partition of S into singletons. In
particular, in this context,

‖µ‖p =

(∑
s∈S

|µ({s})|p
)1/p

, Hµ =−
∑

s∈S
µ({s}) log µ({s}).

† For this reason it is sometimes convenient to extend the definition of H p
µ also to p = 1 by setting H1

µ(P)
= Hµ(P).
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2.4. We shall repeatedly use the following facts:
(i) Hµ(P)≤ log(#P), with #P denoting the number of elements of the partition P †;
(ii) Hµ(P ∨Q)= Hµ(P)+ Hµ(Q | P)≤ Hµ(P)+ Hµ(Q).

2.5. Let µ be a probability measure on a finite set S. As we have already remarked H p
µ is

monotonically non-increasing in p, and one may certainly have a measureµwith H1
µ = Hµ

large but H p
µ small for any fixed p > 1: indeed simply take µ the measure that gives

measure 1
2 to some s0 ∈ S and divide the remaining measure uniformly on S \ {s0}.

The following lemma allows us to ‘upgrade’ the ordinary (Hµ) entropy to l p-entropy,
but at a price: at the price of replacing µ by a measure ν that is dominated by a certain
constant (depending on Hµ) times µ.

LEMMA 2.6. Let µ be a probability measure on a finite set S, with |S| = N and Hµ = ρ
log N. Let log 2/log N < δ ≤ ρ/2. Then there is a probability measure ν such that
µ≥ (ρ − δ)ν and ‖ν‖22 ≤ 4ρ−1 N−δ .

Proof. Put µ({s})= ws . Put S1 = {s ∈ S | ws < 2N−δ}, S2 = S \ S1, and for i = 1, 2 let
νi = (1/µ(Si ))µ|Si . Then, denoting by · the partition of S into singletons,

ρ log N = Hµ = Hµ({S1, S2})+ Hµ(· | {S1, S2})

= Hµ({S1, S2})+ µ(S1)Hν1 + µ(S2)Hν2

≤ µ(S1) log N + δµ(S2) log N + µ(S1) log 2,

as ν1 is a measure supported on at most N elements, hence Hν1 ≤ log N ; ν2 is supported
on at most N δ/2 elements and Hν2 ≤ δ log N − log 2; finally, Hµ({S1, S2})≤ log 2. Thus

µ(S1)≥
ρ − δ

1− δ + log 2/log N
> ρ − δ.

The claim now follows by taking ν = ν1 and observing that

‖ν‖22 ≤ ‖ν‖∞ ≤ 2µ(S1)
−1 N−δ ≤ 4ρ−1 N−δ. 2

We need the following variant of Lemma 2.6.

LEMMA 2.7. Let µ be a probability measure on some space X, and let P, Q be finite
partitions of X. Assume that Hµ(P |Q)= ρ log |P|. Let 0≤ δ ≤ ρ/2. Then we can find
probability measures ν1, . . . , νk and weights w1, . . . , wk such that:
(i) each νi is supported on a single atom of Q;
(ii) µ≥

∑
i wiνi and

∑
i wi ≥ (ρ − δ); and

(iii)
∑

i wi‖νi (P)‖22 ≤ 2|P|−δ .

Proof. Similarly to §2.6, set S1 to be those A ∈ P ∨Q for which

µ(A)

µ(Q)
< 2|P|−δ where A ⊂ Q ∈Q,

and S2 to be all the other members of P ∨Q.

† Indeed, the same equality holds for H p
µ for every p, with equality if and only if all the parts of P are assigned

equal measure.
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For any Q ∈Q set S Q
1 = {A ∈ S1 | A ⊂ Q}, wQ = µ(

⋃
S Q

1 ) and νQ = (1/wQ)µ|∪S Q
1

.

As in Lemma 2.6,

µ

(⋃
S1

)
=

∑
Q∈Q

wQ ≥ ρ − δ

and

‖νQ(P)‖22 = ‖νQ(P ∨Q)‖22 ≤ ‖νQ(P ∨Q)‖∞ ≤
2µ(Q)|P|−δ

wQ
.

Summing over Q ∈Q, we get∑
Q

wQ‖νQ(P)‖22 ≤ 2|P|−δ
∑

Q

µ(Q)= 2|P|−δ. 2

2.8. Let now µ be a probability measure on R/Z. The following lemma shows that, if N
and M are comparable, the entropies Hµ(P N ) and Hµ(P M ) are essentially the same.

LEMMA 2.9. Let µ be a probability measure on R/Z, and N < M positive integers. Then

Hµ(P M )− log(dM/Ne + 1)≤ Hµ(P N )≤ Hµ(P M )+ log 2.

Proof. Let P = P N ∨ P M . Then any atom of P M is a union of at most two element P
and hence

Hµ(P N )≤ Hµ(P)= Hµ(P M )+ Hµ(P | P M )≤ Hµ(P M )+ log 2.

The reverse inequalities obtain similarly, by observing that any atom of P N is a union of at
most dM/Ne + 1 elements of P . 2

2.10. We will use α1, α2, . . . to denote constants. The dependence of these constants on
all parameters depends on the context. We will use the superscript α1

abs the first time α1

is used to denote that it is an absolute constant, and use e.g. α1(N , ¬δ) to denote that α1

depends on N but not on δ. (Hopefully the dependence of α1 on any other conceivable
parameter will be clear from the context; unless otherwise stated, and unless one of
the parameters in the exponent is preceded by a ¬ sign, the assumption is that α1 does
not depend on any other parameter.) The indexing of these constants is reset every section.
Similarly we have κ1, κ2, . . . (numbering is consequtive throughout the paper), c1, c2, . . .

(reset every subsection). All our constants will be effective: i.e. in principle one can
write an explicit formula for how they depend on all parameters. As is often customary,
‘a < α2b’ is a shorthand for ‘There exists some constant α2 > 0 so that a < α2b’. We will
also use the notation � when we would like to keep the constant implicit; this implicit
constant will always be absolute and effective.

As usual in analytic arguments, e(x) := e2π i x . For any measure ν on R/Z let
ν̂(n)= ν(e(nx)) denote its Fourier transform; occasionally, the notation ν∧(n) will be
typographically friendlier.
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3. Proof of the effective Rudolph theorem
3.1. In this section we prove an effective version of the Rudolph–Johnson theorem for a, b
relatively prime. A related, but different, argument will be given in the next section that
works in the general case.

THEOREM 3.2. (Effective Rudolph theorem) Let a, b be relatively prime integers, and µ
an arbitrary probability measure on R/Z satisfying the entropy condition

Hµ(P N )≥ ρ log N for some ρ > 0, N > N0(a, b).

Let
10

loga T
≤ δ ≤

ρ

20
, a20/δ

≤ T ≤
δ

4
logb(N ), f ∈ C1(R/Z) non-negative. (3.2a)

Then there exist integers s, t , 0≤ s ≤ (1− δ) loga(N ), 0≤ t ≤ T , satisfying

[asbt .µ]( f )≥ (ρ − 3δ)λ( f )− κ8T−δ/2‖ f ′‖2

with κ8 depending only on a, b, and ‖ f ′‖2 = (
∫ 1

0 | f
′
|
2 dx)1/2.

Note that if κ8 is bigger than some absolute constant, the bound above becomes trivial
if δ ≥ 10/logaT and hence the lower bound on δ in (3.2a) is immaterial.

LEMMA 3.3. Let a, b be relatively prime. Then there is some α1 = α1(a, b) so that for
every r > α1 the multiplicative subgroup Sb < (Z/ar Z)∗ generated by b satisfies

Sb > 1+ aα1(Z/ar Z). (3.3a)

Proof. By elementary number theory, the group of elements in (Z/ar Z)∗ congruent to 1
modulo a3 is cyclic; moreover, all its subgroups are of the form

{x ∈ (Z/ar Z) | x ≡ 1 mod m}, (3.3b)

where a3 divides m and m divides ar . (To verify this assertion, one may use exponential
and logarithm maps, defined via power series, to reduce the question to the corresponding
statement in the additive group of (Z/ar Z), where it is obvious; if a is odd, one could even
replace a3 by a.)

Let ϕ(a3) be the size of (Z/a3Z)∗. The subgroup generated by bϕ(a
3) is of the

form (3.3b); clearly, m ≤ bϕ(a
3). We take α1 = da3 loga be. 2

3.4. Note that Lemma 3.3 is essentially equivalent to the following: for any prime p and
integer b not divisible by p we have that

|bk
− 1|p ≥ p−logbk+α1 = pα1k−log p/log b.

LEMMA 3.5. Let (a, b)= 1 and γ ∈ R/Z arbitrary. Let µ be a probability measure on
γ + a−`Z/Z, and let Sb < (Z/a`Z)∗ be the multiplicative group generated by b. Then for
any smooth f ,

1
#Sb

∑
ξ∈Sb

|[ξ.µ]( f )− λ( f )|2 ≤ α2‖ f ′‖22‖µ‖
2
2,

with α2 = α2(a, b), and f ′ the derivative of f .
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Here, and in the proof that follows, we enclose the measure ξ.µ in square brackets for
typographical clarity.

In words: a random translate of µ by ξ ∈ Sb is uniformly distributed if the ‘l2-entropy’
log(1/‖µ‖2) is large.

Proof. It follows from (3.3a) of Lemma 3.3 that, for any s ∈ a−`Z/Z, 0 6= n ∈ Z,∣∣∣∣∑
ξ∈Sb

e(nξs)

∣∣∣∣ 6
{

0 if aα1ns 6≡ 0 mod 1,

#Sb otherwise
(3.5a)

(note that Sb implicitly depends on `).
Recall that ν̂ denotes the Fourier transform of a measure ν on R/Z. Set ws = µ

({s + γ }) for s ∈ a−`Z/Z. Then

1
#Sb

∑
ξ∈Sb

|[ξ.µ]∧(n)|2 =
1

#Sb

∑
ξ∈Sb

∣∣∣∣∑
s
wse(nξ(s + γ ))

∣∣∣∣2
=

1
#Sb

∑
s,s′

wsws′
∑
ξ∈Sb

e(ξn(s − s′))

≤
(3.5a)+C−S

#{s′′ ∈ Z/a`Z | aα1ns′′ ≡ 0 mod 1}
∑

s
w2

s

≤ aα1 gcd(a`, n)‖µ‖22, (3.5b)

with gcd(a`, n) the greatest common divisor of a` and n (and C–S shorthand for Cauchy–
Schwarz).

Expanding f in a Fourier series f (x)=
∑

f̂ (n)e(nx); in particular f̂ (0)= λ( f ). Then

1
#Sb

∑
ξ∈Sb

|[ξ.µ]( f )− λ( f )|2 =
1

#Sb

∑
ξ∈Sb

∣∣∣∣∑
n 6=0

f̂ (n)[ξ.µ]∧(n)

∣∣∣∣2
≤

C−S

(
1

#Sb

∑
ξ∈Sb

∑
n 6=0

n−2
|[ξ.µ]∧(n)|2

)(∑
n

n2
| f̂ (n)|

2
)

≤
(3.5b)
‖ f ′‖22‖µ‖

2
2aα1

(∑
n 6=0

gcd(a`, n)

n2

)
.

The constants
∑

n 6=0 n−2 gcd(a`, n) can be explicitly evaluated as follows:

∑
n 6=0

gcd(a`, n)

n2 ≤

∑
d|a`

∑
n 6=0
d|n

dn−2
≤
π2

3
a

φ(a)

with φ(·) the Euler totient function. This establishes Lemma 3.5 with

α2 =
π2

3
aα1+1

φ(a)
,

α1 as in (3.3a). 2
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0 n(1 –  )ns s +

First s digits ignored Hμ ( [s,n)
α

[s +  ,n)
a ) big.

FIGURE 1. µ and s (relatively prime case).

LEMMA 3.6. Suppose given ρ > 0 and a measure µ on a−nZ/Z so that Hµ ≥ ρn log a.
Let δ ≤ ρ/10. For any 10/δ ≤ `≤ δn, there exists s ≤ (1− δ)n so that

[as .µ] ≥ ν :=
∑

wiνi ,

where
(i) each νi is a probability measure supported on a translate of a−`Z/Z;
(ii) the wi are non-negative and satisfy

∑
wi ≥ ρ − 2δ; and

(iii) νi and wi satisfy
∑

i wi‖νi‖
2
2 < 2a−`δ .

Proof. Expand using §2.4.(ii), noting the fact that P [0,n)a induces the partition of a−nZ/Z
into singletons:

Hµ = Hµ(P [0,n)a |P [`,n)a )+ Hµ(P [`,n)a |P [2`,n)a )+ · · ·

+ Hµ(P [(m−1)`,n)
a |P [m`,n)a )+ Hµ(P [m`,n)a ),

with m = bn/`c. Now Hµ(P [m`,n)a )≤ ` log a. From this we deduce that there is 0≤ s
≤ n − ` so that

Hµ(P [s,n)a |P [s+`,n)a )≥
(ρn − `) log a

m
≥ (ρ − δ)` log a.

We refer to Figure 1 for a graphical description of this. To help decode the picture,
notice that P [x,y)a is precisely the partition of [0, 1], whereupon two numbers lie in the
same part if their a-ary expansions coincide between digits x and y.

To simplify notation, we replace for the remainder of this proof µ with [as .µ] and n
with n − s; thus by our choice of s we have that

Hµ(P [0,n)a |P [`,n)a )≥ (ρ − δ)` log a. (3.6a)

The lemma now follows by applying Lemma 2.7 to µ with P = P [0,`)a , Q= P [`,n)a and
ρ′ = ρ − δ. 2

3.7. Lemmas 3.5 and 3.6 together easily imply the following weak form of the quantitative
Rudolph theorem; we will later see how this weaker statement can be massaged to give the
stronger version given by Theorem 3.2. The only significant difference between the two
versions is that in Proposition 3.8 the measure µ is assumed to be supported on the finite
set a−nZ/Z.

PROPOSITION 3.8. Let a, b be relatively prime integers, n ∈ N, and µ a probability
measure on a−nZ/Z satisfying the entropy condition

Hµ = Hµ(Pan )≥ ρn log a for some ρ > 0.

https://doi.org/10.1017/S0143385708000898 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385708000898


1714 J. Bourgain et al

Let α3 = log a/4 log b and suppose

10
loga T

≤ δ ≤
ρ

10
, a20/δ

≤ T ≤ α3δn, f ∈ C1(R/Z) non-negative. (3.8a)

Then there exist integers s, t , 0≤ s ≤ (1− δ)n, 0≤ t ≤ T satisfying

[asbt .µ]( f )≥ (ρ − 2δ)λ( f )− κ9T−δ/2‖ f ′‖2 (3.8b)

with κ9 = κ9(a, b).

Proof. Set `= bloga T c, and let νi , ν =
∑

i wiνi be as in Lemma 3.6; we recall
in particular that each νi is a probability measure on a translate of a−`Z/Z with∑

i wi‖νi‖
2
2 ≤ 2a−δ`. Let w =

∑
i wi . Note that by (3.8a) the conditions 10/δ ≤ `≤ δn

of Lemma 3.6 are satisfied. (To see `≤ δn, note that by the upper bound on T given
by (3.8a), if δn < ` (hence δn < loga T ), eδn log a

≤ δn log a/4 log b and by ex > x2/2
this would imply δn < (2 log a log b)−1 in contradiction to α3δn ≥ T ≥ 220/δ .)

Let T ′ be the order of b in the multiplicative group Z/a`Z, and note that T ′ < a` ≤ T .
By Lemma 3.5,

1
T ′

T ′∑
t=0

|[bt .ν]( f )− wλ( f )| ≤
∑

i

wi

(
1
T ′

T ′∑
t=0

|[bt .νi ]( f )− λ( f )|

)

≤ w1/2
(∑

i

wi

(
1
T ′

T ′∑
t=0

|[bt .ν]( f )− λ( f )|

)2)1/2

≤

(∑
i

wi
1
T ′

T ′∑
t=0

|[bt .ν]( f )− λ( f )|2
)1/2

≤ α2
1/2
‖ f ′‖2

(∑
i

wi‖νi‖
2
2

)1/2

≤ 2α2
1/2
‖ f ′‖2a−`δ/2. (3.8c)

Since [as .µ] ≥ ν for some s ≤ (1− δ)n, equation (3.8c) implies that there are
s ≤ (1− δ)n, t ≤ T so that

[asbt .µ]( f )≥ (ρ − 2δ)λ( f )− κ9T−δ/2‖ f ′‖2

with κ9 = 2a1/2α2
1/2. 2

3.9. We now deduce the effective Rudolph theorem §3.2, from the seemingly weaker
Proposition 3.8.

Proof of Theorem 3.2. Let the notation be as in the statement of Theorem 3.2. Let
n = bloga Nc. Define the measure µ′ on a−nZ/Z by

µ′
({

k

an

})
= µ

([
k

an ,
k + 1

an

))
.

By Lemma 2.9.

Hµ′ = Hµ(Pan )≥ Hµ(P N )− log(a + 1)≥ (nρ − 2) log a ≥ n(ρ − δ).
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Assumptions (3.2a) on δ, ρ, T, N imply that ρ′ = ρ − δ, T ′ = T, δ′ = δ, n
satisfy (3.8a). Applying Proposition 3.8 we get that there are 0≤ s ≤ (1− δ)bloga Nc
and 0≤ t ≤ T so that

[asbt .µ′]( f )≥ (ρ − 3δ)λ( f )− κ9T−δ/2‖ f ′‖2. (3.9a)

By the choice of s, t , asbt
≤ N 1−δ/2 (hence as−nbt

≤ aN−δ/2), hence

|[asbt .µ]( f )− [asbt .µ′]( f )| 6 max
|x−x ′|≤aN−δ/2

| f (x)− f (x ′)| ≤ aN−δ/4‖ f ′‖2. (3.9b)

As long as N 1/2 > logb(N ) (a condition we can use to define N0(a, b)), we have that
T ≤ N 1/2; hence from (3.9a), there are s, t as in Theorem 3.2 so that

[asbt .µ]( f )≥ (ρ − 3δ)λ( f )− κ8T−δ/2‖ f ′‖∞

with κ8 = κ9 + a. 2

4. Proof of the effective Rudolph–Johnson theorem
4.1. In this section we present a related, but different, proof of Theorem 3.2 that works for
the general case of a, b multiplicatively independent, at the (modest) expense of not being
able to consider a smaller range for the power of b.

Throughout this section we shall denote:

Sa,b = {a
nbm
| n, m ≥ 0}.

4.2. The following deep result regarding lower bounds on linear forms in two logarithms
plays a role analogous to Lemma 3.3 in our second proof of an effective version of
the Rudolph–Johnson theorem. The first non-trivial bounds in this direction (which are
probably sufficiently good for our purposes) are due to Gelfond and Schneider, with
subsequent improvements by Baker and others; the rather precise form we give here (in
a much more general form) is due to Baker and Wüstholz [1].

THEOREM 4.3. (Baker and Wüstholz [1]) Let a, b be multiplicative independent integers.
Then for any k, n ∈ Z

|k/n − log a/log b| ≥ exp(−κ10 log a log b log(1+ |k| + |n|)),

with κ10 an effective absolute constant (indeed, one can take κ10 = 231).

COROLLARY 4.4. There exist κ11, κ12 > 0 depending on a, b so that if we write the
elements of Sa,b as a1 ≤ a2 ≤ . . . , then the gap

ak+1 − ak ≤
κ11ak

(log ak)κ12
. (4.4a)

Proof. Let ar = akbn , and for notational convenience assume ak > bn . We want to show
that there is an element t ∈ Sa,b with

ar ≤ t ≤ ar

(
1+

κ11ak

(log ak)κ12

)
.

Let p/q be the last successive continued fraction approximation of log a/log b so that

q < k and log a/log b < p/q, (4.4b)
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and let p′/q ′, p′′, q ′′ be the next two continued fraction approximations of log a/log b;
as p′′/q ′′ is also greater than log a/log b, q ′′ ≥ k. Then

p′

q ′
<

log a

log b
<

p′′

q ′′
<

p

q
; (4.4c)

as p/q − p′/q ′ = 1/qq ′ and p′′/q ′′ − p′/q ′ = 1/q ′′q ′, it follows that

0< p −
log a

log b
q <

1
q ′

(4.4d)

0> p′ −
log a

log b
q ′ >−

1
q ′′
>−

1
k
. (4.4e)

Using Theorem 4.3 and (4.4e) we have

k−1 >

∣∣∣∣p′ − log a

log b
q ′
∣∣∣∣> exp

(
−

1
κ12

log q ′
)

for κ12 = (2κ10 log a log b(1+ log a/log b))−1, hence q ′ > kκ12 . Recall also that we have
assumed that ak > bn , hence k > log(ar )/2 log(a). Equation (4.4d) and the inequality
bx
≤ 1+ (b − 1)x for x ∈ [0, 1] implies that

1< bpa−q < 1+
b − 1

q ′
.

We conclude that

ar < ak−qbn+p < ar (1+ (b − 1)/q ′)

< ar (1+ (b − 1)k−κ12)

≤ ar

(
1+ (b − 1)

(
log ar

2 log a

)−κ12
)
,

hence we can take

κ11 =max((b − 1)(2 log a)κ12 , (a − 1)(2 log b)κ12). 2

LEMMA 4.5. Let ν be a probability measure on R/Z and M ∈ Z+. Then there is an
absolute constant α1 so that for any 0 6= ξ ∈ Z

M−1
M−1∑

0

|[m.ν]∧(ξ)|2 ≤ 2α1|ξ |‖ν(P M )‖
2
2. (4.5a)

Proof. We first consider the case ξ = 1. Number the intervals comprising P M as
I0, . . . , IM−1, and for x ∈ R we let ‖x‖ denote the distance of x from Z.

Let h(m) be a non-negative function on Z so that h(i)≥ 1/M for 0≤ i ≤ M − 1:

M−1
M−1∑

0

|[m.ν]∧(1)|2 ≤
∑

m
h(m)[m.ν]∧(1)2 =

∫ ∫
G(x, y) dν(x) dν(y) (4.5b)

with G(x, y)=
∑

m h(m)e(m(x − y)). It is possible to choose the function h(m) so that

|G(x, y)|< 5 min(1, M−2
‖x − y‖−2).

https://doi.org/10.1017/S0143385708000898 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385708000898


Some effective results for ×a × b 1717

(Take, for example, h = 1/M max(1− d(m)/M, 0), where d(m) is the distance of m to
the set [0, M − 1], i.e. d(m)=min0≤i≤M−1 |i − m|.†) Since for ` 6= `′, `′ ± 1

‖x − y‖ ≥
1
2

∥∥∥∥`− `′M

∥∥∥∥ for x ∈ I`, y ∈ I`′ ,

we have that

(4.5b)≤ 20
(∑

`

ν(I`)
2
+

∑
`6=`′

ν(I`)ν(I`′)

|`− `′|2

)
. (4.5c)

By the Frobenius theorem the norm of the quadratic form above is bounded by the row
sum of the matrix, which is bounded above by an absolute constant α1. We conclude that

M−1
M−1∑

0

|[m.ν]∧(1)|2 ≤ α1‖ν(P M )‖
2
2. (4.5d)

To obtain the required estimate for general ξ , apply (4.5d) on ξ.ν to obtain

M−1
M−1∑

0

|[m.ν]∧(ξ)|2 ≤ α1‖ξ.ν(P M )‖
2
2,

and note that

‖ξ.ν(P M )‖
2
2 = ‖ν(ξ

−1 P M )‖
2
2 ≤
(∗)

2|ξ |‖ν(ξ−1 P M ∨ P M )‖
2
2 ≤ 2|ξ |‖ν(P M )‖

2
2,

where the inequality marked by (∗) is a consequence of the fact that every atom of ξ−1 P M

intersects at most 2|ξ | atoms of ξ−1 P M ∨ P M . 2

LEMMA 4.6. Let a, b be multiplicative independent integers, and µ a probability
measure, and s a sufficiently large integer (s > α2). Assume that µ is supported
on the interval [ka−s, (k + 1)a−s

]. Let f ∈ C1(R/Z), ` < κ12 loga(s)/3 (κ12 as in
Corollary 4.4). Then there is a subset

Rs ⊂ Sa,b ∩ {1, 2, 3, . . . , as+`
}

(independent of µ, k) so that

1
#Rs

∑
n∈Rs

|[n.µ]( f )− λ( f )|2 < α3`‖ f ′‖22‖µ(Pas+`)‖
2
2. (4.6a)

Here α2 and α3 depend on a, b.

Proof. By Corollary 4.4, we can find a subset

Rs = {n1, . . . , na`} ⊂ Sa,b ∩ {1, . . . , as+`
}

so that
|nm − mas

|< δas (4.6b)

† If we took naively h(m) to be the characteristic function of [0, M − 1], this would lead to a similar result but
with an extra factor of log M ; this would not affect our argument in any substantive way.
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for δ = κ11(s log a)−2κ12/3. Define α2 so that, if s > α2,

(s log a)2κ12/3 > 10κ11 and δ ≤ a−`.

We now estimate, for any 0 6= ξ ∈ Z,

a−`
a`−1∑
m=0

|(nm .µ)
∧(ξ)|2 ≤ a−`

(a`−1∑
m=0

|(mas .µ)∧(ξ)|2

+

a`−1∑
m=0

|(mas .µ)∧(ξ)− θm(nm .µ)
∧(ξ)|2

)
(4.6c)

where θm are arbitrary complex numbers with |θm | = 1. Taking θm = e(−nmka−sξ)

we have

|(mas .µ)∧(ξ)− θm(nm .µ)
∧(ξ)| ≤ max

0≤t≤a−s
|e(masξ t)− e(nmξ t)|

≤ |ξ ||m − nma−s
|

≤ a−`|ξ |,

and so by Lemma 4.5

(4.6c)≤ 2α1|ξ |‖µ(Pas+`)‖
2
2 + a−2`

|ξ |2. (4.6d)

Using (4.6d) we have

a−`
a`−1∑
m=0

|[nm .µ]( f )− λ( f )|2 = a−`
a`−1∑
m=0

∣∣∣∣∑
ξ 6=0

|[nm .µ]
∧(ξ)|| f̂ (ξ)|

∣∣∣∣2

≤ a−`‖ f ′‖22

a`−1∑
m=0

(∑
ξ

|ξ |−2
|[nm .µ]

∧(ξ)|2
)

≤ ‖ f ′‖22

( ∑
|ξ |<a`

(2α1|ξ |
−1
‖µ(Pas+`)‖

2
2 + 2a−2`)+ 2a−`

)
≤ (4α1 log a + 4)`‖ f ′‖22‖µ(Pas+`)‖

2
2. 2

Note that, by the assumption on the support of µ,

‖µ(Pas+`)‖
2
2 = ‖[a

s .µ](Pa`)‖
2
2 ≥ a−`.

LEMMA 4.7. Suppose given ρ > 0, n and a measure µ on R/Z so that Hµ(Pan )≥ ρn
log a. Let δ ≤ ρ/10. For any 10/δ ≤ `≤ δn, there exists s with δn ≤ s + `≤ n so that

µ≥ ν :=
∑

wiνi ,

where
(i) each νi is a probability measure supported on a single a−s-interval from Pas ;
(ii) the wi are non-negative and satisfy

∑
wi ≥ ρ − 3δ; and

(iii) νi and wi satisfy
∑

i wi‖νi (Pas+`)‖22 < 2a−`δ .

This lemma is proved precisely as Lemma 3.6, with Figure 2 substituting for Figure 1.
For example, the first displayed equation of Lemma 3.6 should be replaced in the present
context by Hµ = Hµ(P [0,`)a )+ Hµ(P [0,2`)a |P [0,`)a )+ Hµ(P [0,3`)a |P [0,2`)a )+ · · · .
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0 ns s +  

Hµ ( a s +  a s) big.

n

last n – s –  digits ignored.

FIGURE 2. µ and s (general multiplicatively independent case).

4.8. Proof of Theorem 1.4. Let n = bloga Nc. Then Hµ(Pan )≥ Hµ(P N )− log 2a
≥ (ρ − δ)n log a. Without loss of generality, we may assume that δ ≥ 40/κ12 loga(δn)
as otherwise log(N )−κ2δ is bounded from below by some constant that depends only on
a, b, hence if κ1 is chosen to be sufficiently large the right- hand side of (1.4a) is negative.
Apply Lemma 4.7 with ρ′ = ρ − δ and `= κ12 loga(δn)/4 to find s with δn ≤ s + `≤ n,
probability measures νi and weights wi as in that lemma; in particular

w :=
∑

wi ≥ ρ − 4δ and
∑

wi‖νi (Pas+l )‖
2
2 ≤ 2a−`δ.

Also by appropriate choice of N0(a, b) we may certainly assume that ` < δn/2.
As in Lemma 4.7 set ν =

∑
wiνi ≤ µ. Then

1
#Rs

∑
m∈RS

|[m.ν]( f )− wλ( f )| ≤
∑

i

wi

(
1

#Rs

∑
m∈RS

|[m.νi ]( f )− λ( f )|

)

≤ w1/2
(∑

i

wi

(
1

#Rs

∑
m∈RS

|[m.νi ]( f )− λ( f )|

)2)1/2

≤

(∑
i

wi
1

#Rs

∑
m∈RS

|[m.νi ]( f )− λ( f )|2
)1/2

≤
(∗)
α3

1/2`‖ f ′‖2

(∑
i

wi‖νi (Pas+l )‖
2
2

)1/2

≤ 2α3
1/2`‖ f ′‖2a−`δ/2

where the inequality (*) follows by applying Lemma 4.6 on each νi .
As `= κ12 loga(δn)/4,

a−`δ/2 = (δn)−κ12δ/8 ≤ 10n−κ12δ/8,

obtaining

1
#Rs

∑
m∈Rs

m.µ( f )≥ wµ( f )− κ1‖ f ′‖2 log log N (log N )−κ12δ/8

for κ1 = 20κ12α3. 2

5. Deduction of effective Furstenburg theorem
5.1. Let α ∈ R/Z be an irrational; set X N = {nα | n ∈ Sa,b, n ≤ N } ⊂ R/Z.

We will assume that we are given an increasing function F : N→ R such that
|qα − p| ≥ F(q)−1 for all p, q ∈ N.
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We define functions F2, F3 in terms of F via:

F1(x)= exp(exp((2κ11x)1/κ12)),

F2(N )= 3F1(N )F ◦ F1(N ),
F3(N )= F2(aN+1), F4 = aN F3(N ),

(5.1a)

where κ12, κ11 is as in Corollary 4.4.
We prove the following refinement of Theorem 1.8.

PROPOSITION 5.2. Suppose that K ≥ F4(M). Then X K is M−1/200-dense in R/Z for
sufficiently large M (‘sufficiently large’ depending on a, b).

LEMMA 5.3. Let F2 be defined as in (5.1a). If M ≥ M0(a, b), then

X F2(M) − X F2(M)

is 1/M-dense in R/Z.

Proof. The set {n ∈ Sa,b | n ≤ N } has cardinality at least c1(log N )2 for some c1 = c1

(a, b).
Therefore, for L ≥ L0(a, b) the set X L − X L contains an element whose distance d

from 0 satisfies F(L)−1
≤ d ≤ (log L)−1.

It now follows from Corollary 4.4 that, if L ≥ L1(a, b), then

K ≥ 3.L .F(L) H⇒ X K − X K is
2κ11

(log log L)κ12
-dense; (5.3a)

rephrasing this gives the lemma.
To see (5.3a), note that d + Z ∈ X L − X L . Let Sa,b = {a1 < a2 < · · · } and consider

the sequence an .d for n1 ≤ n ≤ n2 with n1 the smallest so that an1 > d−1/2 and n2 the
largest so that an2 < d−1.

Then by (4.4a) for n1 ≤ n ≤ n2 we have that

an+1

an
≤ 1+

2κ11

(log d)κ12
≤

2κ11

(log log L)κ12
,

so there is no gap larger than 2κ11(log log L)−κ12 in the sequence an1d, . . . , an2d. Also the
smallest element an1d is less than or equal to d−1/2

≤ 2κ11(log log L)−κ12 if L ≥ L1(a, b),
and the largest is greater than or equal to 1− 2κ11(log log L)−κ12 .

Thus, for L ≥ L1(a, b), the set X3.d−1.L − X3.d−1.L is 2κ11(log log L)−κ12 -dense. Note
that 3d−1L ≤ 3F(L)L . 2

LEMMA 5.4. For N ≥ N0(a, b) the set X F3(N ) intersects at least 1
2 aN/2 atoms of the

partition PaN .

Proof. By the previous lemma (recalling that F3(N )= F2(aN+1)) X F3(N ) − X F3(N ) is
a−N−1-dense in R/Z if N is sufficiently large (in terms of a, b). This means that
X F3(N ) − X F3(N ) intersects every atom of the partition PaN .

If P1, P2 are two atoms of PaN , then P1 − P2 := {α1 − α2 | α j ∈ Pj } is covered by at
most two atoms of PaN . Therefore, X F3(N ) must intersect at least 1

2 aN/2 atoms of PaN . 2
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5.5. Proof of Proposition 5.2. By Lemma 5.4, the set X F3(N ) intersects at least 1
2 aN/2

atoms of PaN .
Let

C = {P ∈ PaN | P ∩ X F3(N ) 6= ∅}

and for every P ∈ C let xP be a single point in P ∩ X F3(N ). Let µ= (1/|C|)
∑

p∈C δxP .
Then Hµ(PaN )≥ N log a/2− log 2. Applying Theorem 1.4 with ρ = 0.49, δ = 0.1

and f a suitable test function supported on an arbitrary interval J of size N−κ2/100,
we get an m ≤ aN in Sa,b so that m.µ(J ) > 0, hence X F4(N ) is N−κ2/100-dense for
N ≥ N2(a, b). 2

5.6. The proof of Theorem 1.10 about density of {akbl .(m/N ) | 0< k, l < κ5 log N } is
very similar.

Proof of Theorem 1.10. Step 1. Set for any M

X M =

{
akb`.

m

N

∣∣∣∣ akb` < M

}
. (5.6a)

Then there is a d ∈ X N − X N with

1
N
≤ d < α1

−1(log N )−2.

Step 2. The set
Y = {akb`.d | akb` < d−1

} ⊂ X N 2 − X N 2

is 2κ11(log d)−κ12 -dense.
Hence if M = (log d)κ12/4κ11, we can find a probability measure µ (constructed

similarly to the measure µ in §5.5) supported on X N 2 with Hµ(P M )≥
1
2 log M − log 2.

Step 3. Applying Theorem 1.4, we conclude that the set

X M N 2 = {m.x | m = asbt < M, x ∈ X N 2}

is α2(log M)−κ2/100-dense. If N is sufficiently large, X N 2 M ⊂ X N 3 , and moreover by
definition of M it follows that

α2(log M)−κ2/100
= α3(log log d)−κ2/100

≤ α4(log log log N )−κ2/100. (5.6b)

5.7. Note that if X N − X N contained an element d of size O(1/N ) (e.g. if m = 1) in the
proof outlined above in §5.6 one log can be dropped in (5.6b), yielding a substantially
improved estimate.
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