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Abstract

We establish a Harder–Narasimhan formalism for modifications of G-bundles on the
Fargues–Fontaine curve. The semi-stable stratum of the associated stratification of
the B+

dR-Grassmannian coincides with the variant of the weakly admissible locus
defined by Viehmann, and its classical points agree with those of the basic Newton
stratum. When restricted to minuscule affine Schubert cells, the stratification corre-
sponds to the Harder–Narasimhan stratification of Dat, Orlik and Rapoport. We also
study basic geometric properties of the strata, and the relation to the Hodge–Newton
decomposition.
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1. Introduction

Let p be a prime and let G be a connected reductive group over a finite extension F of Qp. We
fix a conjugacy class of a minuscule cocharacter μ of GF , and denote by E its field of definition,
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a finite extension of F . Let F�(G, μ) be the associated flag variety, considered as an adic space
over Ĕ. Here Ĕ denotes the completion of the maximal unramified extension of E.

Let b ∈ G(F̆ ). In [RZ96], Rapoport and Zink define the weakly admissible locus
F�(G, μ, b)wa ⊆ F�(G, μ). It is an open adic subspace of F�(G, μ) having an explicit description
as the complement of a certain profinite union of linear subspaces. Its points are characterized
by a semi-stability condition on the associated filtered isocrystals with additional structure.

Let F�(G, μ, b)a denote the admissible locus, an open adic subspace of F�(G, μ). The
existence of the admissible locus has been conjectured by Rapoport and Zink, see [DOR10,
Conjecture 11.4.4]. It is characterized by being a subspace of F�(G, μ, b)wa having the same
classical points and such that there exists a p-adic local system with additional structure over
F�(G, μ, b) that interpolates the crystalline representations attached to all classical points. For
(G, μ) of PEL type, Hartl [Har11] and Faltings [Fal10] gave a construction using the Robba
ring, respectively the crystalline period ring. In general, the admissible locus is constructed
using modifications of G-bundles on the Fargues–Fontaine curve, and based on the work of
Fargues and Fontaine [FF18], Fargues [Far20], Kedlaya and Liu [KL15], and Scholze [SW20]. As
was recently shown in [CFS21], the admissible locus and the weakly admissible locus coincide
only in exceptional cases.

In order to understand the relation between these two subspaces, it is helpful to view them
as part of a broader theory. The first generalization, carried out among others in the work of
Fargues and Scholze, is to consider the adic Newton stratification instead of just the admissible
locus (which is the unique open Newton stratum). The second step, and topic of this article, is
then to establish a similar stratification whose unique open stratum is a variant of the weakly
admissible locus. Let us begin by recalling the Newton stratification. To explain this, we also
switch to the more general context of fixing any G(F )-conjugacy class {μ} of cocharacters of
GF , and consider affine Schubert cells in the B+

dR-Grassmannian instead of flag varieties.
By GrG we denote the B+

dR-Grassmannian as in [SW20, Definition 19.1.1]. Let C be a
complete and algebraically closed field extension of F . Then the Cartan decomposition yields

GrG(C) =
∐
{μ}

G(B+
dR(C))μ(ξ)−1G(B+

dR(C))/G(B+
dR(C))

where ξ is a uniformizer of B+
dR(C) and where we take the union over all G(F )-conjugacy classes

of cocharacters μ of GF . We obtain an induced subdivision GrG =
∐

GrG,μ into locally spacial
sub-diamonds called affine Schubert cells, and also the closed affine Schubert cells GrG,�μ =∐

μ′�μ GrG,μ. For minuscule μ, the natural Bialynicki-Birula map

BBμ : GrG,μ → F�(G, μ)�

is an isomorphism between the affine Schubert cell and the diamond associated with F�(G, μ).
In general, the Bialynicki-Birula map exists, but is not an isomorphism.

Let X be the Fargues–Fontaine curve over the tilt C� of C and let ∞ ∈ X be the point
corresponding to its untilt C. By [Far20] we have a bijection between the set of isomorphism
classes of G-bundles on X and the Kottwitz set B(G). Let Eb be the G-bundle corresponding
to the fixed element b. Using Beauville–Laszlo uniformization we have for every x ∈ Gr(C) a
G-bundle Eb,x on X that is obtained as a modification of Eb at∞, compare [FS21, III.3]. Mapping
x to the isomorphism class of Eb,x one obtains a map

|GrG| → |BunG| ∼= B(G)
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to the stack of G-bundles on the Fargues–Fontaine curve. For b = 1, the image of |GrG,μ| or
|GrG,�μ| consists of the finite set B(G,−μ). For any [b′] ∈ B(G) we denote by Gr[b

′]
G,μ,b the locally

closed subspace of GrG,μ, and also the induced locally spatial sub-diamond, called the Newton
stratum for [b′] and G, μ, b.

By [Vie21, § 4] there is also a generalization of the definition of the weakly admissible locus
Grwa

G,μ,b ⊂ GrG,μ based on modifications of G-bundles on the Fargues–Fontaine curve. In the
minuscule case it can be identified with the classical weakly admissible locus in F�(G, μ) via
the Bialynicki-Birula isomorphism. By [Vie21, Theorem 1.3] the weakly admissible locus in
a minuscule affine Schubert cell GrG,μ intersects all Newton strata that are Hodge–Newton
indecomposable.

In this article, we embed the notion of weak admissibility in a broader theory by constructing
a Harder–Narasimhan stratification of GrG. Intersecting the semi-stable stratum with any GrG,μ

one obtains the weakly admissible locus of [Vie21]. We use a natural construction in terms of
modifications of G-bundles on the curve that resembles the definition of Fargues and Fontaine’s
Harder–Narasimhan formalism that led to the Newton stratification. The main difference between
the two theories is in the choice of the subbundles to define semi-stability. Fargues and Fontaine
consider for a given vector bundle E on X all subbundles E ′ and their slopes. We consider vector
bundles E = Eb,x obtained as a modification à la Beauville and Laszlo of some Eb, and only those
subbundles that correspond to direct summands of Eb. The slope of such a subbundle of Eb,x is
then the same as in the other theory. From this comparison one immediately obtains that the
Harder–Narasimhan invariant is bounded above by (the opposite of) the Newton invariant. In
particular, this yields the analog of the result that admissible implies weakly admissible.

To extend our theory to G-bundles for G other than GLn we then use the Tannakian for-
malism and a result of Cornut and Peche Irissarry [CPI19]. For this we have to restrict to
modifications of the trivial bundle E1, which is, however, also the most relevant case for the
consideration of Newton strata. Nevertheless it would be interesting to see if our theory can be
generalized to all G and b.

In the past years, several closely related theories have been introduced. More precisely, our
definition of the Harder–Narasimhan theory (or close variants of it) have been studied by several
authors. However, most of the geometric and comparison properties that we establish are new.
Let us comment in more detail.

In [Far19, § 9.3], Fargues proved the existence of a Harder–Narasimhan filtration for pairs
(E , x) when E is the trivial bundle of rank n and x ∈ Grn,μ(C) for some minuscule μ. Our results
extend this theory to the case where μ is arbitrary and where G is any reductive group instead
of GLn or where the bundle E may be non-trivial. We also discuss the minuscule case of several
of Fargues’ conjectures on the geometric properties of the Harder–Narasimhan strata that he
stated in [Far19, § 9.7].

Cornut and Peche Irissarry [CPI19] generalized Fargues’s theory by defining a Harder–
Narasimhan theory for Breuil–Kisin–Fargues modules and call the resulting filtration the
Fargues filtration. It coincides with the particular case for b = 1 of our definition, and for general
groups, we use their results.

In [DOR10], Dat, Orlik and Rapoport use filtered isocrystals and define the weakly admis-
sible locus in the flag variety F�(G, μ) also for non-minuscule μ. They generalize this also
to a Harder–Narasimhan stratification of the flag variety where again the weakly admissible
locus is the semi-stable and unique open stratum. One can consider the inverse images of Dat,
Orlik and Rapoport’s Harder–Narasimhan strata under the Bialynicki-Birula map, which then
define a decomposition of the affine Schubert cell GrG,μ. This approach is taken by Shen in
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the first versions of [She19]. This theory coincides with our Harder–Narasimhan stratification
if μ is minuscule. In general, already the notions of weak admissibility differ, compare [Vie21,
Example 4.10].

When we finished the present manuscript, Shen posted a new version of [She19] on the arXiv,
in which he changed his definition and adapted several of his arguments, so that part of his new
version is in parallel to some of our results (the construction of the Harder–Narasimhan theory
for b = 1, as well as the proof that the strata are locally closed). Most of our geometric results
of §§ 5–8 are independent of his work.

Despite the fact that the Harder–Narasimhan theory that we study has been considered (at
least in some form) by many people, very little was known about the properties of the associated
decomposition of GrG.

In Proposition 3.13 we give a group-theoretic criterion for non-emptiness. Recall from [Rap18]
that the set of non-empty Newton strata (for modifications of the trivial bundle) in GrG,μ

is indexed by the set B(G,−μ). In Proposition 3.13 we show that the set of non-empty
Harder–Narasimhan strata in GrG,μ is contained in a, in general strict, subset of B(G, μ) that
has an explicit description in terms of the involved Newton points. In [Orl06], Orlik proves a
non-emptiness criterion for the Dat–Orlik–Rapoport stratification for G = GLn (and filtrations
of an arbitrary isocrystal). As a byproduct of our theory, we generalize Orlik’s description to the
case of any G, but the trivial G-isocrystal in Proposition 5.6.

From the definition of the two stratifications, one obtains the immediate estimate that the
Harder–Narasimhan polygon is bounded by the Newton polygon. In § 6 we extend this compari-
son, showing that in Hodge–Newton decomposable cases, the Hodge–Newton decomposition also
is a coarsening of the Harder–Narasimhan reduction. We use this to study cases where Newton
strata and Harder–Narasimhan strata coincide. We continue in § 7 by giving an estimate for
the dimension of Harder–Narasimhan strata in the minuscule case. It disproves [Far19, Con-
jecture 2(2)], where Fargues conjectured that the dimension of a Harder–Narasimhan stratum
for some [b′] ∈ B(G, μ) should coincide with the dimension of the Newton stratum for some
[b′]∗ ∈ B(G,−μ) where we refer to the next section for the notation. In Proposition 7.3 we prove
that the dimension of a Newton stratum is an upper bound for the dimension of the corresponding
Harder–Narasimhan stratum and determine the cases in which equality holds.

Notation
We use the following notation.

– F is a finite degree extension of Qp and π is a uniformizer of OF . Let F be an algebraic
closure of F and Γ = Gal(F |F ).

– F̆ is the completion of the maximal unramified extension of F with Frobenius σ.
– G is a connected reductive group over F . Let H be a quasi-split inner form of G and fix an

inner twisting GF̆

∼−→ HF̆ .
– A ⊆ T ⊆ B where A is a maximal split torus, T = ZH(A) is the centralizer of A in T and

B is a Borel subgroup in H. Let U be its unipotent radical.
– (X∗(T ), Φ, X∗(T ), Φ∨) is the absolute root datum of G with positive roots Φ+ and simple

roots Δ with respect to the choice of B.
– Further, (X∗(A), Φ0, X∗(A), Φ∨

0 ) denotes the relative root datum, with positive roots Φ+
0

and simple roots Δ0.
– On X∗(A)Q, respectively X∗(T )Q, we consider the partial order given by ν � ν ′ if ν ′ − ν is a

non-negative rational linear combination of positive coroots, respectively of positive relative
coroots.
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– Let C|F be an algebraically closed complete field. Let C◦, respectively C�,◦, be the subring
of power-bounded elements of C, respectively C�, and let ξ be a generator of the kernel of the
surjective map W (C�,◦)→ C◦. Let B+

dR := B+
dR(C) be the ξ-adic completion of W (C�,◦)[1/p]

and BdR = BdR(C) = B+
dR[ξ−1]. Then B+

dR
∼= C[[ξ]] and BdR

∼= C((ξ)).
– Let X be the schematic Fargues–Fontaine curve over C�. The untilt C of C� corresponds to

a point ∞ ∈ |X| with residue field C and ÔX,∞ ∼= B+
dR.

– The adic space Y = SpaWOF
(C◦) \ {[π]p = 0} is equipped with a Frobenius ϕ. The quotient

Y/ϕZ =: Xad is the adic Fargues–Fontaine curve. Recall that there is an equivalence between
the categories of coherent sheaves over X and over Xad.

– Let B(G) be the set of G(F̆ )-σ-conjugacy classes of elements of G(F̆ ). By work of Kottwitz,
elements [b] are classified by their Kottwitz point κG(b) ∈ π1(G)Γ and their Newton point
νb ∈ X∗(A)Q,dom.

– For a G-bundle E on X let Newt(E) be the corresponding class in B(G).
– Let [b] ∈ B(G). Due to different sign conventions for Harder–Narasimhan polygons and

Newton polygons, we write [b]∗ for the unique element of B(G) with κG([b]∗) = −κG(b) and
ν[b]∗ = (−νb)dom. We have [b]∗ ∈ B(G,−μ) if and only if [b] ∈ B(G, μ).

2. The Harder–Narasimhan formalism for modifications of vector bundles

2.1 Generalities on vector bundles and gluing
Let Bun(X) denote the category of vector bundles on the Fargues–Fontaine curve X and recall
from [FF18] that every object in Bun(X) can be written as direct sum of simple objects which
can be parametrized by Q. More precisely, the isomorphism classes of vector bundles of some rank
n on X are in bijection with B(GLn), the set of σ-conjugacy classes of elements b ∈ GLn(F̆ ), or
with isomorphism classes of σ-isocrystals of rank n over F̆ . Here, an isocrystal D = (F̆n, ϕb := bσ)
corresponds to the vector bundle

Eb = Y ×ϕZ D −→ Y/ϕZ = Xad

over Xad, and to the corresponding bundle over X. Here, the automorphism ϕ on the left hand
side acts via ϕ on Y and as ϕb on D.

If f : (F̆n1 , b1σ) −→ (F̆n2 , b2σ) is a map of isocrystals, we obtain an induced morphism of
vector bundles E(f) : Eb1 −→ Eb2 . Be aware that the converse does not hold.

Recall that X is the Fargues–Fontaine curve over C�, which comes equipped with a point
∞ corresponding to C. By Beauville and Laszlo’s gluing theorem [BL95] we have a bijective
correspondence between vector bundles E on X and triples (Ee, EB+

dR
, ι) where Ee is a vector

bundle over X \ {∞}, where EB+
dR

is a vector bundle on Spec(B+
dR) and where ι : Ee ⊗Be BdR →

EB+
dR
⊗B+

dR
BdR is an isomorphism. Here, the triple corresponding to some E is given by the

respective base changes of E together with the induced isomorphism.
The pullback of a vector bundle Eb via Spec(B+

dR) −→ X is trivial. Indeed, the inclusion
F ↪→ C ↪→ B+

dR extends to an embedding of an algebraic closure F̄ into B+
dR. By Lang’s theorem

there is a g ∈ G(F̄ ) with gbσ(g−1) = 1, which induces the desired trivialization. It is well defined
up to the action of G(F ). The Beauville–Laszlo uniformization depends on the choice of such
a trivialization. From now on we consider Eb together with a trivialization of Eb,B+

dR
, without

explicitly mentioning it. If b = 1, we choose the natural trivialization. In all cases, the trivializa-
tion of Eb,B+

dR
induces a trivialization of Eb,B+

dR
⊗B+

dR
BdR (i.e. an identification with BdR

n where

n is the rank) identifying Eb,B+
dR

with the standard lattice (B+
dR)n in BdR

n.
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For each x ∈ Grn(C) one can construct a modification Eb,x of Eb as follows. Using the trivial-
ization of Eb,B+

dR
, we can write the triple corresponding to Eb as (Eb|X\∞, En,tri

B+
dR

, ι) where En,tri

B+
dR

is

the trivial bundle of rank n on Spec(B+
dR). Then Eb,x is given as the vector bundle corresponding

to the triple (Eb|X\∞, En,tri

B+
dR

, ιx) where the isomorphism ιx is given by the following commutative

diagram.

Here, Be = H0(X \∞,OX) and the map x in the diagram is multiplication by a representative
of x on BdR

n. The isomorphism class of the triple only depends on the lattice x(En,tri

B+
dR

) ⊂ BdR
n

and is in particular independent of the choice of the representative.
Write Λx := x(En,tri

B+
dR

) and En,tri
BdR

:= En,tri

B+
dR

⊗B+
dR

BdR. If (k1, . . . , kn) with k1 � · · · � kn is the

relative position of Λx with respect to (B+
dR)n, we call (k1, . . . , kn) the type of x.

2.2 The Harder–Narasimhan formalism
We want to define a Harder–Narasimhan filtration for each pair (b, x) where b ∈ GLn(F̆ ) and
x ∈ Grn(C) = GrGLn(C) in such a way that it coincides with the Harder–Narasimhan filtration
for the filtered isocrystal for b with filtration induced by x if x is of minuscule type. We will use
the general Harder–Narasimhan formalism as for example in [And09].

Definition 2.1.

(i) Let Isoc be the category of σ-isocrystals over F̆ . Recall that each object is isomorphic to a
pair (F̆n, bσ) for some n. From now on we write Eb for such a pair and identify it with the
corresponding vector bundle on X. However, for two vector bundles Eb1 and Eb2 we set

HomIsoc(Eb1 , Eb2) = {E(f) | f ∈ Hom((F̆n1 , b1σ), (F̆n2 , b2σ))},
the set of morphisms of isocrystals. In particular Isoc is abelian and every exact sequence
splits.

(ii) Let Isoc• be the category whose objects are pairs •E consisting of an element E in Isoc
together with a filtration Fil• E in Isoc and whose morphisms are morphisms in Isoc that
are strictly compatible with the filtrations.

(iii) Let Eb1 , respectively Eb2 , be vector bundles of rank n, respectively m, and let f : Eb1 −→ Eb2
be a morphism in Isoc. Let x1 ∈ Grn(C) and x2 ∈ Grm(C). Then we have the associated
B+

dR-lattices Λx1 , respectively Λx2 , of Eb1 , respectively Eb2 . The morphism f is effective with
respect to x1 and x2 if f(Λx1) ⊂ Λx2 .

(iv) Using the same notation let Λ̃x2 be the intersection of Λx2 with the isocrystal corresponding
to f(Eb1). Then f is strict effective if f(Λx1) = Λ̃x2 .

(v) We define a category C whose objects are pairs (E , x) where E is a vector bundle on X of
some rank n and where x ∈ Grn(C). A morphism from (Eb1 , x1) to (Eb2 , x2) is a morphism
g ∈ HomIsoc(Eb1 , Eb2) that is effective with respect to x1 and x2.

Remark 2.2. The class of strict effective epimorphisms in C is stable under pull-backs in C and
that of strict effective monomorphisms is stable under push-forward. Moreover the category C
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is additive and has kernels and cokernels. Indeed, let g be in HomC((Eb1 , x1), (Eb2 , x2)). Since
the category Isoc has kernels, there exists (Eb′1 , f), the kernel of g in that category. Suppose
that rank(Eb′1) = � is not zero then f induces an injective map f̃ : Ee

b′1
⊗Be BdR −→ Ee

b1
⊗Be BdR.

Denote Λx′
1

:= f̃−1(Λx1) for some x′
1 ∈ Gr�(C). Then ((Eb′1 , x′

1), f) is the kernel of g in C.
Similarly, the category C also has cokernels. Therefore C is an exact category whose exact
sequences are exact sequences in Isoc with strict effective morphisms.

Remark 2.3. We consider the forgetful functor

Fib : C −→ Isoc

(Eb, x) 	−→ Eb.
It is clearly exact and faithful.

Consider an exact sequence

0→ (E ′, x′)→ (E , x)→ (E ′′, x′′)→ 0

in C. Let Λ′, Λ and Λ′′ be the associated lattices. Then Λ′ = Λ ∩ E ′tri
BdR

and Λ′′ is the image of Λ
in E ′′tri

BdR
. In particular, we obtain an exact sequence

0→ E ′x′ → Ex → E ′′x′′ → 0 (2.1)

of vector bundles on X. Notice that in general the morphisms are not morphisms of the associ-
ated isocrystals. This filtration of Ex corresponds to the C-filtration E ′ ↪→ E in the manner also
explained in different terms in [CFS21, Lemma 2.4].

The above consideration also shows that Fib induces a bijection between the strict subobjects
of (Eb, x) and the subobjects of Eb in Isoc.

Definition 2.4. We consider the following rank, degree and slope functions on the category C.
For an object (E , x) let

rk (E , x) = rank E = rank Ex,

deg(E , x) = deg E − deg(x) = deg Ex,

μ(E , x) =
deg(E , x)
rk (E , x)

,

where deg(x) = valξ(det(x)) for any representative x of x in GLn(BdR).

Lemma 2.5. rk (E , x) and deg(E , x) are additive on exact sequences in C.
Proof. The functions rk E and deg E are additive for all exact sequences in the category of vector
bundles on X, compare [FF18, § 5.5.2.1; Theorem 6.5.2]. Applying this to the exact sequence in
(2.1), we also obtain additivity of the rank and degree function above. �
Remark 2.6. Suppose that there is a morphism g : (E , x) −→ (E ′, x′) such that Fib(g) is an iso-
morphism in Isoc. Then deg E = deg E ′. Because g is effective, deg(x) � deg(x′), thus deg(E , x) �
deg(E ′, x′). Equality holds if and only if g is strictly effective, in which case g−1 is also an effective
morphism such that Fib(g−1) is an isomorphism. In other words, g is an isomorphism in C if
and only if it is strictly effective and Fib(g) is an isomorphism in Isoc.

The above properties of the functor Fib and the functions deg, rk, μ allows us to apply the
Harder–Narasimhan formalism to the category C [And09, Proposition 4.2.2], [FF18, § 5.5.1]. We
thus immediately obtain the following results.
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Recall that Z = (E , x) ∈ C is called semi-stable if for every subobject Z ′ = (E ′, x′) we have
μ(Z ′) � μ(Z).

Proposition 2.7. Every object Z has a unique filtration in C
0 = Z0 � Z1 � · · · � Zr = Z (2.2)

such that:

• Zi/Zi−1 is semi-stable for each 1 � i � r;
• the sequence (μ(Zi/Zi−1))1�i�r is strictly decreasing.

We call (2.2) the Harder–Narasimhan filtration of Z.

We write Z�λ := Zm where μ(Zm/Zm−1) � λ > μ(Zm+1/Zm) and Z>λ := Zk where
μ(Zk/Zk−1) > λ � μ(Zk+1/Zk). Denote by Cλ the full subcategory of C whose objects are semi-
stable objects of slope λ in C. Then by the general properties of the Harder–Narasimhan
formalism, this category is abelian and stable under extensions in C [FF18, Theorem 5.5.4].

Definition 2.8. Let Z ∈ C and let F(Z) : 0 = Z0 � Z1 � · · · � Zr = Z be a filtration in C. The
polygon PF(Z) attached to this filtration is the graph of the piecewise linear function defined
on [0, rkZ] such that on the interval [rkZi, rkZi+1] for i = 0, 1, . . . , r − 1, it is the linear function
relating the points

(rkZi, deg Zi) and (rkZi+1, deg Zi+1).

The Harder–Narasimhan polygon HN(Z) attached to an object Z is the polygon attached
to the Harder–Narasimhan filtration of Z.

We note that the set of points below the Harder–Narasimhan polygon HN(Z) is also the
convex hull of the points with coordinates (rkZi, deg Zi). This does not hold for the polygon
attached to an arbitrary filtration.

We further have the following comparison theorem.

Proposition 2.9 [And09, Proposition 4.4.4]. Let F(Z)=(0 = Z0 � Z1 � · · · � Zr =Z) be any
filtration by strict subobjects in C. Then PF(Z) � HN(Z). If equality occurs, then the filtration
F(Z) is a refinement of the Harder–Narasimhan filtration of Z and Zi/Zi−1 is semi-stable for
each 1 � i � r.

Here the partial order on the polygons is as usual defined via Mazur’s inequality. In other
words, PF(Z) lies on or below HN(Z) with the same end points (0, 0) and (rkZ, deg Z).

Proof. The first assertion is Proposition 4.4.4 in [And09]. Write the Harder–Narasimhan filtration
of Z as 0 = Y0 � Y1 � · · · � Ym = Z and PF(Z) = HN(Z). Thus by definition of PF(Z), there
exist the indices 0 < j1 < · · · < jm � r such that rkYi = rkZji and deg Yi = deg Zji for 0 < i �
m. In particular, μ(Zji/Zji−1) = μ(Yi/Yi−1). Since the polygon PF(Z) is maximal among the
polygons associated with filtrations of Z, we see that Zji/Zji−1 is semi-stable. Indeed, if this is not
true then there exists a strict subobject Y such that μ(Y/Zji−1) > μ(Zji/Zji−1). Denote by F ′(Z)
the filtration 0 = Z0 � Z1 � · · · � Zji−1 � Y � Zji � · · · � Zr = Z. Then the polygon PF ′(Z)
is strictly greater than PF(Z), a contradiction. By the uniqueness of the Harder–Narasimhan
filtration, we conclude that 0 = Z0 � Zj1 � · · · � Zjm = Z is the Harder–Narasimhan filtration
of Z. �
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3. The Harder–Narasimhan formalism for modifications of G-bundles

3.1 Construction
In this section we use the Tannaka formalism to extend the above Harder–Narasimhan theory
to G-bundles for any reductive group G over F , under the assumption that the bundle Eb is
trivial. In § 8, we explain how this implies the analogous theory for all semi-stable G-bundles
Eb. For all applications, the case of modifications of the trivial (or a semi-stable) Eb is by far
the most relevant one. Nevertheless, it is a natural question if one can extend the theory also to
modifications of general G-bundles Eb.

As a preparation and a main step in the proof, we first show that the Harder–Narasimhan
filtration for modifications of vector bundles is compatible with direct sums and tensor products.

Denote by C the full subcategory of C whose objects are pairs (E , x) where E is the trivial
vector bundle of some rank n and where x ∈ Grn(C). Note that if (E , x) is an object in C, then
so are its subobjects. If (E , x), (E ′, x′) are objects in C, then (E ⊕ E ′, x⊕ x′) and (E ⊗ E ′, x⊗ x′)
are still objects in C.
Proposition 3.1. Let (E , x), (E ′, x′) ∈ C. Then for all λ ∈ Q we have canonical functorial
isomorphisms:

(i) (E ⊕ E ′, x⊕ x′)�λ ∼= (E , x)�λ ⊕ (E ′, x′)�λ;

(ii)
(
(E , x)⊗ (E ′, x′)

)�λ ∼= ∑
λ1+λ2=λ(E , x)�λ1 ⊗ (E ′, x′)�λ2 .

Proof. For every λ the quotient (E ⊕ E ′, x⊕ x′)�λ/(E ⊕ E ′, x⊕ x′)>λ = (E , x)λ ⊕ (E ′, x′)λ is semi-
stable of slope λ (or trivial if both summands are trivial) since the category Cλ is abelian and
stable under extensions in C. This implies (i).

It remains to prove (ii). By Theorem 9.1.3 in [And09], this property is equivalent to the
following claim.

Claim. If (E , x), respectively (E ′, x′), are semi-stable objects of slopes λ1, respectively λ2, then
(E , x)⊗ (E ′, x′) is semi-stable of slope λ1 + λ2.

To prove this claim, we reduce it to results of Cornut [Cor18] and Cornut and Peche
Irissarry [CPI19], and Fargues’s theorem [SW20, Theorem 14.1.1]. Consider the category
HTBdR of Hodge–Tate modules whose objects are pairs (V, Ξ) where V is a finite-dimensional
F -vector space and where Ξ ⊂ V ⊗F BdR is a B+

dR-lattice. A morphism F : (V, Ξ) −→ (V ′, Ξ′)
is an F -linear morphism f : V −→ V ′ whose BdR-linear extension fBdR

: VBdR
−→ V ′

BdR
satisfies

fBdR
(Ξ) ⊂ Ξ′.

Let (E , x) ∈ C and let (Bn
e , (B+

dR)n, ι) be the triple corresponding to E where ι : Bn
e ⊗Be

BdR
∼−→ (B+

dR)n ⊗B+
dR

BdR is the canonical isomorphism and n is some natural number. More-

over, let Λx = x(B+
dR)n ⊆ (B+

dR)n ⊗B+
dR

BdR be the lattice associated with x. Furthermore,
H0(E) = VE is an n-dimensional F -vector space, see [FF18, § 8.2.1.1]. Thus, we can associate
a pair (VE , Λx) with (E , x).

By [CPI19, § 3.2.2], this induces an exact tensor equivalence between the tensor categories
HTBdR and C. There are also degree and rank functions defined on the objects of the category
HTBdR , compare [CPI19, § 3.2.2]. We claim that they agree with our functions rank and degree.
Indeed, rk (VE , Λx) := dim (VE) = n = rk (E , x). Moreover, let (k1, . . . , kn) be the relative position
of Λx with respect to the standard lattice in BdR

n. Then, deg(E , x) = −∑n
i=1 ki and by definition,

deg(VE , Λx) is the degree of the filtration F• of VC where for each λ ∈ Z

Fλ :=
(B+

dR)n ∩ ξλΛ + (ξB+
dR)n

(ξB+
dR)n

in VC =
(B+

dR)n

(ξB+
dR)n

.
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Hence, deg(VE , Λx) = −∑n
i=1 ki = deg(E , x). Therefore, the claim follows from the analogous

assertion for HTBdR , which is shown in [CPI19, Proposition 44]. �
Let G be a reductive group and consider a pair (E , x) where E is the trivial G-bundle on

X and x ∈ GrG(C). Here, we consider E as an exact tensor functor PE : RepF G −→ Bun(X)
where RepF G is the exact tensor category of algebraic representations of G on finite-dimensional
F -vector spaces. Recall that for a finite-dimensional F -vector space V , elements of GrGLV

(C) are
in bijection with B+

dR-lattices in V ⊗F BdR. Thus any representation (V, ρ) : RepF G −→ GLV

gives rise to a B+
dR-lattice (ρ⊗F BdR)(x) of V ⊗F BdR.

Definition 3.2. Let G be a reductive group.

(i) Let K be a field extension of F . A G-filtration of the category VectK is the specification of
a K-filtration on V ⊗F K of every object (V, ρ) ∈ RepF G satisfying the four conditions in
[DOR10, Definition 4.2.6] (functoriality, compatibility with tensor products, normalization,
and exactness of the associated functor to the category of graded K-vector spaces).

(ii) Let E be a G-bundle. An isoc-filtration of E is a tensor functor •E : RepF G −→ Isoc• such
that:
(i) ωfil ◦ •E = PE where ωfil : Isoc• −→ Isoc forgets the filtration;
(ii) ωiso ◦ •E is a G-filtration of VectBdR

. Here ωiso : Isoc• −→ FilVectBdR
is the functor that

maps a filtered vector bundle E1 ⊂ · · · ⊂ Em to the corresponding filtered BdR-vector
space E1,tri

BdR
⊂ · · · ⊂ Em,tri

BdR
, an object of the category FilVectBdR

of filtered BdR-vector
spaces.

Remark 3.3. If E is the trivial G-bundle, then for every (V, ρ) ∈ RepF G, the vector bundle
PE(V, ρ) is trivial of rank dim F V . Furthermore, we denote ωF

iso : Isoc• −→ FilVectF the functor
that maps a filtered vector bundle E1 ⊂ · · · ⊂ Em whose terms are trivial vector bundles to the
corresponding filtered F -vector space H0(E1) ⊂ · · · ⊂ H0(Em). Then ωF

iso ◦ •E is a G-filtration of
VectF and by [FF18, § 8.2.1.1], this functor factors through ωiso ◦ •E by the functor that sends a
BdR-vector space V0 to the F -vector space V

Gal(BdR/F )
0 .

Theorem 3.4. Let G be a reductive group and let E be the trivial G-bundle. Let x ∈ GrG(C).
Then there is a unique isoc-filtration •(x)E of E such that for any (V, ρ) ∈ RepF G, the induced fil-
tration •(x)E(V, ρ) on PE(V, ρ) is the Harder–Narasimhan filtration of the pair (PE(V, ρ), Px(V, ρ))
in the category C.
Proof. This result is proved as in the characteristic 0 case of the proof of [DOR10, Theorem 5.3.1].
Indeed, for every object (V, ρ) ∈ RepF G, we have an object Z := (PE(V, ρ), Px(V, ρ)) in the
category C. Consider its Harder–Narasimhan filtration

0 = Z0 ⊂ Z1 ⊂ · · · ⊂ Zm = Z

where the sequence λi := μ(Zi/Zi−1) is decreasing.
We then attach to this filtration the filtered vector bundle 0 = E0 ⊂ Eλ1 ⊂ · · · ⊂ Eλm =

PE(V, ρ) where Eλi is the underlying vector bundle of Zi. In this way we get a functor •(x)E :
RepF G −→ Isoc•. One checks that this functor satisfies the required properties in Definition 3.2.
The key point is that the above Harder–Narasimhan formalism is compatible with tensor
products and direct sums. �

3.2 Parabolic reductions
Let E be a G-bundle. For a parabolic subgroup P of G, a reduction of E to P is a P -bundle EP
with an isomorphism EP ×P G→ E .
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Construction 3.5. Let •E be an isoc-filtration of E . Then by [SR72, IV.2.2.5] the group
P = P (•E) = Aut⊗(ωiso ◦ •E) is a parabolic subgroup of G defined over BdR. If E is the trivial
G-bundle then the functor ωF

iso is a fiber functor with value in the category VectF and ωiso fac-
tors through ωF

iso. Thus, again by [SR72, IV.2.2.5], the group PF = P (•E) = Aut⊗(ωF
iso ◦ •E) is a

parabolic subgroup of G defined over F and PF ⊗F BdR = P .
Consider the exact tensor functor assigning to (V, ρ) ∈ RepF G the pair (E0(V, ρ),

Fil E0(V, ρ)) ∈ Isoc• consisting of the trivial vector bundle of rank dimV together with a fil-
tration of trivial vector bundles such that we have ωiso(•E(V, ρ)) = ωiso(E0(V, ρ), Fil E0(V, ρ)). In
this way we get an isoc-filtration •E0 of E0 and moreover P (•E0) = P . We can also view •E0 as
the functor corresponding to the trivial P -bundle on X.

Let EP be the sheaf of local isomorphisms between •E0 and •E . Since we have an equiva-
lence between the category of trivial vector bundles over X and the category of F -vector spaces,
the sheaf EP has a structure of P -torsor. The G-torsor EP ×P G is indeed the sheaf of iso-
morphisms between E0 and E and thus it corresponds to the original G-bundle E . Therefore EP is a
P -reduction of the G-bundle E .

By [SR72, IV.2.4], there is a cocharacter v : Gm,F −→ P that splits ωiso ◦ •E . Further, P is
the parabolic subgroup associated with v, and thus v can be seen as an element of X∗(ZM )ΓQ
where M is the Levi factor of P centralizing v. In case that G is quasi-split and that P is
standard, we can also view v as a dominant element of X∗(T )ΓQ = X∗(A)Q that is central in the
standard Levi subgroup M of P .

Definition 3.6. Let E be a G-bundle. Then for each x ∈ GrG(C), there is a parabolic sub-
group Px := P (•(x)E) associated with the filtration ωiso ◦ •(x)E . Moreover, the cocharacter vx :=
HN(E , x) that splits ωiso ◦ •(x)E is called the Harder–Narasimhan vector of x.

Remark 3.7. Let E be a G-bundle on X, let P be a parabolic subgroup of G, and let EP be a
reduction of E to P . Consider the map

vP : X∗(P ) −→ Z

χ 	−→ deg χ∗EP .

Let M be the Levi quotient of P . Then we have a bijection X∗(P ) ∼= X∗(Mab) where Mab is
the maximal abelian quotient of M (or of P ). Since the center of the derived group of P is finite
it induces a bijection X∗(P )Q ∼= X∗(ZM )Q. Hence vP as above can be seen as an element vP of
X∗(ZM )ΓQ. We call vP the slope vector of EP .

Recall that if E ′ is a modification of a G-bundle E , then the isomorphism E ′|X\{∞} ∼= E|X\{∞}
induces a bijection between reductions of E to P and reductions of E ′ to P .

Lemma 3.8. Let x ∈ GrG(C). Let •(x)E be the isoc-filtration of the trivial G-bundle E cor-
responding to the Harder–Narasimhan filtration of (E , x), and let P ⊆ G be the associated
parabolic subgroup of G (defined over F ). Let v1 be the cocharacter associated with the fil-
tration ωiso ◦ •(x)E . Let Ex,P be the reduction of Ex to P associated with the reduction of E
corresponding to •(x)E . Then the associated cocharacter vP coincides with v1.

Proof. One can compare the two slope vectors on representations of G, so we may assume that
G = GLn. We consider the Harder–Narasimhan filtration of (E , x) where E is the trivial vector
bundle of rank n on X. It induces a filtration in Isoc E0 = (0) � E1 � · · · � Ei of E . Let P be the
stabilizer of this filtration, a parabolic subgroup of GLn defined over F . Its Levi quotient M is
a product of i factors GLnj with nj = rk Ej − rk Ej−1.
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The Harder–Narasimhan polygon of (E , x) is the convex hull of the points (rk Ej , deg(Ej)x)
for j = 0, . . . , i and where (Ej)x is the jth step of the filtration of Ex induced by the filtration of E .
To compute vP we use that X∗(P )Q ∼= X∗(ZM )Q ∼= Zi with the jth factor being generated by
the determinant on the jth factor GLnj of M . Thus the inclusion X∗(ZM )ΓQ ↪→ X∗(G)ΓQ identifies
vP with the Harder–Narasimhan polygon described above. �

Remark 3.9. (i) Suppose that G = GLn. Let x ∈ GrG(C), let •E be an arbitrary isoc-filtration
of the trivial G-bundle E and let P ⊂ G be the associated parabolic subgroup of G (defined
over F ). As in the above lemma, we have a cocharacter vP associated with the P -reduction
Ex,P corresponding to the P -reduction of E arising from •E . Moreover, there is a polygon P (•E),
not necessarily convex, attached to x and the isoc-filtration •E (Definition 2.8). Let v1 be the
cocharacter associated with this polygon. Since we can use the Iwasawa decomposition of x = p · k
(p ∈ P (BdR), k ∈ G(B+

dR)) to calculate both vP and v1, we see that they are equal.
(ii) Let G be a reductive group and let x, •E , P be as above. Hence we have a cocharacter

vP . Let ρ : G −→ GL(V ) be a representation of G over F . Then ρ∗(•E) is an isoc-filtration of
the trivial vector bundle ρ∗E and it gives rise to a cocharacter v1,ρ. By the explanation above
for the GLn case, we see that ρ ◦ vP = v1,ρ. Thus, we can understand the cocharacter vP as the
generalization of the polygon associated with an arbitrary isoc-filtration when G is no longer GLn.

Proposition 3.10. Let x ∈ GrG(C). Let E ′ = Ex be the associated modification of E = E1. Then
there is a unique parabolic subgroup P of G such that the slope vector v′P of the reduction E ′P
corresponding to EP

1 is maximal with respect to the partial order, and P -regular. It coincides
with the parabolic reduction corresponding (via Construction 3.5) to the Harder–Narasimhan
filtration of (E , x). Further, v′P = HN(E , x) is the Harder–Narasimhan vector as in Definition 3.6.
We also call E ′P the canonical reduction of (E1, x).

Remark 3.11. Here, we use the following partial order on the slope vectors (which should not be
confused with the usual order on dominant representatives). Let P, P ′ be two parabolic subgroups
of G and let vP : X∗(P )→ Z and vP ′ : X∗(P ′)→ Z be two slope vectors. Conjugating by a
suitable element of G we may assume that P and P ′ contain a joint parabolic subgroup P0. We
view vP and vP ′ as elements of X∗(ZM )Q, respectively X∗(ZM ′)Q, where M and M ′ are the Levi
quotients of P and P ′. Both sets of central cocharacters are subsets of X∗(ZM0)Q for the Levi
quotient M0 of P0. Then vP � vP ′ if vP ′ − vP is a non-negative linear combination of coroots in
the unipotent radical of P0. Since vP and vP ′ are central in the respective Levi quotients, this
last condition holds for some choice of conjugates and of P0 if and only if it holds for every such
choice.

For a quasi-split group G with a fixed pinning B ⊇ T , we may conjugate P and P ′ to standard
parabolics. This maps vP and vP ′ to well-defined elements of X∗(T )ΓQ, and the partial order
then coincides with the usual partial order on coweights of T (but not with the one comparing
dominant representatives).

Proof of Proposition 3.10. By Theorem 3.4 and Construction 3.5, there exists a unique parabolic
subgroup P of G such that the parabolic reduction of E ′ corresponding to EP

1 corresponds to
the Harder–Narasimhan isoc-filtration of (E , x). By definition, the associated slope vector is
P -regular. It remains to show the claimed maximality.

Let Q be a parabolic subgroup of G and consider the parabolic reduction EQ
1,x correspond-

ing to EQ
1 . We have to show that the associated slope vector v′Q is bounded by v′P . Possibly

replacing Q by a larger parabolic subgroup Q′ and thus v′Q by the corresponding image in
the rational cocharacters of the center of the Levi quotient of Q′, we may assume that v′Q is
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Q-dominant and Q-regular, in other words that conjugation by v′Q on the unipotent radical of
Q has strictly positive weights. For the existence of such Q compare the claim in the proof of
[Vie21, Theorem 5.5].

We suppose first that G = GLn. The reduction EQ
1 corresponds to an isoc-filtration F((E , x))

of (E , x) in the category C, which gives rise to a polygon PF((E , x)). In the same way as in
the proof of Lemma 3.8, we can identify the slope vector v′Q with the vector corresponding to
PF((E , x)). Therefore from Proposition 2.9 we have v′Q � vx and vx = v′P .

Now consider general G and let (V, ρ) be any algebraic representation of G. By the above
GLn case, we see that ρ(v′Q) � ρ(vx). Thus we have v′Q � vx. �
Remark 3.12. Let P be a parabolic subgroup of G, let N denote its unipotent radical and fix a
Levi subgroup M of P . From the Iwasawa decomposition we obtain that

GrG(C) =
∐
{λ}P

N(BdR)M(B+
dR)λ(ξ)G(B+

dR)/G(B+
dR)

where the union is taken over all P (F )-conjugacy classes of cocharacters of PF , and where
λ denotes any fixed representative of its conjugacy class. Note that the decomposition into
this disjoint union does not depend on the choice of M or the representatives λ. For a similar
construction, compare also [She19, 6.6]

For P = G, the above decomposition coincides with the decomposition into affine Schubert
cells, except that the piece for λ corresponds to the affine Schubert cell for λ−1. If P is a Borel
subgroup, we obtain the decomposition into semi-infinite orbits à la Mirkovic and Vilonen. In
the same way as in [FS21, VI.3] we obtain that this decomposition induces a decomposition of
GrG into locally closed sub-diamonds denoted S{λ}P ,P .

Let P ′ ⊇M ′ be a second parabolic subgroup and Levi factor. Let {μ}M be an M(F )-
conjugacy class of cocharacters of MF and let {μ′}M ′ be an M ′(F )-conjugacy class of cocharacters
of M ′

F
. Let B be a Borel subgroup of GF̄ defined over an algebraic closure, and let T be a max-

imal torus of GF̄ contained in B. Then we write μdom � μ′
dom if the B-dominant representatives

μdom, μ′
dom ∈ X∗(T ) satisfy the corresponding inequality. Notice that this does not depend on

the choice of B or T .
As in [MV07, Theorem 3.2] one shows that S{μ}P ,P ∩GrG,μ′ �= ∅ implies that {μ}P ∩

GrG,μ′ �= ∅, and hence that (−μ)dom � μ′
dom.

Proposition 3.13.

(i) Let {μ} be a conjugacy class of cocharacters of GF and let x ∈ GrG,μ(C). Then HN(E , x) =
νb′ for some [b′] ∈ B(G, μ) satisfying the following condition. Let P be the parabolic sub-
group corresponding to the canonical reduction of (E , x) and let M be a Levi subgroup.
Then [b′] has a reduction b′M to M such that P is the parabolic subgroup associated with
the M -dominant Newton point νM

b′M
. Further, there is a λ ∈ X∗(M) with (−λ)dom � μdom

and κM (b′M ) = −λ�M ∈ π1(M).
(ii) Let λ be as in (i), and assume in addition that (−λ)dom = μdom. Then the converse of (i) also

holds. That is, for every [b′] ∈ B(G, μ) as in (i) there is an x ∈ GrG,μ(C) with HN(E , x) = νb′ .
If μ is minuscule, this can be applied to all λ as in (i).

(iii) For all λ as in (i) there is an x ∈ GrG,�μ(C) with HN(E , x) = νb′ .

Definition 3.14. For G and μ as above let B(G, μ)HN be the set of [b′] ∈ B(G) satisfying the
condition of Proposition 3.13(i). Let B(G)HN =

⋃
μ B(G, μ)HN, the set of [b′] ∈ B(G) that have a

reduction b′M to a Levi subgroup M of some parabolic subgroup P of G such that [b′M ]M ∈ B(M)
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is basic and the M -dominant Newton point νb′M of b′M is P -dominant P -regular in the sense that
it satisfies 〈α, νb′M 〉 > 0 for each root α in the unipotent radical of P .

For [b′] ∈ B(G, μ)HN we write GrG,μ(C)HN=[b′] for the set of x ∈ GrG,μ(C) with
HN(E , x) = νb′ .

For such x we also write HN(E , x) = [b′].

Remark 3.15. (i) It would be interesting to know if the converse of part (i) of the proposition
also holds in general, without the additional assumption of part (ii).

(ii) By definition, B(G, μ)HN is a subset of B(G, μ). In particular, it is finite. For G quasi-split,
one can show that B(G, μ) = B(G, μ)HN.

(iii) Let [b′] ∈ B(G). Then by part (iii) of the proposition, there is an x ∈ GrG(C) with
HN(x) = [b′] if and only if [b′] ∈ B(G)HN.

Proof of Proposition 3.13. Assume that x ∈ GrG,μ(C) with HN(E , x) = v. We consider the
canonical reduction of (E , x), which corresponds to a parabolic subgroup P of G. Let {λ}P
be the P (F )-conjugacy class of cocharacters of PF with x ∈ S{λ}P ,P (C). Non-emptiness of the
intersection GrG,μ(C) ∩ S{λ}P

(C) then implies that (−λ)dom � μdom.
Let M be a Levi subgroup of P . By Lemma 3.8, v is the element of X∗(ZM )ΓQ corresponding

to −λ�M ∈ π1(M)Γ. Let [b′] ∈ B(M) be basic with κM (b′) = −λ�M . Then νb′ is central in M and
κM (b′) = v�M ∈ π1(M)Γ,Q. Thus v = νb′ . Finally, we have νb′ � (−λ)dom � μdom, and κG(b′) =
−λ�G = μ�G , thus [b′] ∈ B(G, μ). This finishes the proof of (i).

Let λ be as in (ii). By [Rap18, Corollary A.10] and our assumption κM (b′M ) = −λ�M , the

Newton stratum Gr[b
′
M ]∗M

M,−λ,1 is non-empty. Let xM ∈ Gr[b
′
M ]∗M

M,−λ,1(C). Let x be its image under

the natural inclusion GrM → GrG. Since −λ ∈ {μ}, we have x ∈ Gr[b
′]∗

G,μ,1(C). By definition of x,
the pair (E1, x) has a reduction to P of slope vector νb′ . By maximality of the Harder–Narasimhan
reduction and by Lemma 6.1 we thus have νb′ � HN(E1, x) � νb′ , and hence x is a point in the
claimed Harder–Narasimhan stratum. This proves (ii), and (iii) follows along the same lines. �

Let Gad be the adjoint group of G. By a subscript ad we denote the image of elements or
subsets of G in Gad, and similarly for other invariants of elements.

Lemma 3.16. Let {μ} be a conjugacy class of cocharacters of GF , and let x ∈ GrG,μ(C). Then

HNG(x)ad = HNGad
(xad), and the canonical reduction of (EGad

1 , xad) (to a parabolic subgroup
P ′) is obtained from the canonical reduction of (EG

1 , x) (to a subgroup P ) via the map P →
P/Z(G) = P ′ ⊆ Gad.

Proof. The projection map G→ Gad induces a bijection between parabolic F -subgroups of G
and of Gad, and also identifies all other data needed in the description of slope vectors of parabolic
reductions of vector bundles, and in the criterion given in Proposition 3.10. Thus the proposition
implies the lemma. �

In the remainder of this section we introduce a second, finer invariant, called the
Harder–Narasimhan type of a modification. It is along the lines of the notion of Harder–
Narasimhan types in [DOR10], but differs from it if μ is not minuscule. Furthermore, our
definition is less technical, due to our restriction to the case of modifications of the trivial
bundle.

Definition 3.17.

(i) A Harder–Narasimhan pair is a pair (P, {λ}P ) consisting of a parabolic subgroup P of G and
a P (F )-conjugacy class {λ} of cocharacters of PF satisfying the following property. Let M
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be a Levi factor of P containing a representative λ of the given class. Then P = P (avM (−λ))
where avM (−λ) is the unique rational cocharacter of M that is central in M and whose
image in π1(M)Γ agrees with −λ�M . Notice that this condition holds for all λ, M if it holds
for one such pair.

(ii) A Harder–Narasimhan type is a G(F )-conjugacy class of Harder–Narasimhan pairs.
(iii) For a conjugacy class {μ} ∈ X∗(G)/G and [b′] ∈ B(G, μ)HN let Θ(μ, [b′]) be the set of

Harder–Narasimhan types containing a pair (P, {λ}) such that [b′] has a reduction b′M to
some Levi factor M of P that is basic in M , such that −λ�M = κM (b′) ∈ π1(M)Γ and such
that (−λ)G−dom � μG−dom. Here, λ�M is the image of the projection of λ to M in π1(M)Γ.

(iv) Let x ∈ GrG,μ(C). Consider the canonical parabolic reduction of (E1, x), and let P ⊆ G
be the associated parabolic subgroup. Let λ ∈ X∗(P ) with x ∈ S{λ}P ,P . Then the G(F )-
conjugacy class of (P, {λ}P ) is called the Harder–Narasimhan type of (E , x).

Remark 3.18. Parabolic subgroups of G are G(F )-conjugate if and only if they are G(F )-
conjugate. Furthermore, the conjugacy classes of parabolic subgroups of G are in bijection with
subsets of the set of simple roots of G relative to F . In particular, for any given G, μ and
[b′] ∈ B(G, μ)HN, the set Θ(μ, [b′]) is finite. By definition of B(G, μ)HN, it is also non-empty.

It is easy to find examples where Θ(μ, [b′]) has more than one element. For example, let
G = GL5, let μ = (4, 3, 2, 1, 0) ∈ X∗(T ) and let P be the standard parabolic subgroup obtained
as stabilizer of 〈e1, e2〉 ⊆ F̆ 5. Then −λ1 = (1, 4, 0, 2, 3) and −λ2 = (2, 3, 0, 1, 4) are two different
cocharacters with (P, {λi}) ∈ Θ(μ, [b′]) for [b′] of Newton polygon (5

2

(2)
, 5

3

(3)).

Lemma 3.19. For x ∈ GrG,μ(C)HN=[b′], the Harder–Narasimhan type of (E1, x) is a well-defined
element of Θ(μ, [b′]).

Conversely, the Harder–Narasimhan type (P, {λ}P ) of x determines HN(E , x) as being the
unique class [b′] ∈ B(G, μ) having a representative b′M in a Levi factor M of P that is basic in
M and with κM (b′M ) = (−λ)�M .

Proof. The uniqueness of the canonical reduction implies that P and λ are uniquely determined.
We have

(−λ)�M = HN(E , x)�M = κM (b′) ∈ π1(M)Γ. (3.1)

Further, avM (−λ) is the HNvector of (E , x), hence the corresponding parabolic subgroup is
indeed P . Since x ∈ S{λ}P

(C) ∩GrG,μ(C), we have (−λ)dom � μdom. Altogether, we have shown
that the G(F )-conjugacy class of (P, λ) is an element of Θ(μ, [b′]).

Because HN(Eb, x) is basic in M , it is determined by its value of κM . This then follows again
from (3.1). �

In this article we are mainly concerned with the Harder–Narasimhan vector of a modification
(E1, x).

4. The Harder–Narasimhan stratification of the B+
dR-Grassmannian

Definition 4.1. We consider the (surjective) map

HN : |GrG| → B(G)HN

that maps any x ∈ GrG(C) to HN(E1, x), which by Proposition 3.13 is indeed an element of
B(G)HN. One can easily check that this is well defined in the sense that it is independent of the
choice of C and only depends on the element of |GrG| underlying the point x.
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For [b′] ∈ B(G)HN let GrG(C)HN�[b′] be the subset of all points with image [b′′] for some
[b′′] � [b′] and likewise for GrG,μ(C)HN�[b′], GrG,�μ(C)HN�[b′] and/or the subsets replacing HN �
[b′] by HN = [b′].

Let P be a parabolic subgroup of G and let M be a Levi subgroup. Let λ ∈ X∗(P ). Then
[v(λ)] is defined to be the element of B(G) corresponding to the unique basic element of B(M)
with κM (v(λ)) = λ�M . It only depends on the P (F )-conjugacy class {λ}P and neither on the
choice of M nor of a representative λ.

Theorem 4.2. Let [b′] ∈ B(G)HN.

(i) We have

GrG(C)HN�[b′] =
⋃

P⊆G

⋃
{{λ}P |[v(λ)]�[b′]}

S{λ}P ,P (C) (4.1)

where the first union is taken over all parabolic subgroups of G.
(ii) GrG,μ(C)HN�[b′], respectively GrG,μ(C)HN=[b′], are the sets of C-valued points of a closed,

respectively a locally closed, subspace of |GrG,μ|. They are invariant under the action of
G(F ) on GrG,μ. Similarly, GrG,�μ(C)HN=[b′] is the set of C-valued points of a locally closed
subspace of |GrG,�μ|, and GrG,�μ(C)HN�[b′] is the set of C-valued points of a closed subspace
of |GrG,�μ|, and even of |GrG|.

(iii) HN : |GrG| → B(G)HN is lower semi-continuous.

Definition 4.3. Let GrHN�[b′]
G,μ denote the closed, locally spatial subdiamond of GrG,μ with

GrHN�[b′]
G,μ (C) = GrG,μ(C)HN�[b′]. It is called the closed Harder–Narasimhan stratum for [b′] in

GrG,μ.
Likewise, we define the Harder–Narasimhan stratum for [b′] to be the locally closed locally

spatial subdiamond GrHN=[b′]
G,μ ⊆ GrG,μ with GrHN=[b′]

G,μ (C) = GrG,μ(C)HN=[b′].
We also use corresponding notions for GrG,�μ instead of GrG,μ.

Proof of Theorem 4.2. For part (i) consider some x ∈ GrG(C) with HN(x) = [b′′] � [b′]. Let P
be the parabolic subgroup of G corresponding to the canonical reduction of (E , x), and let {λ}P
be such that x ∈ S{λ}P ,P (C). Then by [Vie21, Lemma 3.11(1)] the slope vector of the reduction
(E1,x)P is equal to [v(λ)] = [b′′] � [b′], which proves that the left hand side is contained in the
right hand side of (4.1). Conversely, let x ∈ S{λ}P ,P (C) for some P ⊂ G and some {λ}P . Then
the slope vector of the parabolic reduction (E1,x)P corresponding to EP

1 is (again by [Vie21,
Lemma 3.11(1)]) equal to [v(λ)] � [b′]. By the maximality of the Harder–Narasimhan vector,
this implies that HN(E , x) � [b′].

Part (iii) follows immediately from part (ii), so it remains to prove part (ii). For this, it
is enough to show that the intersection of GrG,�μ with the right hand side of (4.1) is closed in
GrG,�μ. Since S{λ}P ,P is a group orbit, its closure is a union of other S{λ′}P ,P for the same P . For
x ∈ S{λ}P ,P we have κM (prM (x)) = λ�M �P κM (b′) where a �P a′ for a, a′ ∈ π1(M)Γ if a− a′

is a non-negative linear combination of coroots for the unipotent radical of P . The condition
κM (prM (x)) � a for some fixed a being a closed condition, we see that also (λ′)�M �P κM (b′)
for all S{λ′}P ,P ⊆ S{λ}P ,P . In other words, [v(λ′)] � [b′] for these λ′. In particular, for P and {λ}
as on the right hand side of (4.1), S{λ}P ,P (C) ∩GrG,�μ(C) is contained in the right hand side.
Hence the intersection of GrG,�μ with the right hand side of (4.1) is a finite union of subspaces
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of the form ⋃
g∈G(F )

S{gλg−1}gPg−1 ,gPg−1(C) ∩GrG,�μ(C) (4.2)

for some fixed parabolic subgroup P of G and some fixed {λ}P with [v(λ)] � [b′]. It remains
to show that (4.2) is a closed subspace. Furthermore, it is enough to take the union over all
g ∈ (G/P )(F ).

By the same argument as in the proof of [DOR10, Proposition 8.2.1], one proves that
(G/P )(F ) is a compact subspace of G/P . Let x be a point in the closure of (4.2). Let
xn be a sequence of elements of (4.2) converging towards x and let gn ∈ (G/P )(F ) with
xn ∈ S{gnλg−1

n }
gnPg−1

n
,gnPg−1

n
(C) ∩GrG,�μ(C). Since (G/P )(F ) is compact, we may assume that

the sequence gn has a limit g. The sequence g−1
n xn converges to g−1x, and is contained in the

closed subspace S{λ}P ,P (C) ∩GrG,�μ(C). Hence x ∈ S{gλg−1}gPg−1 ,gPg−1(C) ∩GrG,�μ(C). �

Remark 4.4. Let [b′] ∈ B(G)HN. Let P , M and b′M be as in the definition of B(G)HN. Using the
same argument as at the beginning of the proof of Theorem 4.2, we also obtain that

GrG(C)HN=[b′] =
⋃

g∈G(F )/P (F )

⋃
{{λ}gPg−1 |[v(λ)]=[b′]}

S{λ}gPg−1 ,gPg−1(C)

where the first union is taken over all parabolic subgroups of G.

By definition, for any G and {μ}, the semi-stable Harder–Narasimhan stratum in GrG,μ

coincides with the weakly admissible locus Grwa
G,μ,1 in the sense of [Vie21, Definition 4.1]. Indeed,

if x is in the semi-stable Harder–Narasimhan stratum then HN(E1, x)(χ) = 0 for any parabolic
subgroup P and any character χ ∈ X∗(P/ZG). Moreover, if HN(E1, x)− v((E1,x)P ) is a non-
negative rational linear combination of positive absolute roots then for any P -dominant character
χ ∈ X∗(P/ZG), we have HN(E1, x)(χ)− v((E1,x)P )(χ) � 0 and hence v((E1,x)P ) is non-positive.

Furthermore, the theorem yields the following description of the complement of the weakly
admissible locus.

Corollary 4.5. Let b0 ∈ B(G, μ) be the basic element. Then

GrG,μ \Grwa
G,μ =

⋃
P⊆G

⋃
{{λ}P |[v(λ)]�[b0]}

S{λ}P ,P ∩GrG,μ.

Remark 4.6. In general, GrHN�[b′]
G,μ is not equal to the closure of GrHN=[b′]

G,μ . Indeed, let G = GL7,
let B be the Borel subgroup of upper triangular matrices and let T be the diagonal torus.
Let μ = (1, 1, 1, 1, 0, 0, 0) ∈ X∗(T )dom. Since μ is minuscule, we may use the Bialynicki-Birula
isomorphism BBμ (compare (5.1)) to identify GrG,μ with F�(G, μ)�, the diamond corresponding
to the flag variety for G and μ. Let [b′] ∈ B(G, μ) with Newton vector

(
2
3

(3)
, 1

2

(4)) and let [b′′] � [b′]
with Newton vector

(
1, 3

5

(5)
, 0

)
. Since G is split, both elements are in B(G)HN. Consider the

standard parabolic subgroup P corresponding to νb′′ and its standard Levi subgroup M , and let
λ0 = (−1, 0, 0,−1,−1,−1, 0) ∈ X∗(M). Then λ0 = w.(−μ)dom for some w ∈ S7 with �(w) = 6.
We have S{λ0}P ,P ∩GrG,μ ⊆ GrHN�[b′′]

G,μ . Let E1 be the trivial vector bundle of rank 7.
We claim that on an open and dense subset S′ of S{λ0}P ,P ∩GrG,μ, any sub-vector bundle

of E1,x corresponding to a sub-isocrystal of E1 of rank 3 has degree � 1. Indeed, BBμ(S{λ0}P ,P ∩
GrG,μ) is the diamond associated with the Bruhat cell of F�(G, μ) for w, an irreducible sub-
scheme of dimension 〈2ρ, μdom〉 − �(w) = 6. Let (F̆n, 1 · σ) be the isocrystal corresponding to E1,
and let N ′ be the sub-isocrystal generated by the first three standard basis vectors. Then the
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sub-vector bundle of E1,x corresponding to N ′ has degree � 2 if and only if x ∈ S{λ1}P ,P ∩GrG,μ

where λ1 = (−1,−1, 0,−1,−1, 0, 0). In the same way as for λ0, one sees that S{λ1}P ,P ∩GrG,μ

corresponds to a closed subscheme of F�(G, μ) of dimension 2. In particular, its intersection
with the scheme associated with BBμ(S{λ0}P ,P ∩GrG,μ) is a closed subscheme of the latter
which is of smaller dimension. The condition that any sub-vector bundle of E1,x correspond-
ing to a sub-isocrystal of E1 of rank 3 has degree � 1 is satisfied if and only if x is in the
complement of ⋃

g∈G(F )

S{λ1}P ,P ∩GrG,μ.

In the same way as in the proof of Theorem 4.2 we then see that its complement in S{λ0}P ,P ∩
GrG,μ is open and dense in the latter, which proves the claim.

On the other hand, GrHN=[b′]
G,μ ⊂ ⋃

P ′⊆G

⋃
{{λ}P ′ |[v(λ)]=[b′]} S{λ}P ′ ,P ′(C) ∩GrG,μ(C) where P ′

runs through the G(F )-orbit of the standard parabolic corresponding to νb′ . From the proof

of Theorem 4.2 we see that GrHN=[b′′]
G,μ ⊆ GrHN=[b′]

G,μ can only hold if for every x ∈ GrHN=[b′′]
G,μ (C)

there is a P ′ and λ as above such that x ∈ S{λ}P ′ ,P ′ ∩GrG,μ. Fix some such x and P ′. Then
P ′ corresponds to a sub-vector bundle of E1 of rank 3 which defines a filtration in C. Since
[v(λ)] = [b′], for every x′ ∈ S{λ}P ′ ,P ′ ∩GrG,μ, the corresponding sub-vector bundle of E1,x′ is of
degree 2. Thus the same holds for every x in the closure. In particular, every x ∈ S′ is not in the

closure of GrHN=[b′]
G,μ , but lies in GrHN=[b′′]

G,μ .

One can also explicitly construct points x ∈ GrHN=[b′′]
G,μ (C) that lie in the closure of GrHN=[b′]

G,μ .
Thus the closure of a Harder–Narasimhan stratum is in general not a union of strata.

A similar behavior is shown by the Harder–Narasimhan stratification of [DOR10]. However,
we could not find an example of this for minuscule μ (and therefore applicable to our theory) in
the literature.

5. Harder–Narasimhan-strata in flag varieties, and classical points

Let {μ} be a conjugacy class of cocharacters of GF , and let μ be a representative. Let F�(G, μ)
be the flag variety for G and {μ}. In [DOR10, 9.6], Dat, Orlik and Rapoport introduce a
Harder–Narasimhan stratification of F�(G, μ). Their semi-stable stratum coincides with the
weakly admissible locus or period domain of Rapoport and Zink.

By [SW20, Proposition 19.4.2] we have the natural Bialynicki-Birula map

BBμ : GrG,μ → F�(G, μ)� (5.1)

to the diamond associated with F�(G, μ). It is an isomorphism if μ is minuscule. On the
level of C-points, BBμ has the following simple description. Write x ∈ GrG,μ(C) as x =
gμ(ξ−1)G(B+

dR)/G(B+
dR) with g ∈ G(B+

dR). Let ḡ ∈ G(C) be the image of g under the natural
projection G(B+

dR)→ G(C). Then BBμ(x) is the image of ḡ in F�(G, μ).
We fix any section C → B+

dR(C) of the reduction modulo ξ, and thus consider G(C) as a
subset of G(B+

dR). Restricting to this subset, we obtain a natural bijection

BBμ : G(C)μ(ξ−1)G(B+
dR)/G(B+

dR) −→ F�(G, μ)(C). (5.2)

Theorem 5.1. Assume that:

(i) x ∈ G(C)μ(ξ)G(B+
dR)/G(B+

dR) for some section C → B+
dR(C); or

(ii) x ∈ GrG,μ(C) for some minuscule μ.
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Then the Harder–Narasimhan vector of (E1, x) equals the Harder–Narasimhan vector of
(D, BBμ(x)) à la [DOR10] where D is the isocrystal associated with 1 ∈ G(F̆ ). Furthermore,
the Harder–Narasimhan filtrations correspond to the same parabolic subgroup of G.

Proof. We use the Tannakian formalism. Thus, suppose first that G = GLn and that μ is not
necessary minuscule.

Let (E , x) be an object in C such that E = E1 is the trivial vector bundle of rank n and x has
a representative in GLn(C)μ(ξ−1). It corresponds to the filtered isocrystal (F̆n, IdF̆ n σ, BBμ(x))
where we view BBμ(x) as a filtration on F̆n. Each sub-isocrystal (V, IdV σ) of (F̆n, IdF̆ n σ)
gives rise to a sub-filtered isocrystal (V, IdV σ, BBμ(x) ∩ V ⊗F̆ C) of (F̆n, IdF̆ n σ, BBμ(x)) and
to a subobject (E , x) of (E , x). More precisely, E is the trivial sub-vector bundle of E of rank
dim F̆ V corresponding to the sub-isocrystal (V, IdV σ) of (F̆n, IdF̆ n σ). By Beauville–Laszlo’s
gluing theorem, Etri

B+
dR

� F̆n ⊗F̆ B+
dR and Etri

B+
dR
� V ⊗F̆ B+

dR. Then x is given by x · Etri
B+

dR
= V ⊗F̆

BdR ∩ x · (B+
dR)n.

By definition we have that rank(E , x) = rank(V, IdV σ, BBμ(x) ∩ V ⊗F̆ C) = dim F̆ V , that
deg(E , x) = −deg(x) and that deg(V, IdV σ, BBμ(x) ∩ V ⊗F̆ C) = deg(BBμ(x) ∩ V ⊗F̆ C). It
remains to show that

deg(x) = deg(BBμ(x) ∩ V ⊗F̆ C). (5.3)

Let P ⊂ G be the stabilizer of V , a parabolic subgroup of G. Because V is stable under σ,
the subgroup P is defined over F . Its Levi quotient is M = GL(V )×GL(F̆n/V ). We consider
a representative of x of the form gμ(ξ−1) with g ∈ GLn(C). Using the Bruhat decomposition
we can write g = p1wp2 with p1 ∈ P (C), p2 ∈ Pμ(C) and w ∈W , the Weyl group of G. Since
μ(ξ)p2μ(ξ−1) ∈ G(B+

dR), we can replace the representative of x by one of the form p1wμ(ξ−1),
or p1

wμ(ξ−1) ∈ S{wμ−1}M
. From this last description we see that x̄ is of the form m1(wμ(ξ−1))1

where m1 is the image of p1 in the first factor of M , and (wμ(ξ−1))1 is the corresponding
image of wμ(ξ−1). Its degree is the degree of (wμ(ξ−1))1. On the other hand we have BBμ(x) =
p1wPμ(C)/Pμ(C). Again we obtain that BBμ(x) ∩ V ⊗F̆ C is the filtration corresponding to
m1(wμ(ξ−1))1, hence the two degrees agree as claimed.

Therefore our Harder–Narasimhan filtration of (E , x) and the Harder–Narasimhan filtration
of (F̆n, IdF̆ n σ, BBμ(x)) à la [DOR10] are identified by the map BBμ.

The full subcategory of C with objects (E , x) where x ∈ G(C)μ(ξ−1) for some μ is stable
under tensor products and direct sums. Indeed, let (E , x) and (E ′, x′) be objects in C such
that x = Aμ(ξ−1), respectively x′ = Bμ′(ξ−1), where A ∈ GLn(C) respectively B ∈ GLn′(C).
Then x⊗ x′ is represented by the Kronecker product of matrices Aμ(ξ−1)⊗Bμ′(ξ−1) = (A⊗
B)(μ(ξ−1)⊗ μ′(ξ−1)). Similarly, (E , x)⊕ (E ′, x′) = (E ⊕ E ′, x⊕ x′) with x⊕ x′ ∈ GLn+n′(C) ·
(μ(ξ−1), μ′(ξ−1)).

Granted the above properties, we consider the case where G is any reductive group. Let E1 be
the trivial G-bundle and x ∈ G(C)μ(ξ−1). For every algebraic representation ρ : G 	−→ GLV ∈
RepF G, the element ρ(x) belongs to the subset GLV (C)ρ(μ)(ξ−1). Hence the corresponding
Harder–Narasimhan filtrations associated with (ρ(E1), ρ(x)) à la [DOR10] and by our setting
coincide. In other words, the Harder–Narasimhan filtrations of (E1, x) à la [DOR10] and by our
setting coincide. �
Remark 5.2. This theorem crucially uses its assumptions (i) or (ii) and is not true in general.
The key point is that under this assumption we can directly compare the Iwasawa decomposition
and the Bruhat decomposition of the given element gμ(ξ−1) to prove (5.3). For non-minuscule
μ, even the weakly admissible locus in GrG,μ (i.e. the semi-stable or basic Harder–Narasimhan
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stratum) does not coincide with the inverse image under BBμ of the weakly admissible locus in
F�(G, μ) as in [DOR10]. An explicit example for this is given in [Vie21, Example 4.10].

We apply this to study classical points of GrG,μ, which are defined analogously to the usual
notion of classical points on flag varieties.

Definition 5.3. A classical point of GrG is a K-valued point for some finite extension K of F̆ .

Remark 5.4. Classical points are a particular case of the points we consider in Theorem 5.1.
Indeed, let K be a finite extension of F̆ . Then the K-valued points of GrG are C-valued points
(for some algebraically closed complete extension of K) that are invariant under Gal(C|K).
Thus each such point has a representative in G(K)μ(ξ)−1 for some choice of a Galois-equivariant
section K → B+

dR(K). Notice that any such section identifies K with B+
dR(C)Gal(C|K) ∼= K.

Recall from (5.2) that for all μ, the Bialynicki-Birula map induces a bijection

G(K)μ(ξ−1)G(B+
dR(K))/G(B+

dR(K))→ F�(G, μ)(K).

We now prove a generalization of [Vie21, Theorem 5.2], where a similar comparison was
shown for basic [b′].

Proposition 5.5. Let x be a classical point of GrG,μ. Then for [b′] ∈ B(G, μ) the following are
equivalent:

(i) x ∈ Gr[b
′]∗

G,μ ;

(ii) x ∈ GrHN=[b′]
G,μ ;

(iii) the Harder–Narasimhan vector of BBμ(x) ∈ F�(G, μ) in the sense of [DOR10] is equal to νb′ .

Proof. We first prove equivalence of (i) and (ii). We consider the canonical reduction (E1,x)P of
(E1, x) where P denotes the associated parabolic subgroup of G. Let [b′] := HN(E1, x) ∈ B(G, μ).
Then we have to show that E1,x

∼= E[b′]∗ .
Let M be a Levi subgroup of P , and let b′ be a representative of [b′] in M such that P is the

parabolic subgroup associated with the Newton point of b′. Using the same argument as in
the proof of (5.3), we obtain a representative of x of the form pμ(ξ−1) with p ∈ P (K). Let m be the
image of p in M(K). By [Vie21, Lemma 3.10] we have (E1,x)P ×P M = ((EP

1 )×P M)m = EM
1,m.

Isoc-filtrations of (E1,x)P ×P M (to parabolic subgroups of M) induce isoc-filtrations of E1,x

to corresponding parabolic subgroups of G contained in P . From the maximality of HN(E1, x)
we obtain that (EM

1 , m) is semi-stable (i.e. weakly admissible). By [Vie21, Theorem 5.2], it
is also admissible. In other words, (E1,x)P ×P M ∼= EM

[b′]∗ . The slope vector (in the sense of
Fargues–Fontaine) of (E1,x)P ×P M equals HN(E , x) and thus is dominant with respect to P .
By [Che19, Corollary 2.9, Theorem 2.7] this implies that (E1,x)P ×P M is a reduction of E1,x to
M , that is E1,x

∼= EG
[b′]∗ .

The equivalence of (ii) and (iii) follows from Theorem 5.1. �

As an application we can determine the non-emptiness pattern for Harder–Narasimhan strata
in the sense of [DOR10], for the case that b = 1.

Proposition 5.6. Let {μ} be a conjugacy class of not necessary minuscule cocharacters of GF .
Then the Harder–Narasimhan stratum for some Harder–Narasimhan vector ν in F�(G, μ, 1) in
the sense of [DOR10] is non-empty if and only if ν = νb′ for some [b′] ∈ B(G, μ) satisfying the
following condition. There is a parabolic subgroup P of G with a Levi subgroup M such that
[b′] has a representative b′M in M that is basic in M , and such that P is the parabolic subgroup
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associated with νb′M . Furthermore, there is a λ ∈ X∗(P ) in the conjugacy class of −μ and such

that κM (b′M ) = λ�M ∈ π1(M)Γ.

Remark 5.7. (i) In [Orl06], Orlik gave an analogous non-emptiness criterion for Harder–
Narasimhan strata in the sense of [DOR10] for G = GLn, and arbitrary b.

(ii) For minuscule μ, Theorem 5.1 implies that B(G, μ)HN consists of those [b′] that satisfy
the condition of Proposition 5.5. We expect that for non-minuscule μ, and already for G = GLn,
the set of non-empty Harder–Narasimhan strata in GrG,μ in our sense strictly contains the one
for F�(G, μ) in the sense of [DOR10].

Proof. Let C = F̂ and consider the embedding C → B+
dR induced by the inclusion k ↪→ C�,◦

where k is the residue field of C. Then we have a bijection

G(C)μ(ξ−1)G(B+
dR)/G(B+

dR) � F�(G, μ)(C)

and from the proof of (5.3) we see that for every parabolic subgroup P of G we have

G(C)μ(ξ−1)G(B+
dR)/G(B+

dR) ⊂
∐

{λ}P :λ∈{−μ}G

S{λ}P ,P .

Thus the necessity of the claimed condition follows from Proposition 3.13 and Theorem 5.1.
By [DOR10, 9.5.10], the semi-stable stratum in F�(M,−λ, 1) is non-empty and open, and

also has classical points. Let x ∈M(K)λ(ξ)M(B+
dR)/M(B+

dR) be the image of such a point, for
some finite extension K of F̆ . Then by Proposition 5.5, x is in the basic Newton stratum, which
by κM (b′M ) = λ�M is the Newton stratum for [b′M ]∗M

M . Its image in GrG is a classical point xG

of GrG. By definition of xG, the modified bundle E1,xG has a reduction E1,xG,P to P such that
the associated slope vector νb′M is P -dominant and central in M . Further, E1,xG,P ×P M = EM

1,x

is semi-stable. Thus it is a reduction of E1,xG , which implies that xG is a classical point in the
Newton stratum for [b′]∗. Again by Proposition 5.5 this shows that BBμ(xG) is in the claimed
Harder–Narasimhan stratum. �

6. Newton strata and the Hodge–Newton decomposition

Lemma 6.1. Let E be the trivial G-bundle on X and let x ∈ GrG,μ(C). Then

HN(E , x) � Newt(Ex)∗. (6.1)

In particular, for any [b′] ∈ B(G,−μ), we have the two containments

Gr[b
′]

G,μ ⊆
⋃

[b′′]∗�[b′]

GrHN=[b′′]
G,μ , (6.2)

GrHN=[b′]
G,μ ⊆

⋃
[b′′]∗�[b′]

Gr[b
′′]

G,μ. (6.3)

Proof. Recall that Newt(Ex) is defined via a different Harder–Narasimhan formalism, this
time corresponding to all parabolic reductions of E1,x (not necessarily corresponding to an
isoc-filtration of E1), but for the same slope function. Thus the comparison theorem for this
other Harder–Narasimhan theory implies (6.1), and the other two assertions are an immediate
consequence. �

However, Newton strata and Harder–Narasimhan strata are in general far from being equal.
For minuscule μ, a description of the set of all Newton strata in GrG,μ containing points that
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are semi-stable in the sense of our present Harder–Narasimhan formalism is given by [Vie21,
Theorem 1.3].

The following is an example of a non-basic Newton stratum in some GrG,μ that is completely
contained in the weakly admissible locus (i.e. in the basic or semi-stable Harder–Narasimhan
stratum). This disproves an expectation expressed in [Far19, 9.7.2(2)].

Example 6.2. Let G0 = GL5, and [b] ∈ B(G0) superbasic of slope 2/5. Let G = Gb be the inner
form of G0 corresponding to b. Then G does not have any proper parabolic subgroups. Thus the
only non-empty Harder–Narasimhan stratum in any GrG,μ is the weakly admissible locus, which
then coincides with GrG,μ. However, there are in general many non-empty Newton strata. For
example consider the minuscule cocharacter μ = (1, 1, 0, 0, 0). Then B(G,−μ) = {[b]∗, [b′]} where
[b′] corresponds to the element of B(GL5) with Newton slopes −1

3 and −1
2 with multiplicities

3 and 2, respectively. Thus Gr[b
′]

G,μ,1 is a non-basic and non-empty Newton stratum contained in
the weakly admissible locus.

More generally, let G be a reductive group over F , let {μ} be a conjugacy class of cocharacters,
and let [b′] ∈ B(G,−μ). Assume that there is no non-basic [b′′] ∈ B(G, μ)HN with [b′′]∗ � [b′].
Then by (6.1), we obtain that Gr[b

′]
G,μ,1 is contained in the weakly admissible locus.

Example 6.3. Let us give an example illustrating that the condition in the previous example
is, however, not necessary for Gr[b

′]
G,μ,1 to be contained in the weakly admissible locus. We use

the compatibilities with inner twists explained in § 8. Let G0 = GL14, and let [b] ∈ B(G) such
that Eb = O(5

7)⊕O(5
7) where O(λ) is the stable vector bundle of slope λ. Let G = Gb be the

inner form of G0 corresponding to b. Then the strict parabolic subgroups of G are all in one
G(F )-orbit, and the associated Levi quotient is the corresponding inner form of GL7 ×GL7.

Let μ = (1(4), 0(10)). We consider the weakly admissible locus Grwa
G,μ,1. Let [b′1], [b′2] ∈ B(Gb)

such that Eb′1 and Eb′2 are the Gb-bundles corresponding to the GL14-bundles O(3
2)2 ⊕O(4

5)2

and O(8
7)⊕O(6

7) via the inner twist. Then [b′1] > [b′2] and Gr[b
′
2]

G,μ,1 is not totally contained in the
weakly admissible locus (for example, one can construct a classical point in this Newton stratum,
which then has Harder–Narasimhan vector −νb′2). We claim that Gr[b

′
1]

G,μ,1 ⊂ Grwa
G,μ,1.

Suppose that there exists an x ∈ Gr[b
′
1]

G,μ,1(C) \Grwa
G,μ,1(C). Using the inner twist between G

and GL14 we obtain the following. Let P denote the standard parabolic subgroup of GL14 whose
standard Levi factor M is GL7 ×GL7. Let [b1] = [b′1b] ∈ B(GL14) be the class corresponding to
O(3

2)2 ⊕O(4
5)2. Then there is a reduction of b to P (Q̆p) such that the corresponding reduction

of Eb′1 is violating the semi-stability condition.
We know that (Eb)P ×P M � O(5

7)×O(5
7) and (Eb′1)P ×P M � O(5

7)x1 ×O(5
7)x2 for some

xi ∈ GrGL7,μi(C) where μi = (1(ni), 0(7−ni)) with n1 + n2 = 4. Since the reduction contradicts
weak admissibility, we have n1 > 2. Since O(5

7)x1 is a sub-vector bundle of Eb1 , the biggest slope
of O(5

7)x1 is equal or smaller than 3
2 . Moreover, the comparison between the Harder–Narasimhan

vector and the Newton polygon implies that n1 < 4, hence n1 = 3 and n2 = 1.
Since O(5

7)x1 can not contain O(3
2)2, by [Che19, Corollary 2.9], the biggest slope of O(5

7)x2

is not smaller than 3
2 . However, this is not true since μ2 = (1(1), 0(6)).

In the remainder of this section we consider the exceptional cases where certain Harder–
Narasimhan strata and Newton strata coincide. This is closely related to the concept of
Hodge–Newton decomposability, which we recall from [Vie21, 7.1] and reformulate for our con-
text. The signs we use here differ from those in [Vie21] since our [b′] is such that νb′ plays the
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role of a Harder–Narasimhan vector (either for our theory or the one of Fargues and Fontaine)
whereas in [Vie21], νb′ is a Newton vector of a G-bundle.

To define the notion of Hodge–Newton decomposability, recall that the choice of an inner
twisting between G and a quasi-split inner form H allows to identify the Newton chamber of
G and H, where the Newton chamber is the set of Galois-invariant G(F )-conjugacy classes of
homomorphisms DF → GF . Applying this to both νb′ and μ� (where μ� is the Galois average of μ),
a triple (G, [b′], μ) with [b′] ∈ B(G, μ) is called Hodge–Newton decomposable if there is a proper
standard Levi subgroup M ′ of H that contains the centralizer of the dominant Newton point
νb′ of [b′] and such that νb′,dom �M ′ (μ�)dom, i.e. (μ�)dom − (νb′)dom is a non-negative rational
linear combination of positive coroots of M ′. If (G, μ) is fixed, then we also say that [b′] is
Hodge–Newton decomposable.

Let M be a Levi subgroup of (a parabolic subgroup of) G. From the Iwasawa decomposition
we obtain a map

prM : GrG(C)→ GrM (C)

mapping x ∈ GrG(C) to the unique element xM with x ∈ U(BdR)xM where U(BdR) is the
unipotent radical of P . If x ∈ S{λ}P ,P for some cocharacter λ of P , then xM ∈ GrM,λM

where
λM ∈ X∗(M) is a representative of the conjugacy class {λ}P .

The following theorem is a variant of the Hodge–Newton decomposition, stated in terms of
Harder–Narasimhan vectors, and generalized to not necessarily quasi-split groups.

Theorem 6.4. Let (G, [b′], μ) be Hodge–Newton decomposable with respect to some M ′.

(i) There is a parabolic subgroup P of G with a Levi subgroup M both defined over F and
such that M is an inner form of M ′. Further, there are representatives b′M and μM of [b′]
and {μ} such that conjugation by μM on the unipotent radical of P has only non-negative
weights and such that [b′M ] ∈ B(M, μM ). Then the M -dominant Newton point of b′M is also
P -dominant and P -regular, i.e. conjugation by νbM

on the unipotent radical of P has only
positive weights.

(ii) Let x ∈ Gr[b
′]∗

G,μ,1(C). Let EP
1,x be the reduction of E1,x corresponding to b′M ∈M . Then we

have the following.
(a) EM

1,xM
is a reduction of E1,x to M , and Newt(EM

1,xM
) = [b′M ]∗M .

(b) Let EP
1 be the reduction to P of E1 that corresponds to EP

1,x. Then EP
1 ×P M is a

reduction of E1 to M . In particular, HN(E1, x) �M [b′].
(c) Choose P within its G(F )-conjugacy class in such a way that EP

1 as in (b) is the natural
reduction to P of the trivial G-bundle E1. Then x ∈ S{μ−1

M },P (C). Let xM = prM (x).

Then xM ∈ Gr[b
′
M ]∗M

M,μM ,1.

(d) HN(E1, x) is the image of HN(EM
1 , xM ) ∈ B(M, μM )HN in B(G, μ).

(e) pr−1
M ({xM}) ∩GrG,μ,1 = {x}.

Proof. Replacing G by Gad we may assume that G is adjoint. Let b ∈ G(F̆ ) be a basic element
such that the associated inner form H = Gb is quasi-split. Let [b̃′] ∈ B(H) be the image of [b′]
under the induced isomorphism B(G) ∼= B(H). We choose a Borel subgroup and a maximal torus
H ⊇ B ⊇ T . Let M̃ be the standard Levi subgroup of H from the definition of Hodge–Newton
decomposability. It contains the centralizer of the dominant Newton point of [b̃′], and is stable
under the Frobenius σ. Let b̃′ ∈ M̃(F̆ ) ∩ [b̃′] be such that its M̃ -dominant Newton point νb̃′ is

dominant. Let b̃ ∈ M̃(F̆ ) with κM̃ (b̃) = κM̃ (b̃′)− μ
�M̃
dom and such that [b̃]M̃ ∈ B(M̃) is basic. We

claim that [b̃]H corresponds to [1]G under the isomorphism B(G) ∼= B(H). Let [b0]H ∈ B(H) be
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the image of [1]G. We have κG(b′) = μ�G and hence κH(b̃) = κH(b̃′)− μ�H = κH(b0). Further,

ν
�M̃

b̃
= ν

�M̃

b̃′
− μ

�M̃
dom = ν

�M̃

b̃′
− ν

�M̃
b′,dom = −ν

�M̃
b = ν

�M̃
b0

.

Since both νb̃ and νb0 are central in M̃ , they agree. Thus also [b̃]H = [b0]H .
Let G′ = Hb0 . Since M̃ and the corresponding parabolic subgroup P̃ = M̃B are stable under

b0 and under σ, the group G′ has a parabolic subgroup and Levi subgroup P ′ = P̃b0 ⊇M ′ = M̃b0

defined over F . Furthermore, the class in B(G′) corresponding to [b̃′]H has a representative in
M ′ with analogous properties as in (i). Using that G′ = Gbb0

∼= G, we also obtain (i) for G.
Now we prove (ii). Assertion (a) follows from the corresponding properties of the canonical

reduction. Let EP
1 be the reduction to P of E1 that corresponds to EP

1,x and let v be the slope vector
of EP

1 . Since E1 is semi-stable, we have v � 0 where 0 denotes the trivial slope vector. Let {μ̃}M
be such that prM (x) ∈ GrM,μ̃. Since x ∈ GrG,μ we have μ̃dom � μdom. By [Vie21, Lemma 3.10]
we have for the slope vector v′ of E1,x that

(v′)�M = κM (b′M ) = v�M + μ̃�M � 0 + μ�M
M = ν�M

b′ = (v′)�M . (6.4)

Thus equality holds at each step. This implies that v�M = 0. Hence EP
1 ×P M is the trivial

M -bundle, and a reduction of EG
1 to M . In particular, the reduction EP

1,x also corresponds
to a reduction of (E1, x) to P , hence HN(E1, x)�M � ν�M

b′ . Comparison with the Newton point of
E1,x also shows HN(E1, x)�M � ν�M

b′ , hence the last assertion of (b).
For quasi-split groups, assertion (c) is shown in [Vie21, Proposition 7.8]. The general case

is shown analogously, using the existence of M and P we proved above. A main ingredient of
this proof and our proof of assertion (e) below is [Vie21, Lemma 7.9]. Since for this lemma,
the reformulation in the non-quasi-split case is not obvious, we prove its generalization to our
context as Lemma 6.5 below.

Let Px be the parabolic subgroup of G corresponding to the canonical reduction of (E1, x),
and let P0 ⊇ Px be such that P0 is conjugate to P . Let M0 be its Levi quotient. For assertion (d)
we have to show that EP0

1,x = EP
1,x as reductions of E1,x. The reduction EP0

1,x has a slope vector v0

whose image in π1(M0)Γ corresponds to κM (HN(E1, x)) = κM (b′M ). Since P0 and P are conjugate,
the proof of (i) shows that there is a b ∈ P0(F̆ ) such that [b] ∈ B(G) is basic and such that Gb

is quasi-split. Let ẼP0,b
be the P0,b-bundle corresponding to EP0

1,x, a reduction of the Gb-bundle Ẽ
corresponding to E1,x. The above condition on v0 then translates into the condition that ẼP0,b

satisfies the assumption of Theorem A.5. Since M contains the centralizer of νb′ , the Theorem
implies that ẼP0,b

is a coarsening of the canonical reduction of Ẽ, and as such uniquely defined by
its slope vector. Twisting back via b−1, we obtain that EP0

1,x indeed agrees with EP
1,x as reductions

of E1,x, which proves assertion (d).
Assertion (e) follows from Lemma 6.5. �

Lemma 6.5. Let P ⊆ G be a parabolic subgroup of G and let M be a Levi factor. Let μ ∈ X∗(M)
be P -dominant. Let U be the unipotent radical of P . Let λ ∈ X∗(M) with λ�M = μ�M ∈ π1(M)Γ.
Then

S{λ}P ,P (C) ∩GrG,μ(C) ⊆M(B+
dR)μ(ξ)G(B+

dR)/G(B+
dR).

This lemma and its proof are a generalization of corresponding results for unramified groups
in [Kot03].

Proof. The left hand side is empty unless λdom � μdom, so we assume this.

Claim. We have λ�M = μ�M ∈ π1(M), without taking coinvariants.
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We compute the fundamental groups with respect to a maximal torus of MF and a Borel
subgroup B ⊆ PF . Let π1(G, M) be the kernel of the natural projection π1(M)→ π1(G). In
other words, we have a short exact sequence

0→ π1(G, M)→ π1(M)→ π1(G)→ 0.

Taking coinvariants, we get an exact sequence

π1(G, M)Γ → π1(M)Γ → π1(G)Γ → 0.

The group π1(G, M) is a free abelian group generated by the images in π1(M) of the simple
roots of T in U . Since P , M and U are Γ-invariant, π1(G, M)Γ is a free abelian group generated
by the set of Γ-orbits on the above set of generators of π1(G, M), which are permuted under the
action of Γ. Thus π1(G, M)Γ is torsion-free, and maps injectively to π1(M)Γ.

From λdom � μdom and the fact that μ is P -dominant, we obtain that (μ− λ)�M ∈ π1(M) is
the image of a non-negative linear combination of positive coroots. In particular, it lies in the
subgroup π1(G, M). We consider its image in π1(G, M)Γ. Any non-negative linear combination
of positive coroots in U is mapped to a similar linear combination in π1(G, M)Γ, and the image
of (μ− λ)�M vanishes if and only if (μ− λ)�M itself is 0 in π1(G, M). We assumed that (μ− λ)�M

is mapped to 0 under π1(G, M)Γ ↪→ π1(M)Γ. Hence (μ− λ)�M = 0 in π1(M). This finishes the
proof of the claim.

The remainder of the assertion not involving a Galois action, we may base change to F , and
apply [Kot03, Lemma 2.2] and its proof to conclude as in the case for split groups. �

From the theorem we obtain that the inclusion M ↪→ G induces natural maps

Gr[b
′]∗M

M,μM
(C)→ Gr[b

′]∗
G,μ (C)

and, for [b′′]M = HN(EM
1 , xM ),

GrHN=[b′′]M
M,μM

(C)→ GrHN=[b′′]G
G,μ (C)

that are bijections, and that are sections of the corresponding restrictions of prM .

Corollary 6.6. Let x ∈ GrG,μ(C). Then Newt(E1,x)∗ ∈ B(G, μ) is Hodge–Newton decompos-
able for some Levi M ′ if and only if HN(E1, x) ∈ B(G, μ) is Hodge–Newton decomposable
for M ′.

Proof. Assume that HN(E1, x) ∈ B(G, μ) is Hodge–Newton decomposable for M ′. Then
HN(E1, x) � Newt(E1,x)∗ � [μ(ξ)] where the Newton point of μ(ξ) is μ�. In other words,
μ� −HN(E1, x) is a non-negative rational linear combination of positive coroots of M ′. We have
a decomposition of μ� −HN(E1, x) into a sum of μ� −Newt(E1,x)∗ and Newt(E1,x)∗ −HN(E1, x),
both of which are non-negative rational linear combinations of positive coroots of G. Thus both
summands are non-negative rational linear combinations of positive coroots of M ′, which implies
that Newt(E1,x)∗ is also Hodge–Newton decomposable for M ′. The other direction follows from
Theorem 6.4(ii)(b). �

The following Corollary is a generalization of [Far19, Conjecture 1(2)].

Corollary 6.7. Let [b′] ∈ B(G, μ) be Hodge–Newton decomposable with respect to the Levi
subgroup M ′ that is the centralizer of νb′ in the quasi-split inner form of G. Then

Gr[b
′]∗

G,μ ⊆ GrHN=[b′]
G,μ . (6.5)

For the maximal element [μ(ξ)] of B(G, μ), we have equality in (6.5).
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Proof. Let x ∈ Gr[b
′]∗

G,μ (C). From the theorem we obtain a parabolic subgroup P with Levi sub-
group M such that M is an inner form of M ′ and xM = prM (x) such that both HN(E1, x) and the
Newton point of E1,x can be computed from the corresponding invariants for (EM

1 , xM ). Because
M ′ is the centralizer of the Newton point of [b′], we obtain that EM

1,xM
is semi-stable, or in other

words in the basic Newton stratum. Then by (6.1) together with minimality of the basic Newton
point we obtain that HN(EM

1 , xM ) = [b′M ], which finishes the proof of (6.5).
Now let [b′] be maximal in B(G, μ). Then [b′] = [μ(ξ)] clearly satisfies the assumption of the

first assertion of the corollary. It remains to show that the reverse containment in (6.5) also holds
for this [b′]. But this follows immediately from (6.3) together with the maximality of [b′]. �

Our next result proves [Far19, Conjecture 1(1)].

Proposition 6.8. The following are equivalent.

(i) The Newton stratification and the Harder–Narasimhan stratification on GrG,μ,1 coincide.
(ii) The basic Newton stratum in GrG,μ,1 agrees with the weakly admissible locus.
(iii) (G, μ) is fully Hodge–Newton decomposable in the sense of [GHN19, Definition 3.1].

There are several characterizations of being fully Hodge–Newton decomposable. For exam-
ple, (G, μ) is fully Hodge–Newton decomposable if and only if every non-basic [b′] ∈ B(G, μ) is
Hodge–Newton decomposable.

Proof. Clearly (i) implies (ii). The proof that (ii) implies (iii) is almost literally the same as
in the minuscule case, compare [CFS21, 6], the only difference being that one has to replace the
flag varieties by affine Schubert cells in the B+

dR-Grassmannian. For more details, compare
[She19, 6.7].

It remains to show that (iii) implies (ii).

Claim. If (G, μ) is fully Hodge–Newton decomposable, then every non-basic [b′] ∈ B(G, μ) is
Hodge–Newton decomposable with respect to M ′ where M ′ is equal to the centralizer of νb′ in
the quasi-split inner form H of G.

Since the claim is an assertion only involving the Newton points of elements of B(G, μ),
we may replace G by the quasi-split inner form of its adjoint group and thus assume that
G is quasi-split. Assume that there is some [b′] ∈ B(G, μ) that does not satisfy the assertion
of the claim. Let M ′ be the centralizer of the dominant Newton point of [b′] and choose a
corresponding representative b′ ∈M ′(F̆ ) ∩ [b′]. Then μdom − νb′ /∈ ΦM ′ . Let α be a simple root
of G such that μdom − νb′ /∈ ΦMα where Mα is the standard Levi subgroup of the maximal
standard parabolic corresponding to α. Then κMα(b′) �= μ�Mα . Let b0 be basic in Mα and with
κMα(b0) = κMα(b′). Then [b0] � [b′], hence b0 ∈ B(G, μ). Furthermore, Mα is the centralizer of
νb0 . Because κMα(b0) �= μ�Mα and Mα is maximal, it is not Hodge–Newton decomposable. Thus
(G, μ) is not fully Hodge–Newton decomposable, which finishes the proof of the claim.

From Corollary 6.7 we obtain that Gr[b
′]∗

G,μ,1 ⊆ GrHN=[b′]
G,μ for all [b′] ∈ B(G, μ). Thus we also

have equality in these containments. �
Our last result in this context classifies all [b′] for which the corresponding Newton stratum

and Harder–Narasimhan stratum coincide.

Remark 6.9. Let x ∈ GrG,μ(C). Recall from Corollary 6.6 that (Newt(E1,x))∗ is Hodge–Newton
decomposable for some M ′ (with respect to (G, μ)) if and only if the same holds for HN(E1, x).
Let M ′ be the smallest Levi subgroup of the quasi-split inner form of G for which this is the case,
and let M and xM be as in Theorem 6.4. Then by the theorem, (Newt(E1,x))∗ = HN(E1, x) if
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and only if Newt(EM
1,xM

)∗ = HN(EM
1 , xM ). Thus, it is enough consider equality of Newton strata

and Harder–Narasimhan strata for Hodge–Newton indecomposable [b′].

Corollary 6.10. Let [b′] ∈ B(G, μ). Assume that ([b′], μ) is Hodge–Newton indecomposable

and that μ is minuscule. Then Gr[b
′]∗

G,μ = GrHN=[b′]
G,μ if and only if (G, μ) is fully Hodge–Newton

decomposable and [b′] ∈ B(G, μ) is the basic class.

Proof. If (G, μ) is fully Hodge–Newton decomposable and [b′] ∈ B(G, μ) is the basic class, then
Gr[b

′]∗
G,μ = GrHN=[b′]

G,μ by Proposition 6.8. Assume that (G, μ) is not fully Hodge–Newton decom-
posable. Then by [Vie21, Theorem 1.3], every Hodge–Newton indecomposable Newton stratum
intersects the basic Harder–Narasimhan stratum, which proves the other implication. �

7. Dimensions of strata

For this section we assume that μ is minuscule. For this case, we have the comparison to the
Harder–Narasimhan strata of [DOR10]. Since little is known about the geometric properties
of the Harder–Narasimhan strata of [DOR10], our results also give new insight for this more
classical theory.

Proposition 7.1. Assume that μ is minuscule, and let [b′] ∈ B(G, μ)HN. Then

dimF�(G, μ)HN=[b′] � max
λ∈Θ(μ,[b′])

〈2ρ, μ + λ〉.

Here, we identify λ with its Mb′-dominant representative in X∗(T ) and μ is the representative
in X∗(T )dom. Further, ρ is the half-sum of the positive roots of T in H.

Proof. From Remark 4.4 we obtain that

dimF�(G, μ)HN=[b′] = dim GrHN=[b′]
G,μ � max

g,λ
dim S{λ}gPg−1 ,gPg−1 ∩GrG,μ.

Since μ is minuscule, λ ∈ {−μ}. To compute the dimension of the right hand side we may base
change to F . The above claim is then obtained from the well-known formulas for the dimension
of Bruhat cells in flag varieties. �
Remark 7.2. (i) So far, there is no formula for the dimension of intersections Sλ ∩GrG,μ in the
B+

dR-Grassmannian. For the usual affine Grassmannian over C, the analogous intersections (for P
equal to a chosen Borel subgroup of G and μ the dominant representative of {μ}) are of dimension
〈2ρ, μ + λ〉. In view of this formula, we expect that if one can establish a similar dimension theory
for the B+

dR-Grassmannian, then also dim GrHN=[b′]
G,μ � maxλ∈Θ(μ,[b′])〈2ρ, μ + λ〉.

(ii) It would be interesting to know it equality holds in the above dimension estimate.

In [Far19, Conjecture 2(2)], Fargues conjectured that the dimension of a Harder–Narasimhan
stratum should agree with the dimension of the corresponding Newton stratum, which is by
[FS21, IV.1] given by 〈2ρ, μ− νb′〉. Our next result is a classification of all [b′] ∈ B(G, μ)HN for
which this is the case. In particular, we show that Fargues’ conjectural dimension formula only
holds in exceptional cases.

Proposition 7.3. Let μ be minuscule and [b′] ∈ B(G, μ)HN. Then

dimF�(G, μ)[b
′]∗ � dimF�(G, μ)HN=[b′]

with equality if and only if [b′] is basic in the smallest Levi subgroup to which (G, μ, [b′]) is
Hodge–Newton decomposable.
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Proof. Let M be the smallest standard Levi subgroup of G such that (G, μ, [b′]) is Hodge–Newton
decomposable with respect to M . By Remark 6.9, Theorem 6.4 and the Bialynicki-Birula
isomorphism, the projection F�(G, μ)→ F�(M, μ) induces bijections F�(G, μ)[b

′]∗(C)→
F�(M, μ)[b

′
M ]∗M (C) and F�(G, μ)HN=[b′](C)→ F�(M, μ)HN=[b′M ]M (C). In particular, the dimen-

sions of corresponding strata coincide. Thus we may assume that M = G and that (G, μ, [b′]) is
Hodge–Newton indecomposable.

If [b′] is basic, then F�(G, μ)[b
′]∗ ⊆ F�(G, μ)HN=[b′] ⊆ F�(G, μ). Since the dimension of

the basic Newton stratum agrees with that of F�(G, μ), the same holds for the basic
Harder–Narasimhan stratum.

Now assume that [b′] is non-basic. Let M be the centralizer of its Newton point. From
[FS21, III.5] we obtain that dimF�(G, μ)[b

′]∗ = 〈2ρ, μ− ν[b′]∗,dom〉 = 〈2ρ, μ− νb′,dom〉 where we
write μ for the representative of {μ} in X∗(T )dom. By the above proposition we have
dimF�(G, μ)HN=[b′] � 〈ρ, μ + λ〉 for some λ ∈ {−μ} with −λ �M νb′ and κM (b′) = −λ�M . Using
that νb′ is central in M we obtain

dimF�(G, μ)[b
′]∗ − dimF�(G, μ)HN=[b′] � 〈2ρ, μ− νb′〉 − 〈ρ, μ + λ〉

= 〈ρ, μ− νb′〉 − 〈ρ, λ + νb′〉
= 〈ρ, μ− νb′〉 − 〈ρM , λ + νb′〉
= 〈ρ, μ− νb′〉 − 〈ρM ,−w0,M (λ)− νb′〉
= 〈ρ, μ− νb′〉 − 〈ρ,−w0,M (λ)− νb′〉
= 〈ρ, μ− w0,M (−λ)〉.

Since −λ ∈W.μ, this pairing is non-negative with equality if and only if w0,M (−λ) = μ.
However, this implies that κM (b′) = −λ�M = μ�M , in contradiction to the Hodge–Newton
indecomposability of (G, μ, [b′]). �

8. Compatibilities under inner twists

In this section we explain how to generalize our results to the case of modifications of a
G-bundle Eb for some basic b ∈ G(F̆ ) instead of the trivial bundle E1, and discuss the relation
to inner twists of G.

Recall from Lemma 3.16 that there is a direct comparison between the Harder–Narasimhan
stratification of the B+

dR-Grassmannian for G and that for Gad. Replacing G by its adjoint
group we obtain that each inner form of G is an inner twist by some basic element
b ∈ G(F̆ ).

Let b ∈ G(F̆ ) be basic. By Gb we denote corresponding the inner form of G. We consider
the isomorphism BunG

∼= BunGb
that maps any G-bundle E to the Gb-bundle of isomorphisms

IsomG(Eb, E). Here, Eb is the G-bundle corresponding to b. In particular, this identifies Eb =
EG

b with the trivial Gb-bundle EGb
1 . For an explicit description in terms of B(G), see also

[Vie21, 3.2.2].
We consider the natural isomorphism ϕ : GrG,F̆ → GrGb,F̆

induced by the identity map GF̆ →
Gb,F̆ . It is compatible with Beauville–Laszlo uniformization in the sense that for x ∈ GrG(C) we

have that (EG
b )x is the G-bundle corresponding to (EGb

1 )ϕ(x). In particular, ϕ identifies corre-

sponding Newton strata Gr[b
′]

G,μ,b and Gr[b
′b−1]

Gb,μ,1. Here, a Newton stratum Gr[b
′b−1]

Gb,μ,1 or Gr[b
′]

G,μ,b is
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non-empty if and only if [b′b−1] ∈ B(Gb,−μ). This motivates the notation

B(G, μ, b) = {[b′] ∈ B(G) | [b′b−1] ∈ B(Gb,−μ)}
= {[b′] ∈ B(G) | κG(b′) = κG(b)− μ�G , νb′ � νb(μ−1,�)dom}

where μ−1,� is the Galois average of μ−1.
Furthermore, the isomorphism GF̆ → Gb,F̆ identifies parabolic subgroups of Gb (defined

over F ) with parabolic subgroups of GF̆ that are stable under bσ. We want to use these identi-
fications to extend our definition of the Harder–Narasimhan formalism also to modifications of
basic (but not necessarily trivial) G-bundles for general G.

Before that, we need to check compatibility with the Harder–Narasimhan formalism for any
basic b and G = GLn that we established in § 2.2.

Lemma 8.1. Let G = GLn and let b ∈ G(F̆ ) be basic. Then the equivalence between vector
bundles of rank n and Gb-bundles, together with its analog for vector bundles of rank n with a
filtration in C respectively Pb-bundles (for parabolic subgroups Pb of Gb) identifies the canonical
filtration of (EG

b , x) in the sense of § 2.2 with the canonical reduction of (EGb
1 , ϕ(x)).

In particular, the bijection B(Gb)→ B(G) identifies the Harder–Narasimhan vector of
(EG

b , x) with the Harder–Narasimhan vector of (EGb
1 , ϕ(x)).

Proof. Let Pb be a parabolic subgroup of Gb and EPb
1 be the corresponding Pb-reduction

of the trivial Gb bundle EGb
1 . Let EPb

1,ϕ(x) be the corresponding Pb-reduction of the modified

Gb-bundle EGb

1,ϕ(x) and let vb,Pb
be the corresponding slope vector. By Proposition 3.10, the

canonical reduction of (EGb
1 , ϕ(x)) is the unique reduction to a parabolic subgroup Pb of Gb such

that vb,Pb
is maximal among the slope vectors for all possible parabolic subgroups of Gb.

On the other hand, we have a bijection between parabolic subgroups P of GF̆ stable under
bσ and filtrations •(EG

b , x) of (EG
b , x) in the category C. Hence for any P as above we have a

corresponding slope vector v1,P by Definition 2.8. By Proposition 2.9, the canonical filtration of
(EG

b , x) is the unique filtration such that v1,P is maximal among all the filtrations of (EG
b , x) in C.

There is a bijection between the set of parabolic subgroups of Gb and parabolic subgroups
of G being stable under bσ. Thus if one denotes P ⊂ G the corresponding parabolic subgroup
of Pb ⊂ Gb then it is enough to compare vb,Pb

and v1,P . Let M be a Levi subgroup of P and
let Mb be the corresponding Levi subgroup of Pb. Then the map ϕ is compatible with the
Iwasawa decomposition. More precisely, if x = xP · g where xP ∈ P (BdR) and g ∈ G(B+

dR) then
ϕ(x) = ϕP (xP ) · g′ where ϕP (xP ) ∈ Pb and g′ ∈ Gb(B+

dR).
By [Vie21, Lemma 3.11], we see that vb,Pb

is central in X∗(Mb)Q and thus determined by
its image in π1(Mb)Γ, which equals −κMb

(ϕ(xM )), where xM is the image of xP in M(BdR).
Similarly, v1,P is central in X∗(M)Q and equal to the difference of the G-central element with
image κG(b) in π1(G)Γ and the element which is central in M and with image κM (ϕM (xM )).
By the argument at the end of the proof of [CFS21, Proposition 5.2], these two vectors are the
Newton points of corresponding elements of B(Gb), respectively B(G). �

Remark 8.2. Let G be a reductive group over F and let b ∈ G(F̆ ) be basic.
(i) We define the Harder–Narasimhan vector of (EG

b , x) for x ∈ GrG,μ(C) to be the
Harder–Narasimhan vector associated with (EGb

1 , ϕ(x)).
(ii) Let x ∈ GrG,μ(C) and consider the canonical reduction of (EGb

1 , ϕ(x)). We obtain a
parabolic subgroup P ′ of Gb, and a reduction (EGb

1,x)P ′ of E1,x induced by the reduction EP ′
1 .

Then P ′ corresponds to a parabolic subgroup P of GF̆ stable under bσ. Recall that the adic
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Fargues–Fontaine curve is defined as X = Y/φZ where for S = Spa(C�, C�,+), we have

Y = Spa WOF
(C�+) \ {[π]p = 0}.

Consider the pullback of EGb
1,x and (EGb

1,x)P ′ to Y . They correspond to the pullback of (EG
b )ϕ(x)

to Y and to a reduction to P of this bundle. Using descent via bσ one obtains a bundle on X.
However, one has to extend the definition of parabolic reductions of G-bundles on X to also
include parabolic subgroups not defined over F, but rather over F̆ and stable under bσ.

One can now reformulate all of our results in this new context. Since this translation is in
each case easy to carry out, but makes the notation more involved, we leave it to the reader.

(iii) Notice that these remarks also apply to elements b ∈ [1] ∈ B(G). For such an element,
we have G ∼= Gb and E1 ∼= Eb. However, this identification leads to a different trivialization of the
trivial bundle that we modify. Based on such a trivialization, all Harder–Narasimhan strata in
some GrG,μ get shifted by an element g ∈ G(F̆ ) with g−1bσ(g) = 1.
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Appendix A. A variant of Schieder’s comparison theorem

In the first part of this appendix we study a much more classical situation, namely the canonical
(or Harder–Narasimhan) reduction of G-bundles on a curve. The main result, a strengthening
of Schieder’s comparison theorem, seems to be unknown also in this case, and the proofs are
completely parallel.

Let k be an algebraically closed field and let X be a smooth complete curve over k. Then
by classical Harder–Narasimhan theory [HN75], every vector bundle E on X has a unique fil-
tration (0) = E0 � E1 � · · · � Er = E , called the canonical filtration, such that the subquotients
Ei/Ei−1 are semi-stable of some slopes λi ∈ Q with λi > λi+1 for all i. The vector vE ∈ Qn

+

where n = rk E and with components λ1, . . . , λr with multiplicities rk Ei − rk Ei−1 is called the
Harder–Narasimhan polygon HN(E) of E . We also associate with it the convex polygon which
is the graph of the piecewise linear continuous function [0, n]→ R mapping 0 to 0 and whose
slope on [l − 1, l] is equal to the lth component of HN(E).

Furthermore, there is the following comparison theorem. Let E ′ be a sub-vector bundle of E .
Then we have the following.

(i) The point (rk E ′, deg E ′) lies under or on HN(E).
(ii) If it lies on HN(E), there is an i with Ei ⊆ E ′ ⊆ Ei+1.

Now let G be a reductive group over k. Generalizing the above theory there is for every
G-bundle on X a canonical or Harder–Narasimhan reduction to a P -bundle for some stan-
dard parabolic subgroup P of G; compare for example [BH04, Beh95]. In [Sch15, Theorem 4.1],
Schieder generalizes the first part of the above comparison theorem to this context. The first goal
of the present work, Theorem A.3 below, is to generalize (ii) above to the group-theoretic context.
Schieder’s comparison theorem also contains a second assertion concerning refinements of canon-
ical reductions. It is the group-theoretic version of the following statement, which is implied by
(ii) above. Assume that (0) = E ′0 � E ′1 � · · · � E ′s = E is a second filtration of E . Associate with
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it a similar polygon v whose slopes are the slopes of the subquotients of this filtration with cor-
responding multiplicities. If v = HN(E), then this new filtration is a refinement of the canonical
filtration of E .

Using the classification of G-bundles on the Fargues–Fontaine curve, we derive in § A.2 a
variant of Theorem A.3 for this context.

A.1 Comparing reductions of G-bundles
A.1.1 Canonical reductions. We recall some of the main notions regarding the canonical

reduction for G-bundles on curves. We follow Schieder [Sch15, 2], but replace some of his notation.
For more details and proofs compare [BH04, Beh95, Sch15].

Let k be an algebraically closed field of any characteristic, and let G be a reductive group
over k. We fix a maximal torus T and a Borel subgroup B containing it. For a standard parabolic
subgroup P of G we denote by M its Levi quotient. Let Δ be the set of simple roots for our
choice of B and T , and ΔM correspondingly for M . We denote by π1(G) the quotient of X∗(T )
by the coroot lattice. For v ∈ X∗(T )Q let v�M denote its image in π1(M)Q. We also write v�

instead of v�G .
Let X be a smooth and complete curve over k. As before, G-bundles on X can be viewed

as G-torsors on X that are locally trivial for the étale topology, or equivalently as exact tensor
functors from the category RepG of rational algebraic representations of G to the category BunX

of vector bundles on X.
We denote by BunG the moduli stack of G-bundles on X, and similarly for other linear

algebraic groups. For P and M as above we have natural maps of stacks

BunG ←− BunP −→ BunM

induced by the homomorphisms P ↪→ G and P � M .
We have π0(BunP ) ∼= π1(M). For λ ∈ π1(M) we denote by BunP,λ the corresponding

connected component of BunP .
If H ⊆ G is a subgroup and E ∈ BunG, a reduction of E to H is an element EH ∈ BunH such

that EH ×H G ∼= E . Let E ∈ BunG and let EP ∈ BunP be a reduction to P . We associate with
EP the rational cocharacter v ∈ X∗(T )Q,dom defined via

v = v(EP ) : X∗(P )→ Z

χ 	→ deg χ∗(EP )

and such that v is central in M . It is called the slope of EP .

Remark A.1. A second description of v (used in [Sch15]) is obtained by associating with EP the
image λP = λP (EP ) ∈ π1(M) under the composition BunP → BunM → π0(BunM ) ∼= π1(M).

Then v(EP ) ∈ X∗(T )Q,dom is the unique element that is central in M and such that v(EP )�M =
λP (EP ) in π1(M)Q. In other words, it is the image of λP (EP ) under

φM : π1(M)Q → X∗(Z(M)0)Q ↪→ X∗(T )Q. (A.1)

Conversely, λP (EP ) is uniquely determined by its image in π1(G), which coincides with λG(E),
together with the image of λP (EP ) in π1(M)Q, which coincides with v(EP )�M . Indeed, this follows
since the kernel of the projection map π1(M)→ π1(G) is torsion free.

For λ, λ′ ∈ X∗(T )Q we write λ � λ′ if λ′ − λ is a non-negative linear combination of positive
coroots. Notice that we do not assume λ or λ′ to be dominant.
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Definition A.2.

(i) A G-bundle E is called semi-stable if for every standard parabolic subgroup P and every
reduction EP of E to P we have v(EP ) � v(E). We denote the semi-stable locus in BunG by
Bunss

G , and likewise for Bunss
P , Bunss

G,λ etc.
(ii) Let P be a standard parabolic subgroup of G and M its standard Levi factor. Then v ∈

X∗(T )Q,dom is called dominant P -regular if v is central in M , and if 〈v, α〉 > 0 for all simple
roots α that are not in M . Similarly, λ ∈ π1(M)Q is called dominant P -regular if φM (λ) is
dominant P -regular.

(iii) A reduction EP of a G-bundle is called canonical, if EP is semi-stable and v(EP ) is dominant
P -regular.

Then Harder–Narasimhan theory for G-bundles on X [BH04, Beh95] implies that for every
G-bundle E on X there is a unique standard parabolic subgroup P of G such that there is a
canonical reduction EP of E . This reduction is then also uniquely defined.

A.1.2 The comparison theorem. Let P1, P2 be standard parabolic subgroups of G with stan-
dard Levi subgroups M1, M2. Let EP1 ∈ Bunss

P1,λP1
and EP2 ∈ BunP2,λP2

be reductions of the same
G-bundle E on the curve X. Assume that λP1 = λ is dominant P1-regular, i.e. EP1 is the canonical
reduction of E . Recall that by Remark A.1 we have v(EPi) = φPi(λi). Then the first assertion of
[Sch15, Theorem 4.1] shows v(EP2) � v(EP1). The aim of this section is to prove the following
generalization of the second assertion of [Sch15, Theorem 4.1].

Theorem A.3. In the above context assume that the images of v(EP1) and of v(EP2) in π1(M2)Q
coincide. Let Q = P1 ∩ P2. Then there is a joint reduction EQ ∈ BunQ of EP1 and EP2 .

For the proof we need a lemma. Let W1, W2 be the Weyl groups of M1 and M2, respectively.
By M1WM2 we denote the subset of W of elements w which are shortest representatives of their
double coset W1wW2.

Lemma A.4. Let P1, P2 be standard parabolic subgroups of G with standard Levi factors M1, M2

and unipotent radicals N1, N2.

(i) Let ν ∈ X∗(T )Q be dominant. For every w ∈W,

ν � w−1(ν)

in X∗(T )Q.
(ii) Let ν ∈ X∗(T )Q be dominant P1-regular. If w ∈ M1WM2 is such that the images of ν and

w−1(ν) in π1(M2)Q agree, then w = 1.

Proof. Part (i) is shown in [Sch15, Lemma 4.8] and follows immediately from the assumption that
ν is dominant. For (ii) we replace ν by a suitable multiple and may thus assume that ν ∈ X∗(T ),
and that the images of ν and w−1(ν) in π1(M2) agree. Let ν ′ be the M2-dominant representative
in the WM2-orbit of w−1(ν). Since ν, ν ′ are in the same W -orbit and both M2-dominant, there
is no root hyperplane for M2 separating the two elements. Therefore, ν − ν ′ is a non-negative
linear combination of coroots α∨ for roots α of T in N2. Since ν = ν ′ in π1(M2), this implies
that ν = ν ′, hence w−1(ν) ∈WM2(ν). Since w ∈ M1WM2 , this implies w = 1. �

Proof of Theorem A.3. By [Sch15, Lemma 4.1], there is a unique element w ∈ M1WM2 for which
there is an open dense subset U ⊂ X such that EP1 |U is in relative position w with respect to
EP2 |U .
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By the proof of the first part of [Sch15, Theorem 4.1] we have

v(EP1) � w−1(v(EP1)) � v(EP2).

By assumption, the images of v(EP1) and v(EP2) in π1(M2)Q agree. Hence they also coincide with
the corresponding image of w−1(v(EP1)). By Lemma A.4, this implies w = 1.

Since w = 1, the substack

P1\(P1 · w · P2)/P2 ↪→ P1\G/P2

is closed. Thus EP1 and EP2 are in relative position w = 1 not only generically, but on the entire
curve X.

Furthermore, Q = P1 ∩ P2 is the parabolic subgroup corresponding to the set of simple roots

ΔQ = {αi ∈ ΔM1 | w−1(αi) ∈ ΔM2} = {αi ∈ ΔM2 | w(αi) ∈ ΔM1},
i.e. equal to both parabolic subgroups Q1, Q2 of [Sch15, Corollary 4.1]. Applying the corollary
yields the desired reduction of E to Q. �

A.2 The canonical reduction for G-bundles on the Fargues–Fontaine curve
From now on we work use again the context and notation of the main part of the paper. Assume
G to be quasi-split. Let A be a maximal split torus, T the centralizer of A and B a Borel subgroup
of G containing T .

For bundles over the Fargues–Fontaine curve, the canonical reduction satisfies the following
splitting property. Let E be a G-bundle on X and let EP be its canonical reduction where P is
a standard parabolic subgroup of G. Let M be the standard Levi factor of P . Then by [Far20,
Proposition 5.16], EP ×P M is a reduction of E to M . In particular, E has a semi-stable reduction
to a Levi subgroup of G.

Theorem A.5. Let P1, P2 be standard parabolic subgroups of G with standard Levi subgroups
M1, M2. Let EP1 ∈ Bunss

P1
and EP2 ∈ BunP2 be reductions of the same G-bundle E on X. Assume

that EP1 is the canonical reduction of E . Then

(i) v(EP2) � v(EP1).

Assume that the images of v(EP1) and of v(EP2) in π1(M2)Γ,Q coincide. Let Q = P1 ∩ P2.

(ii) There is a joint reduction EQ ∈ BunQ of EP1 and EP2 .
(iii) Let M be the standard Levi subgroup of Q. Then EQ ×Q M is a reduction of E to M .

Proof. Parts (i) and (ii) are the analogs of the first assertion of [Sch15, Theorem 4.1], respectively
of the first assertion of Theorem A.3. The same arguments prove that they still hold in this
context.

For the last assertion we use [CFS21, Lemma 6.3] and its proof. Consider the parabolic
subgroups Q ⊆ P1 ⊆ G and their Levi subgroups M ⊆M1. Then Q ∩M1 is a standard parabolic
subgroup of M1 with standard Levi subgroup M . Since EP1 is the canonical reduction, EP1 ×P1 M1

is a reduction of E , and a semi-stable M1-bundle. By the first part of the proof of [CFS21,
Lemma 6.3], the reduction EQ corresponds to a unique reduction (EP1 ×P1 M1)M1∩Q of EP1 ×P1

M1 to M1 ∩Q. Since EQ is a reduction of EP1 , we have that v(EP1)− v(EQ) is a linear combination
of coroots in M1. Since EQ is a reduction of EP2 , the image of v(EQ) in π1(M2)Q coincides with
the image of v(EP2). By the assumption of the theorem this agrees with the image of v(EP1).
Thus v(EP1)− v(EQ) is in fact a linear combination of coroots in M1 ∩M2 = MQ. Hence the
assumption of [CFS21, Lemma 6.3] is satisfied for the M1-bundle EP1 ×P1 M1, and the lemma
finishes the proof. �
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