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Abstract. A method for testing the possible correlation between axial rotations of pairs of stars is 
developed. The test is applied to a sample of visual binaries. It is concluded that some kind of coupling 
between the spins of components of visual binaries does in fact exist. 

1. Introduction 

The study of the distribution of orbital and spin angular momenta in binary and 
multiple star systems is vital to the development of a theory concerning the origin 
and evolution of such systems. Some studies of this type have recently been carried 
out. For instance, Huang and Wade (1966) conclude that the orbital angular momenta 
of binaries are randomly oriented in our galaxy. Another example is Slettebak's (1963) 
determination that no significant differences between the mean rotational velocities 
for components of visual binaries and single stars exist. However, these analyses, 
while they are of prime importance concerning possible theories of origin, are not 
concerned with coupling between the various angular momenta in a binary system. 

In this paper, we develop a theory enabling us to determine the possible existence 
of coupling between the spin angular momenta in binaries. In Section 5 this theory 
is applied to a sample of visual binaries. A method for testing similar connections 
between orbital and spin angular momenta will be developed in a separate paper. 

2. Mathematical Theory of Rotational Correlation 

Let the observed rotational velocities of the primary and secondary stars in a binary 
system be ux and u2. We wish to express the bivariate distribution function, F{ux, u2), 
of the observed rotational velocities as a function of the true distribution of rotational 
velocities (i^ and v2) and the distribution of the angle (6) between the spin axes of the 
two stars, i.e., as a functional of the distribution function G(v1, v2, 0). 

To this end, we define the following quantities: 
The primary and secondary stars have spins that are characterized by unit vectors 

S( and S2, respectively. We choose the coordinate system with the z-axis aligned 
along Si and the (x, z) plane containing S2. As stated above, 6 is the angle between 
Si and S2. The line of sight is defined by the unit vector A; the angles between Sx and 
A and between S2 and A are it and i2, respectively (Figure 1). Now, clearly, 

ux = vx sin/, 
and 

u2 = v2 sin i2. 

Finally, let <j) be the angle between the (x, z) plane and the plane containing Sx and A. 
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Fig. 1. Geometry of the problem. 

For the sake of brevity, we use the notation E[q1, q2, ... <?,.] to denote the event that 
qje[qj,qj + dq^, for j = 1,2, ..., r; and the notation P {E[qu q2,...,?,]) dql dq2 ... 
dqr for the probability of E. Now, the probability of E\yu v2, 9} is given by G(vt, v2, 9) 
sin# dv^ dv2 d9. The following particular cases should be considered: 

(a) The angular distribution does not depend on 9. In that case, 

G(vu v2, 9) = H(v1,v2). 

(b) There is a dependence on 9, but that distribution is independent of the distri­
bution of velocities. Then, 

G(vuv2,9) = H{vuv2)g{9). 

(c) The distribution of vx and v2 are independent of each other, so that 

G(v1,v2,9) = fl(v1)f2(v2)g(9). 

Let the probability of E[y1, v2, 9; iu i2~\ be given by 

D(vu v2, 9; i j , i2) dvt dv2 d9 dix di2 . 

This probability cannot be readily expressed in terms of 9, i1 and i2, since they are 
not wholly independent; the specification of the values of two of them will, in fact, 
limit the variation of the third. In order to determine D(vt, v2, 9; /,, i2), we shall first 
consider E\vi, v2, 9; it, 0 ] , since iu 9 and (j) are independent variables. Its probability 
is given by 

P{E\yl, v2, 9; /,, 0]) dvt dv2 dO dit d<j) 

= NG(vu v2, 9) sin9 sin/! dt>] dv2 d9 d/,d0 
where N is a normalizing factor. 
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In general (e.g., see Trumpler and Weaver, 1953), the transformation of probability 
densities from one set of variables (qu ..., qr) to a second set (Qu ..., Qr) is given by 

where 

P(ElQu...,Qr-]) = P(E[ql,...,qr-]yj 

qx,...,qr 

Ql,-,Qr. 

is the determinant of the Jacobian matrix of the partial derivatives of (q1, ..., qr) with 
respect to (Qu ..., Qr). Therefore, 

fvu v2, 9, iu (p\\ 
P(E[vi, v2, 0; iu i2]) = P(E [>,, v2, 0; iu <?])• 

Now, as can be easily seen, 
vu v2, V, iu i2)\ 

(1) 

'vuv2,9, iu (p\ /vu
 v2\j(V, h, <P 

and 
vu v2,V, h, h 

0, /,, (p\ dq> 

vuv2 U h, h 

1, h, '2/ d*2 

From the geometry (Figure 1), it follows that 

cos l2 = cos 9 cos /j + sin 9 sin it cos <p, 
so that 

dip sin i2 

dT2
=(Q(9,iui2)y>2' 

where, in general, 

Q (a, /?, y) = 1 — cos2 a — cos2 fi — cos2 y + 2 cos a cos /? cos y. 

Therefore, from (1) and (3), 
sin 0 sin it sini2 

P(E[vu v2, 9; iu i2\) = N-G(vu v2, 9)—— . , 1/2 • 
Kvl"! li> l2)) I 

In passing, it should be noted that except for the dependence on 9 through G(v1, v2, 9) 
the expression for P(E[vl, v2, 9; iu /2]) is completely symmetric in 9, ix and i2, as it 
should be. 

We now express P{E\yi, v2, 9; u1, u2J) in terms of E\yu v2, 9; it, i2~\: 

(2) 

(3) 

(4) 

(5) 

P(E[vu v2, 9; uu u2J) = P{E\yu v2, 9; i.„ i2J)-\J vuv2, 0, iu i2 

vu v2, 9, uu u2 
When evaluated, it is found that 

'vuv2, 9, iu i2 1 

vuv2,e,uuu2) [(v1-u1)(v2-u2)~] 2 V „ 2 „ 2 f l l / 2 ' 
(7) 
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In order to obtain F(uly u2), it is necessary to integrate (6) over vu v2 and 9. Clearly, 
the limits of integration for vt and v2 are from ux to oo and from u2 to oo, respectively. 
It can readily be verified that \i1 — i2\^B^:i1 +i2 for all values of/j and i2 (Figure 1). 
Since we have transformed the set of variables (uj, v2, 0; iu i2)^>{v\, v2, 8; ux, u2), /, 
and i2 should be expressed in terms of the new variables. The limits of integration 
over 6 are therefore given by 

0 _ = |arcsin(u1/y1) — arcs in^j /^) ! 
6>+ = arcsin(u1/y1) + arcsm(u2lv2). 

(8) 

Due to the above transformation, it is also necessary to rewrite Q(6, /,, i2) as follows: 

Q(6, iu i2) = R ( O , - , U 2 ) = sin20 + f-l) 

\ "l V2J \vj 

+ 
u2 + 2^cos0 (['-(::)! i 

1/2 

After we make the appropriate substitutions, we finally obtain: 

CO GO & + 

F(uuu2) :»i,«i)= N r r r civuviJO 
" l " 2 J J J V1V2 

sin0 d9 dvt dv2 

R 0, 
u2 

v2 

1/2 

[ (»?-«?) (»! -«§) ]" 2 

When we consider case (b) above, (10) becomes: 

F(uuu2) 

"l"2 J . 

H ^ ! , ^ ) 

" 1 U2 

g(g) 

K | 0 , 

) sin0 dd ~| di)] di;2 

«i «2Y|I/2J W^W^iF2; 

«>1 ^ 2 

while in case (c) we have: 

F(ut, u2) 
= JV 

M,M, 

/ l ( " l ) / l ( " 2 ) 

D l ( C ? - " « f ) , " / i " C 2 ( t » I - « ? ) , / 2 

(9) 

(10) 

(11) 
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and under the special circumstance that g (9) = 1 (case (a) above), we see that 

sinOdO 

Rid. u, u-
V, V; 

1/2 — arcsin 
vxv2 

u,u-> 

[«»-(.-£ 2\ 1/2 

1 - -
2 \ 1/2" 0 + 

(13) 

It is therefore evident that N=n. 
Suppose we consider pairs of stars formed at random from a sample of single 

stars; then 

F(« , ,u 2 ) 

« , u 2 J ut (u? - M i ) 1 /2 

•A ("2)^2 

» 2 ( « 2 - « i ) 1 / 2 ' 

or, 
F ( M 1 , M 2 ) = F 1 ( U 1 ) - F 2 ( U 2 ) , 

(14) 

(15) 

as is to be expected; i.e., the observed bivariate distribution function is the product 
of the observed univariate distributions. 

If members of binary systems were rotationally uncorrelated, it would be found 
that F(ut, u2) would be represented by (15). However, if this is not found to be the 
case, it is, at least a priori, impossible to distinguish between the most general case 
G(v1, v2, 0) and case (b), where G(v1, v2, 0) = H(v1, v2) g(9). 

3. Choice of a Relevant Sample 

The choice of a relevant sample for testing the idea of rotational correlation will be 
determined by physical factors as well as considerations of observational selection 
effects. 

Some very short-period spectroscopic binaries are interpreted as having synchronous 
rotation (see Struve, 1950), i.e. the rotational period of the components is equal to 
their orbital period. This is explained in terms of tidal forces, which are supposed to 
have brought about the synchronization. In some other close binaries, the period of 
the axial rotation of at least the primary is undoubtedly shorter than the orbital period 
of the pair. It has been suggested that this could be due to mass transfer between the 
components (e.g., see Batten, 1967). In either case, it would seem that the initial 
conditions which existed during the first phases of the evolution of the system no 
longer prevail. 

If, on the other hand, visual binaries are not the result of the disruption of close 
systems (Chandrasekhar, 1944; Ambartsumian, 1937), and both components are on 
the main sequence, we cannot see any reason why such systems should not reflect now 
the conditions which prevailed during their formation period. 

Observational selection effects should also be considered. Spectra of both com-
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ponents of a spectroscopic pair are visible only if their magnitude difference, Am, is 
less than about one magnitude (Struve, 1950). This rather severe restriction does not 
apply in the case of visual binaries. As can be seen from Table I (Becvaf, 1964) the 
range in Am for visual binaries is certainly larger than in spectroscopic binaries. 

TABLE I 

Magnitude difference and separation in visual 
binaries 

Star mi rm Sep (") 

66Ari 6.11 12.2 1.0 
ySiTuc 4.52 14.0 2.2 

The actual value of Am allowing one to recognize a visual binary as such depends in 
general on the telescope aperture and the apparent separation of the components. 
In a survey of rotational velocities, however, Am is only limited by the instrumenta­
tion and by seeing effects, not by the physical characteristics of the pair. Additional 
selection effects are present when spectroscopic binaries are considered. Accurate 
values of rotational velocities cannot be measured in double-lined systems if the 
lines of the two components are too badly blended. There results a bias in favor 
of systems having large velocity amplitudes; i.e., large masses, short periods, or 
both. Moreover, this effect becomes larger as the line width increases. 

Due to the arguments presented above, it is concluded that a sample of visual 
binaries would be the most meaningful one as a means of testing for rotational corre­
lation in binaries. 

4. The Data 

The only large amount of data available to us concerning rotational velocities in 
visual binaries is a study of 116 pairs by Slettebak (1963). 

Since the lower limit for the values of v sin/ in this investigation is 25 km/sec, a 
meaningful discussion of the slowly-rotating late-type stars is impossible. We therefore 
have excluded all pairs having components of spectral type F or later. Giants and 
supergiants were rejected also on the grounds that they presumably no longer possess 
their original rotational velocities, due to their increase in radius and to possible 
mass loss. 

From the list, therefore, all pairs which satisfy the following conditions were 
selected: 

(a) The spectral types of both components are earlier than A9. 
(b) Both components are on the main sequence. 
When these criteria are applied, a sample of 50 pairs is obtained. The total range 

of spectral types is from 08 to A9. Visual binaries having components which are 
also single-lined spectroscopic binaries are included in the sample, as well as Ap and 
Am stars. 
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5. Statistical Analysis 

A. OBSERVED VELOCITY CORRELATION 

Table II shows the relative frequency distribution function, F(ui, u2), of observed 
rotational velocities of the sample discussed in Section 4. The observed rotational 
velocities of the primary and secondary are ul and u2, respectively. Due to the small-
ness of the sample, the velocity range has been divided into 50 km/sec sub-intervals. 

TABLE II 
Bivariate distribution of rotational velocities in visual binaries, F(«i, it?) 

50 100 150 200 250 300 M « 2 ) "i ("2) 
uz 

0 

50 

100 

150 

200 

250 

300 

«2 («l) 

0.12 

0.04 

0.04 

0.02 

0.02 

0.24 
79 

0.02 

0.10 

0.04 

0.04 

0.02 

0.22 
111 

0.02 

0.06 

0.04 

0.02 

0.02 

0.16 
112 

0.02 

0.04 

0.04 

0.04 

0.02 

0.04 

0.20 
155 

0.02 

0.02 

0.04 
175 

0.02 

0.02 

0.04 
175 

0.02 

0.02 

0.02 

0.02 

0.02 

0.10 
195 

0.20 

0.24 

0.22 

0.12 

0.14 

0.06 

0.02 

85 

96 

148 

108 

175 

225 

325 

The marginal distribution, (^(w,), gives the distribution of observed rotational 
velocities of primaries independent of the secondaries. The corresponding marginal 
distribution for the secondaries is <j)2{u2). From these, another array (not shown), 
<?(«!, u2) = (j)l(u1)-(l)2(u2) ' s derived. This array represents a bivariate distribution of 
observed velocities of pairs of stars which are formed by matching to each primary a 
secondary at random, out of the sample of selected binaries. The array <P(u1, u2) 
represents, therefore, a distribution of two independent variables. Finally, the array 
of differences between the true distribution and the artificial one, A [uu u2) = F(u1, u2) 
— <P(wi, w2) is given in Table III. It should be noted that there is a marked tendency 
for positive differences to be found along the main diagonal. 

According to Trumpler and Weaver (1953) there are various ways of testing corre­
lation between variables in a bivariate distribution. As a first step, the correlation 
coefficient, r, was computed for F(u1, u2). It was found that r = 0.46, while the corre­
lation coefficient for the artificial distribution <P(uu u2) gives r = 0.001, as would be 
expected. 

As a second step, the regression curves ii1 (u2) and u2 (HJ) were computed. These 
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« 2 

Ml 

TABLE III 
Differences: A(ui, M2) ==F(ui, iii) — <f>i(ui) -fa^m) 

50 100 150 200 250 300 

50 

100 

150 

200 

250 

300 

0.072 

-0 .018 

-0 .013 

- 0 . 0 0 9 

- 0 . 0 1 4 

- 0 . 0 1 4 

- 0.005 

- 0 . 0 2 4 

0.047 

- 0 . 0 0 8 

0.014 

-0 .011 

- 0 . 0 1 3 

- 0.004 

- 0 . 0 1 2 

0.022 

0.005 

0.001 

- 0 . 0 0 2 

- 0 . 0 1 0 

- 0.003 

- 0.020 

-0 .008 

- 0 . 0 0 4 

0.016 

- 0 . 0 0 8 

0.028 

- 0 . 0 0 4 

-0 .008 

- 0 . 0 1 0 

0.011 

- 0 . 0 0 5 

0.014 

- 0.002 

-0 .001 

-0 .008 

- 0 . 0 1 0 

0.011 

-0 .005 

0.014 

- 0.002 

- 0.001 

0.000 

-0 .024 

- 0 . 0 0 2 

-0 .012 

0.006 

0.014 

0.018 

curves give the variation of the conditional mean velocity of the primaries as a function 
of the velocity interval of the secondary and vice-versa. In terms of the velocity 
intervals, u1(i) and u2(j), the regression curves are denned to be: 

7 7 

"1 ("2(./))= Z " i ( 0 f ( " i ( 0 > " 2 ( . / ) ) / £ ^(«i(0."2(7')) 
; = i ; = i 

7 7 

«2 (« i (0 )= E "2O')*'("i(0>M2(i))/Z F(«i(0. "2(./))• 
J=I J = I 

The regression curves are graphically represented in Figures 2 and 3. 

(16) 

Fig. 2. Regression of the mean rotational velocities of primaries (ordinate) as a function of the 
rotational velocity interval of secondaries (abscissa). 
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It can be seen that definite trends are present, in the sense that the mean observed 
rotational velocity of one of the components is an increasing function of the rotational 
velocity of the other. In fact, it appears that the relationship may be linear. A least 
squares solution for a straight-line fit to each regression curve is also shown. 

3 0 0 -

0 100 200 300 

Fig. 3. Regression of the mean rotational velocities of secondaries {ordinate) as a function of the 
rotational velocity interval of primaries {abscissa). 

Fig. 4. Distribution of spectral type intervals (differences in subclasses) in the sample of binaries. 
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B. A SELECTION EFFECT 

It appears that the sample selected for the statistical analysis is heavily biased in favor 
of pairs having similar spectral types. A histogram (Figure 4) of the distribution of 
spectral type intervals (the difference between subclasses) indicates that most intervals 
are less than or equal to three subclasses. It may be suspected, therefore, that the 
correlations discussed in the previous section are due to this fact and have nothing to 
do with rotational correlation as such. 

Let F(u) denote the distribution of observed rotational velocities of stars in the 
sample (each component considered as a single star) and let.P(|zl u\) be the probability 

Fig. 5. Comparison of the distribution of rota­
tional velocity differences in real pairs to the the­
oretical distribution (autocorrelation function). 

_ ARTIFICIAL RAIDS, RESTRICTED , F ( | I U | ) 

__ THEORY t T(|AJ|) 

|AU| (KM/JEC) 

Fig. 6. Comparison of the distribution of rota­
tional velocity differences in restricted artificial 

pairs to the theoretical distribution. 

that two stars chosen at random have an observed rotational velocity difference 
Au = ul — u2. This probability is given by the autocorrelation function of F(u). 

Figure 5 shows P(\Au\) as well as the distribution of the differences \Au\ in the 
real pairs. It is evident that the latter distribution is more sharply peaked towards 
small values of Au, compared to the theoretical distribution P(\Au\). 

From the sample of binaries, new pairs were matched at random but with the 
restriction that their difference in spectral subclasses is <2 (i.e., a restriction more 
severe than on the real pairs). The distribution of the differences \Au\ in these pairs 
is compared to the theoretical distribution P(\A u\) in Figure 6. As can be seen, there 
is an appreciably closer correspondence between these last two distributions than 
those in Figure 5. 

Following Slettebak (1963), the mean velocities of rotation of various subclasses of 
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U(U) 
(KM/SEC) 

U (MI/SEC) 

Fig. 7. Regression of the mean rotational velocities of components in artificial restricted pairs 
(ordinate) as a function of the rotational velocity interval of the other component 

(symmetrized distribution). 

Fig. 8. Regression of the mean rotational velocities of components of true binaries (ordinate) as a 
function of the rotational velocity interval of the other component (symmetrized distribution). 

the sample were derived (Table IV). From the small range in it (the mean velocity), it 
seems clear that a regression of one component of a binary on the other, i.e., the 
conditional mean velocities, cannot vary over a large range either, irrespective of the 
fact that their spectral types are similar. In order to check this, an analysis similar to 
the one carried out on the true binaries (see Subsection 5A) was performed on the 
artificial pairs restricted as to their difference in spectral type. 

In order to obtain a more homogeneous sample, the distribution F(uu u2) was 
symmetrized, so that it is immaterial which star is the primary and which the secondary. 
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TABLE IV 
Average velocity for various spectral 
types in the sample of visual binaries 

Spectral type No. stars u 

B0-B3 15 158 
B5-B7 8 148 
B8-A2 47 158 
A3-A7 14 146 

For comparison purposes, the same symmetrization was applied to the sample of 
artificial binaries. 

The results are: 
(1) The correlation coefficient is r = —0.11 compared to r = 0.45 for the real distri­

bution. 
(2) The regression u(u) of the artificial sample and that of the real sample are 

represented in Figures 7 and 8, respectively. The difference is evident. 
In view of the results obtained in this section, we conclude that the regressions 

shown in Figures 2, 3, and 8 cannot be only the result of the fact that the visual 
binaries in our sample are heavily biased in favor of pairs having similar spectral types. 

6. Concluding Remarks 

If fission (Jeans, 1929; Roxburgh, 1966) is to account for the formation of binary 
systems, then one would in fact expect a high degree of rotational correlation to be 
present in binaries. In that sense our findings lend support to this theory. 

However, it is impossible at this stage of the development of the theory of the origin 
of binaries to use our findings as a test case to support or disprove the capture and 
separate nuclei theories (see, e.g., Batten, 1967 for a summary of these theories). 

It has been claimed that in some systems synchronization between axial and orbital 
rotations is present (Shajn and Struve, 1929), but it is difficult to see how this can be 
ascertained without knowing a priori that spin axes of members of binaries are in 
fact perpendicular to the orbital plane. Progress in this direction could be achieved 
in the following way: 

Let/S(usb) be the distribution of true rotational velocities of members of spectro­
scopic binaries, regarded as single stars, and let Feb (w) be the observed rotational veloci­
ties of members of eclipsing binaries. 

If it is true that the spin axes are parallel to the orbital angular momenta, we should 
find that 

f.b(«) = / . K b ) . (18) 

As usual, we emphasize the need for more observational data. This would permit 
a more extended analysis to be carried out. 
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As a final remark, it should be pointed out that the idea of correlation in binary 

systems can be generalized to any property p measured in a quantitative way by testing 

whether or not 

F(pl,p2) = j\(plyf2(P2) (19) 

where F(pi,p2) is the bivariate distribution function and/1(p1) and/2(p2) a r e the 
respective distributions for the components regarded as single stars. 
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