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Abstract

This study investigates the applicability of generative artificial intelligence (AI) in early-stage
architectural design by evaluating the daylight performance of AI-generated sustainable housing
plans across five distinct climate zones. A three-phase methodology was implemented: (1) Plan
generation using text-to-image diffusion models (ChatGPT, Copilot, and LookX); (2) digital
reconstruction in AutoCAD; and (3) daylight simulation via Velux Daylight Visualizer. Climate-
adaptive prompts were formulated to guide the AI tools in producing context-specific floor plans
with passive strategies. Out of 31 initial plans, eight valid outputs (five from ChatGPT and three
from Copilot) were reconstructed in AutoCAD and simulated. Quantitative simulations were
conducted on equinox and solstice dates, and average illuminance values were analyzed for key
interior spaces (living room, kitchen, and bedroom). ChatGPT-generated plans demonstrated
higher spatial clarity and more balanced daylight performance, whereas Copilot outputs varied
significantly, and LookX was excluded due to insufficient architectural legibility. Results revealed
that none of the models consistently integrated solar orientation or seasonal lighting consider-
ations, indicating a gap between generative representation and environmental logic. The
research contributes a replicable workflow that bridges generative AI and performance-based
evaluation, offering critical insight into the current limitations and future potential of
Al-assisted architectural design. The findings underscore the need for next-generation AI
systems capable of semantic, spatial, and climatic reasoning to support environmentally respon-
sive design practices.

Introduction

As the architecture discipline embraces artificial intelligence (AI), designers are increasingly
engaging with machine-generated visual content in the early phases of design (Tamke et al.,
2018). Among recent breakthroughs, text-to-image (T2I) generation models, such as Stable
Diffusion and DALL-E, have gained attention for their ability to produce architectural drawings,
forms, and spatial ideas from simple verbal prompts (Turrin et al., 2023). However, their
potential to produce environmentally responsive architecture, especially in relation to daylight-
ing, remains an underexplored area.

Daylight plays a critical role in sustainable architecture, directly impacting energy efficiency,
thermal comfort, and user well-being (Zhao and Tian, 2023; Nazari and Matusiak, 2024). Passive
daylighting strategies differ significantly across climatic regions; thus, contextual responsiveness
is essential for performance-oriented design. This inquiry aligns with the paradigm of performa-
tive design, wherein architectural intelligence is assessed not only through form but through
environmental responsiveness embedded at the generative stage (Oxman, 2007). Yet, it is unclear
whether generative Al tools incorporate such considerations when producing plan drawings or
spatial arrangements. This study addresses this gap by simulating and analyzing the daylighting
performance of Al-generated floor plans in cities with varying climatic conditions. Furthermore,
this study contributes to the theoretical debate surrounding design intentionality in machine-
generated architecture. It asks not only what Al can produce visually, but also whether those
spatial constructs bear any environmental logic, especially in regions where climatic sensitivity is
not optional but essential for habitability. By focusing on daylight — a non-negotiable aspect of
sustainable housing — this work challenges the optimistic narrative of Al as a neutral design
assistant, and instead poses a more fundamental question: Can machines think like architects, or
do they merely draw like them?

The rapidly growing interest in Al-assisted generative tools — particularly among urban
housing authorities and design professionals — renders the question of environmental adequacy
not merely a theoretical concern but a critical issue for early-stage housing design practices. In
this study, this inquiry is addressed through a hybrid methodological workflow that goes beyond
prompt-based generation alone. By integrating prompt-driven image outputs with AutoCAD-
based reconstruction and climate-informed daylight simulation using Velux Daylight Visualizer
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(VDV), the research investigates whether AI systems function
merely as stylistic generators or exhibit latent performative intelli-
gence embedded within their spatial propositions.

Literature review
T2I generation in architecture

T2I AI tools — driven by diffusion models — enable designers to
create visual architectural concepts based on natural language
prompts. These models, trained on large datasets of images and
captions, have been widely adopted for conceptualization, ideation,
and rapid prototyping in architectural design (Hanafy, 2023;
Horvath and Pouliou, 2024; Paananen et al., 2024). Research
has demonstrated their usefulness in visual storytelling, early-stage
fagade studies, and atmospheric renderings (Celik, 2024; Monte-
negro, 2024). However, critical investigations into their spatial
logic, functional accuracy, or environmental responsiveness are
limited.

Despite their potential, current T2I systems often prioritize
aesthetic coherence over structural realism or performative intelli-
gence (Iranmanesh and Lotfabadi, 2024). Some recent studies (e.g.,
Liao et al., 2022) suggest combining these outputs with CAD and
BIM (Building Information Modeling) tools to evaluate architec-
tural feasibility. This hybrid workflow — prompt to image to simu-
lation — is emerging as a method to assess the generative output’s
alignment with real-world architectural standards.

Recent work has explored text-to-image generative models (e.g.,
Midjourney, DALL-E, and Stable Diffusion) as design tools for
early-stage architectural ideation. These models allow architects
to rapidly visualize multiple concept sketches from written
prompts, effectively broadening the range of design options. For
example, Paananen et al. (2024) found that using Midjourney,
DALL-E, and Stable Diffusion in a classroom exercise supported
“serendipitous discovery of ideas and an imaginative mindset,”
enriching the concept phase of a cultural center design. Similarly,
a recent study reports that T2I tools help architects “conceptu-
alize new architectural ideas more clearly,” providing fresh per-
spectives and expanding creativity by tapping into large visual
datasets (Thampanichwat et al., 2025). In practice, leading design
firms already use these Als for divergent-thinking exploration:
Researchers note that models like Midjourney, DALL-E, and Stable
Diffusion “promote rapid exploration and iteration through visual-
ization, enabling designers to better express their design concepts”
(Chen et al., 2025). These findings suggest that text-based image
generators can become meaningful parts of the design workflow,
especially when prompts and constraints are carefully managed
(although attention must be paid to their limitations).

Daylight simulation in architectural design

Daylight simulation tools, including VDV, Radiance, and Clima-
teStudio, have long been utilized to predict and optimize natural
light penetration within built environments (Kim and Chung, 2011;
Sancho-Salas et al., 2023). These tools evaluate daylight autonomy,
uniformity, and glare to guide decisions on window orientation,
room depth, material reflectance, and spatial configuration
(Cammarano et al.,, 2015; Gibson and Krarti, 2015). Among them,
VDV provides a user-friendly interface and accurate simulation
outputs based on geographic data and seasonal solar positions.
Computational modeling and simulation play a critical role in
evaluating the performance of architectural designs. When these
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tools are embedded within the design workflow, the process is
referred to as performance-based design. Although rapid feedback
loops are essential throughout design development, conducting
daylight simulations remains a complex task due to their intensive
computational demands and time-consuming nature (Queiroz
etal., 2024). Performance-based design using such tools is standard
practice in passive design strategies, especially in climates where
lighting energy demand is critical (Oxman, 2007). However, their
application to Al-generated content is novel. No known study has
systematically simulated T2I-generated plans for daylighting per-
formance across multiple climate zones — a gap this research seeks
to address.

Daylight performance is now usually assessed with dynamic,
climate-based simulation rather than static rules of thumb. In the
past, simple metrics like the Daylight Factor under a single overcast
sky were common; however, climate-based daylight modeling
(CBDM) has gained prominence (Jiang, 2021). CBDM uses hourly
weather data (latitude, climate, orientation, etc.) to predict interior
luminance over the year, accounting for solar geometry and sky
variability. This approach “has attracted considerable attention”
and is gradually replacing fixed-condition methods (Jiang, 2021).
Accordingly, researchers have adopted both advanced simulation
engines (Radiance and Daysim) and industry tools like the VDV.
VDV 3.0 (a free Radiance-based program) is widely used for building-
scale analyses. For instance, Mandala et al. (2021) used VDV 3.0 to
model a large-volume building with various skylight designs and
computed daylight factors and uniformity across the space.

In practice, standards often call for checking daylight at equinox
conditions to represent average seasonal performance. For example,
LEED (Leadership in Energy and Environmental Design) lighting
rules instruct teams to simulate illuminance at 9:00 and 15:00 h on
March 21 (or September 21) to gauge daylight availability. In one
study, a classroom testbed in India was modeled in VDV 3.0 and
simulated on March 21 (equinox) from 8:00 to 18:00 h; comparing
modeled results to on-site measurements showed that using an
accurate sky model (based on prevailing weather data) improved
prediction of work-plane illuminance by about 24% (Edwards and
Torcellini, 2002; Boyce, 2004). Such studies illustrate that software
like VDV can reliably compute time-resolved illuminance for design
evaluation. Thus, the literature emphasizes climate-based, hourly
simulation (e.g., Spatial Daylight Autonomy and Useful Daylight
IMuminance) and the use of realistic sky models and metrics, rather
than single-point calculations.

Al-driven climate-based housing design

Several recent projects have experimented with AI-generated archi-
tectural solutions tailored to climatic demands. Recent research has
highlighted the potential of AI and data mining techniques in
addressing the challenges of energy poverty (EP), particularly in
warm climate zones. According to Bienvenido-Huertas et al.
(2023), Al-based automated tools can effectively detect EP without
the need for detailed energy performance analyses. This approach
not only streamlines the workload of energy managers and social
workers but also enhances the predictive capacity of EP diagnosis,
paving the way for more efficient and scalable interventions.

In the context of smart environmental management, the inte-
gration of Al with Internet of Things technologies offers promising
advancements in greenhouse monitoring systems. As highlighted
by Riskiawan et al. (2024), traditional greenhouse environments
still largely depend on manual regulation of temperature and
humidity, which imposes labor-intensive demands. Their study
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demonstrates that Al-enabled automated environmental control
significantly enhances the precision and efficiency of indoor cli-
mate regulation. The system’s capacity to autonomously predict
and adjust environmental conditions marks a substantial shift
toward intelligent and sustainable greenhouse practices.

The intersection of generative Al and environmental simulation
presents new opportunities to evaluate Al’s design “intelligence.”
This article builds upon emerging discourse by combining T2I
models with simulation software to assess the daylight performance
of climate-specific house plans. It also contributes to the methodo-
logical expansion of architectural research by incorporating com-
putational workflows that link creativity and performance.

Researchers are beginning to combine Al generative design with
climate data to create performance-aware housing layouts. Gen-
erative Al can produce novel floorplan alternatives, but climate
adaptation requires coupling generation with environmental evalu-
ation. Recent reviews highlight that many existing AI floorplan
tools implicitly depend on local weather data and, therefore, yield
solutions tailored to specific regions (Meselhy and Almalkawi,
2025). For true regional adaptation, climate must be explicitly
integrated: Different climate zones impose different design prior-
ities (e.g., maximizing shading and minimizing solar gain in hot-
arid regions versus enhancing natural ventilation and passive heat-
ing in temperate zones) (Meselhy and Almalkawi, 2025). Meselhy
and Almalkawi (2025) note that without incorporating these fac-
tors, a design optimized for one climate “may not be directly
applicable elsewhere” unless adapted to new climate inputs
(Meselhy and Almalkawi, 2025).

In response, some recent studies use Al pipelines that generate
floor plans and simultaneously predict performance metrics from
climate data. For example, Hu et al. (2024) developed a workflow
where a diffusion model generates a variety of residential floor plan
layouts, and a neural network (GAN, Generative Adversarial Net-
work) rapidly predicts each layout’s daylight performance
(Hu et al., 2024). They fine-tuned the model on regionally realistic
house plans and then used the GAN as a surrogate to evaluate
daylight autonomy. Their AI workflow reproduced daylight simu-
lation results with high fidelity (within ~5% error of ground-truth
Radiance simulations) and ran over 200x faster than traditional
iteration (Hu et al., 2024). This demonstrates that Al-generated
designs can be quantitatively assessed for daylight even at an early
stage. Other efforts similarly integrate climate: for example, surro-
gate modeling studies show that including detailed hourly weather
features (temperature, solar angles, etc.) improves prediction accur-
acy across diverse climate zones (Manmatharasan et al., 2025)
(suggesting future Al tools should ingest location-specific climate
datasets). In sum, the literature indicates that AI methods for
housing design are starting to account for environmental perform-
ance: Generative models propose geometry, then machine-learning
predictors (or embedded simulations) assess metrics like daylight,
allowing architects to iteratively refine climate-adapted designs.

Methodology
Research design

This study adopts a mixed-methods design combining generative
Al modeling, digital drafting, and environmental simulation to
evaluate the daylighting performance of Al-generated sustainable
housing plans across diverse climate zones. The workflow is struc-
tured into three main phases: (1) Plan generation via T2I diffusion
models, (2) plan reconstruction in AutoCAD for simulation
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compatibility, and (3) daylight analysis using VDV based on equi-
nox conditions. To ensure methodological clarity, the workflow is
further divided into seven stages, including climate zone and city
selection, prompt engineering and AI tool evaluation, two-
(2D) and three-dimensional (3D) modeling processes, and multi-
date daylight simulations using false color mapping. Evaluation
criteria are based on average illuminance values (lux) in key interior
spaces, benchmarked against recognized standards from the litera-
ture. The comparative analysis highlights the extent to which
generative models consider passive lighting design principles dur-
ing the early stages of architectural production (Table 1).

Table 1. Workflow stages of the Al-based climate-sensitive housing study

Step Description
1 Climate zone and city Five cities were selected to represent distinct
selection Koppen-Geiger climate zones (Peel et al.,

2007), based on criteria such as climatic
diversity, geographical distribution, and
urban relevance.

2 Prompt engineering
and Al tools

Prompts included spatial program details
(one bedroom, one kitchen, and one living
room) and climate-adaptive strategies
(ventilation, shading, and biophilia).

Al tools used:

« ChatGPT (OpenAl DALL-E 3) for both prompt
engineering and rendering (OpenAl, 2025)

« Microsoft Copilot Designer — general-
purpose, accessible Al tool (Copilot, 2025)

« LookX Al — architecture-specific model
(Lookx, 2025)

*LookX was excluded due to a lack of window/
opening outputs. Copilot results for two
cities were also excluded. Only valid ChatGPT
and Copilot outputs were used.

3 2D CAD drafting
(AutoCAD)

« External wall thickness: 20 cm

« Internal walls standardized to 10 or 15 cm
based on Al output

« Doors/windows placed according to
Al-generated imagery

« Plans scaled to 1:50, with north orientation
preserved

« 3D geometry developed for each plan

« Separate layers assigned for floors, walls,
and glazing

« Layering ensured correct material
assignment in Velux Daylight Visualizer

4 3D modeling
(AutoCAD)

5 Daylight simulation
(Velux Daylight
Visualizer)

« Realistic reflectance values assigned to
materials

« Simulations conducted on four key solar
dates: Spring equinox (March 21), summer
solstice (June 21), autumn equinox
(September 23), and winter solstice
(December 21)

« Visual outputs are displayed using false color

mapping

6 Evaluation criteria « Average illuminance (lux) measured for the
living room, kitchen, and bedroom

« Daylight performance evaluated based on
established thresholds (Mardaljevic, 2000;

Reinhart and LoVerso, 2010)

7 Comparative
analysis

« Performance results compared across
different Al-generated floor plans

*Key insight: Evaluated whether Al models
inherently consider daylight in the
generative design process
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Climate zone and city selection

To ensure climatic diversity, five cities were selected from distinct
Koppen-Geiger climate zones (Peel et al., 2007):

o Jakarta, Indonesia (Af) — Tropical rainforest climate

o Alice Springs, Australia (BWh) — Hot desert climate

o Madrid, Spain (Csa) — Warm-summer Mediterranean climate
o Winnipeg, Canada (Dfb) — Cold continental climate

o Tromse, Norway (ET) — Polar tundra climate

The selection criteria included the following: (a) Representativeness
of major global climatic typologies, (b) urban settings with housing
demand, and (c) availability of geographic and solar data for
simulation.

To ensure comparability across climate zones and isolate the
influence of environmental context on model behavior, a standard-
ized prompt was used for each location. This decision was informed
by the need to minimize confounding variables arising from prompt
variation, which can significantly affect generative outputs. The
single-prompt approach enabled a more controlled assessment of
model performance under varying climatic conditions.

Prompt design and Al model selection

Architectural floor plans were generated using leading open-source
T2I diffusion models through high-resolution inference, incorpor-
ating architecture-specific fine-tuning. In this study, three distinct
Al tools were selected to generate sustainable housing plans tailored
to various climate zones: ChatGPT (OpenAl), Microsoft Copilot
Image Creator, and LookX Al Each tool offers unique advantages
in architectural plan generation, and their selection was based on
criteria such as accessibility, architectural specialization, and tech-
nical capability.

 ChatGPT (OpenAl): Developed by OpenAl, ChatGPT integrates
the DALL-E 3 image generation model within the GPT-40 multi-
modal framework. This enables T2I conversion based on user-
defined prompts. In this study, ChatGPT served a dual role as both
a prompt engineering assistant and a generative model, producing
visual outputs derived from its own textual descriptions. The
multimodal capacity of GPT-40 allows seamless interaction
between textual and visual content, facilitating the generation of
high-quality, context-sensitive architectural images.
Microsoft Copilot Image Creator: Offered through Microsoft’s
Copilot platform, this tool utilizes Bing Image Creator technology
to transform textual prompts into photorealistic images. Distin-
guished by its free and open-access availability, user-friendly inter-
face, and rapid rendering capability, Copilot efficiently processes
natural language inputs to produce high-quality visuals, making it
an accessible solution for early-stage generative design tasks.

o LookX AI Specifically designed for architecture and interior
design applications, LookX AI converts both text-based and
sketch-based inputs into high-resolution renderings. The plat-
form caters to design professionals by enabling custom model
training and stylistic output generation. By streamlining the
integration of Al into the architectural design workflow, LookX
supports creative exploration and iterative visualization in pro-
fessional contexts.

Each city was assigned a tailored prompt that included:

o climate-adaptive design features (e.g., elevated structures, ther-
mal mass, insulation, and glazing orientation),
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o material specifications (e.g., bamboo, adobe, timber, and
concrete),

« spatial configuration (one bedroom, one kitchen, and one living
room),

« bioclimatic and passive design principles (e.g., cross-ventilation,
shading devices, and courtyard inclusion).

Prompt engineering focused on maximizing climatic specificity and
functional clarity to encourage Al-generated layouts with architec-
tural intent. Below are the final versions of the climate-based
prompts used in this study:

o Jakarta, Indonesia (Tropical climate):

Tropical climate sustainable house plan in Jakarta, Indonesia. Elevated
structure with natural ventilation. Large operable windows for cross-
ventilation, positioned to maximize daylight. Open floor plan with semi-
outdoor living spaces. Locally sourced materials such as bamboo, teak, and
recycled wood. Biophilic design with lush greenery, internal courtyards, and
shading devices. Floor plan must include one bedroom, one kitchen, one
living room, and one toilet. The design must prioritize airflow, cooling
efficiency, and sustainable urban living.

o Alice Springs, Australia (Desert climate):

Desert climate sustainable house plan in Alice Springs, Australia. Thick
adobe or rammed earth walls for thermal mass. Small, strategically placed
windows with shading devices to reduce heat gain. Courtyard layout to
allow passive cooling and outdoor living. Minimal openings on west-
facing walls. Roof insulation and solar panels integrated. The floor plan
must include one bedroom, one kitchen, one living room, and one toilet.
Locally sourced materials and efficient water usage features should be

included.

o Madrid, Spain (Mediterranean climate):

Mediterranean climate sustainable house plan in Madrid, Spain. Thick
masonry walls for thermal stability. Shaded verandas and balconies to
manage solar gain. Cross-ventilation through aligned operable windows.
Sloped tile roof for seasonal adaptability. Local stone and timber used. One-
bedroom, one-kitchen, one-living room, one-toilet layout with semi-open
spaces like patios or loggias.

« Winnipeg, Canada (Cold continental climate):

Cold climate sustainable house plan in Winnipeg, Canada. Compact form
with high insulation levels. Triple-glazed south-facing windows to maximize
solar heat gain. Minimal window openings on north walls. Airtight con-
struction with passive solar principles. Locally sourced timber and insulated
concrete. One-bedroom, one-kitchen, one-living room, and one-toilet layout.
Enclosed vestibule to prevent heat loss.

o Tromse, Norway (Polar climate):

Polar climate sustainable house plan in Tromsg, Norway. Elevated founda-
tion to address snow buildup. Super-insulated envelope with minimal ther-
mal bridging. South-facing windows with deep frames. Airtight design with
mechanical ventilation and heat recovery. Compact one-bedroom, one-
kitchen, one-living room, one-toilet layout. Use of sustainable local timber
and snow-shedding roof form.

These prompts served as standardized instructions to assess
whether Al-generated plans integrated region-specific climate
strategies and spatial logic.

The floor plans generated by the three selected Al tools were
developed based on previously defined climate-specific prompts.
These outputs were subsequently transferred to the AutoCAD
environment and subjected to daylight performance simulations
using VDV. This workflow enabled a comparative assessment of
the extent to which each AI model integrated climate-adaptive
design strategies into spatial planning.
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However, not all outputs produced by the Al tools were equally
suitable for architectural drafting. The results generated by LookX Al
were excluded from the CAD modeling phase due to the absence of
windows or other fenestration elements, as well as poor legibility from
a plan-reading perspective. Similarly, image outputs for two cities
produced by Microsoft Copilot Image Creator were deemed unfit for
AutoCAD translation, as they lacked architectural clarity and instead
exhibited highly abstract forms that could not be interpreted as floor
plans. Consequently, the CAD drafting and daylight simulation
stages of the study were carried out exclusively using the plans
generated by ChatGPT (OpenAl) and valid outputs from Microsoft
Copilot. This selective process underscores the importance of evalu-
ating the consistency and architectural usability of AI-generated floor
plans, particularly in climate-responsive design contexts.

While this study focused on three AI models selected for their
accessibility and architecture relevance (ChatGPT/DALL-E, Micro-
soft Copilot, and LookX AI), it must be acknowledged that the
rapidly expanding ecosystem of generative tools, including Mid-
journey and Stable Diffusion, offers additional capabilities that may
lead to different architectural outcomes. The limited model diver-
sity is thus recognized as a methodological limitation.

Plan extraction and CAD translation

Since Al-generated images were raster-based and lacked precise
metric information, all floor plans were manually redrawn and
vectorized using AutoCAD 2025 to ensure simulation compatibility
and dimensional consistency. The translation process followed
these standard conventions:

o Wall thicknesses were standardized across all plans as follows:
20 cm for external walls, and 15 cm or 10 cm for internal
partitions, depending on the wall typology suggested in the
Al output.

» Window and door placements were preserved as visible in the
Al-generated plans to maintain spatial intent and ventilation
logic.

o Each plan was scaled to 1:50, and north orientation was maintained.

This CAD translation process enabled consistent geometric input
for subsequent daylight simulation and comparative analysis across
different climate-adaptive designs.

Following the drafting phase, a 3D model of each plan was con-
structed in AutoCAD to prepare for daylight simulation. In this stage:

o Architectural elements, such as floors, walls, ceilings, windows,
and doors, were assigned to separate layers.

o This stratification allowed for accurate material assignment in the
VDV environment, as the simulation software interprets geometry
and materials based on imported CAD layer configurations.

This modeling step provided the necessary semantic and geometric
clarity for translating Al-generated architectural intent into scien-
tifically valid simulation scenarios.

Daylight simulation with VDV

After 3D modeling in AutoCAD, each plan was exported to
VDV (version 3.0) to assess natural light performance under varied
solar conditions. VDV is a validated daylighting analysis tool based
on the Radiance rendering engine. While a range of daylight
simulation engines exists, such as Radiance, DIVA, and Honeybee,
VDV was selected due to its intuitive user interface, high compati-
bility with AutoCAD models, and suitability for residential-scale
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analysis. Although not as customizable as Radiance-based engines,
it enables efficient and replicable simulations for comparative
purposes within the scope of this study.

Simulations were conducted using Parameters included:

« Location settings: City-specific geographic coordinates (latitude
and longitude)
 Time of year: March 21 and September 21 (equinoxes), June
21 (summer solstice), and December 21 (winter solstice)
« Sky model: CIE overcast and intermediate sky types
« Simulation outputs: Illuminance levels (lux)
 Material reflectance values: Assigned based on realistic assump-
tions about locally sourced materials inferred from the Al
prompt. For example:
o Walls: Reflectance of 0.50-0.65 depending on surface finish
(e.g., wood, adobe, and concrete)
o Floors: Reflectance of 0.30-0.45
o Windows: Transparent glazing with visible transmittance of
0.70
o Ceilings and shading elements: Matte materials with reflect-
ance below 0.25, where applicable

The 3D models were prepared with layered materials in AutoCAD

to facilitate proper material mapping within Velux. Each building

element (walls, windows, and floors) was placed on a distinct CAD

layer and assigned corresponding material properties upon import.
Analysis parameters included:

 Rendered daylight scenes at 12:00 h (local solar time) for each
simulation date,
o Generation of false-color illuminance maps for internal spaces.

This simulation framework enabled the objective evaluation of how
well Al-generated plans performed under natural daylight scen-
arios, revealing whether the T2I model implicitly considered day-
light access during design generation.

Evaluation criteria

The daylight performance of each Al-generated housing plan was
evaluated based on the average indoor illuminance (lux) values
obtained from simulations conducted on equinoxes (March 21 and
September 21) and solstices (June 21 and December 21). The
analysis focused on three primary functional spaces: the living
room, the kitchen, and the bedroom.

According to commonly accepted daylighting performance
standards (Illuminating Engineering Society, 2011; Mardaljevic,
2000), the following average illuminance thresholds were applied:
300-500 lux for living rooms, 500-750 lux for kitchens, and 200
300 lux for bedrooms. These benchmarks are widely recognized in
lighting design literature and serve as a basis for evaluating the
sufficiency of natural light in residential settings.

By comparing the simulated illuminance values with these
standards, the study aimed to determine whether the Al-generated
designs inherently considered adequate daylighting strategies suit-
able for their respective climatic contexts.

Results
Al-generated plan visualizations

The initial phase of the study involved the generation of architec-
tural floor plans using three different T2I AI models (Table 2):
ChatGPT with integrated DALL-E, Microsoft Copilot Image
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Table 2. Al-generated plan visualizations

ChatGPT Microsoft Copilot Image Creator LookX Al

Jakarta, Indonesia (tropical climate)

Alice Springs, Australia (desert climate)

(Continued)
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Table 2. (Continued)

ChatGPT Microsoft Copilot Image Creator LookX Al

Madrid, Spain (Mediterranean climate)

SUSTANARRE HOUSE DESONED
FOR THE TEMPRRATE CLUMATE [ s

e o

Winnipeg, Canada (cold continental climate) ey

(Continued)
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Table 2. (Continued)
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ChatGPT Microsoft Copilot Image Creator LookX Al
Tromsg, Norway (Polar climate) e —
I:j —1 EH

;LL,_J

Creator, and LookX Al Each model was prompted with climate-
specific design inputs tailored to selected cities representing five
distinct Képpen—Geiger climate zones.

Among the tested models, ChatGPT served both as the prompt
engineer and as the generator of architectural images via its inte-
grated T2I engine, DALL-E. The model was capable of interpreting
complex spatial requirements and producing top-down schematic
layouts in 2D, with recognizable architectural components, such as
doors, windows, and internal divisions.

Microsoft Copilot Image Creator, an openly accessible,
diffusion-based generator, was selected for its transparency and
accessibility. It yielded moderately structured architectural lay-
outs for most prompts, although two city-specific outputs (for
Winnipeg and Tromse) lacked the spatial clarity required for plan
reconstruction. For each prompt, Microsoft Copilot Image Cre-
ator generated four alternative plan images. The most suitable
version was manually selected based on architectural legibility,
spatial coherence, and the presence of identifiable functional
zones, such as living areas, kitchen, bedroom, and sanitary facil-
ities. This selection process aimed to ensure that the chosen output
was representative of a plausible housing plan, enabling accurate
vector-based reconstruction in AutoCAD and valid daylight
simulation in VDV.

LookX Al, despite being marketed as an architecture-specific
model, consistently failed to depict critical plan elements, such as
fenestration or defined room boundaries. Although LookX Al was
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initially included in the experimental setup due to its domain-
specific training for architectural visualization, the outputs gen-
erated across multiple prompt iterations lacked essential archi-
tectural features — particularly visible and distinguishable window
openings. Since fenestration plays a vital role in spatial function-
ality, visual connectivity, and daylight performance (Tregenza
and Wilson, 2013; Galasiu and Reinhart, 2008), the absence of
such elements compromised the architectural usability of the
outputs. According to Chaillou (2022), the geometric accuracy
and semantic clarity of AI-generated floor plans are prerequisites
for further computational analysis. Therefore, as the outputs from
LookX did not meet these fundamental criteria, they were
excluded from the AutoCAD reconstruction and simulation
workflow.

AutoCAD plan reconstruction

All selected Al-generated plans were digitally reconstructed in
AutoCAD (Table 3) to prepare them for daylight simulation. The
reconstruction process followed a standardized protocol:

o Exterior walls were drawn with a thickness of 20 cm, while
interior walls were set to 10 or 15 cm, depending on the detail
level present in the AI outputs.

« Doors and windows were placed in the same positions as depicted
in the Al-generated visualizations, preserving orientation and
spatial organization.
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Table 3. AutoCAD plan reconstruction

Jakarta, Indonesia (tropical climate) ChatGPT —

Lavs woow

Microsoft Copilot Image Creator

Alice Springs, Australia (desert climate) ChatGPT

BCOROOM

H KITCHEN

LIVING ROOM
BEDROOM H l
Microsoft Copilot Image Creator s
sEoRoOu. kmoven
[roee—

BEDROOM

Madrid, Spain (Mediterranean climate) ChatGPT E ’—n;
i KITCHEN
;BFI’)ROOM . ‘,.|
e
I =
{ ) LIVING ROOM
| BEDROOM |
|

Winnipeg, Canada (cold continental climate) ChatGPT

KITCHEN

=

GEDROOM

Microsoft Copilot Image Creator

wroHey ]

(Continued)
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Table 3. (Continued)
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Tromsg, Norway (polar climate) ChatGPT e - :
l:' _ -;j v | T
L e ron : -
el e seomoon [ —
~~~~~ Sooie R
Table 4. 3D models of each Al-driven plan
Jakarta, Indonesia (tropical climate) ChatGPT

Microsoft Copilot Image Creator

Alice Springs, Australia (desert climate) ChatGPT

Microsoft Copilot Image Creator

Madrid, Spain (Mediterranean climate) ChatGPT

Winnipeg, Canada (cold continental climate) ChatGPT

Microsoft Copilot Image Creator

Tromsg, Norway (polar climate) ChatGPT

o Each drawing was scaled to 1:50 and aligned to true north
according to the urban context of the target city.

After generating the 2D plans, a 3D model of each plan was
created in AutoCAD using separate layers for each material type
(walls, floors, glazing, and roofing) (Table 4). This separation was
essential for assigning reflectance properties during the Velux
daylight simulation phase.

Daylight simulation results

Using the VDV, daylight performance simulations were conducted
for each of the five architectural plans under both equinox (March
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21 and September 21) and solstice (June 21 and December 21)
conditions. Material reflectance values were input into the software
based on typical surface properties (e.g., white painted wall = 0.85,
clear glazing = 0.65, and wooden flooring = 0.35), enhancing the
realism of the simulations.

The simulation focused on three primary spaces:

« Living room
« Kitchen
» Bedroom

To analyze the daylight performance of the Al-generated housing
plans, all simulations conducted in VDV were visualized using false
color mapping (Tables 5-12). This method provides a detailed
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Table 5. Daylight simulation results for Jakarta, Indonesia (ChatGPT-generated plan) (Author, 2025)

Equinox (March 21)

Solstice (June 21) Equinox (September 21)  Solstice (December 21)

Jakarta, Indonesia Plan
(tropical climate)
6.2088° S
106.8456° E
ChatGPT
Section
Living room

Average illuminance (lux)  936.7 823.3 903.1 881.2
Kitchen i [ .
Average illuminance (lux) 370.2 412.5 403.7
Bedroom . ~ . .

i l .A. i IA. i I 4
Average illuminance (lux)  567.7 498.4 557 543.1

representation of illuminance distribution across the interior spaces
by assigning a gradient of colors to specific lux levels, thereby
allowing clear identification of over- or underlit areas. False color
rendering is a widely accepted technique in daylighting studies for
its effectiveness in visually communicating quantitative lighting
data (Ruck, 1986; Andersen et al., 2008).

Evaluation
Architectural evaluation of Al-generated plans

In the initial phase of the study, Al-generated architectural floor
plans were subjected to a qualitative assessment within a profes-
sional architectural framework. The evaluation was structured
around four main criteria. First, spatial organization was exam-
ined in terms of how effectively the plans addressed user needs,
with particular attention to the placement of rooms, proportion-
ality of spatial dimensions, and the logic of functional relation-
ships (Li et al., 2024). Second, functionality and circulation were
assessed by analyzing the adequacy of usable spaces, the clarity
of circulation routes, and the overall legibility of the plan. The
third criterion focused on climate responsiveness, evaluating
whether the design allowed for natural ventilation through
appropriate openings and whether climate-specific features,
such as wide eaves in tropical regions or compact layouts in
polar zones, were evident. Lastly, architectural coherence was
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considered, emphasizing the presence of a consistent design logic
and the architectural feasibility of the proposed floor plan.
This multilayered evaluation framework (Table 13) provides a
critical foundation for interrogating the architectural validity of
Al-driven design outputs. Although the primary focus of this
study was climate adaptation, a supplementary morphological
reading was conducted to examine culturally resonant architec-
tural cues. In this context, features such as the raised platform
and shaded veranda in Jakarta, the inner courtyard in Alice
Springs, and the use of timber-heavy construction in Tromse
can be interpreted as echoes of vernacular typologies, albeit
emergent through Al-generated outputs. While these elements
may not indicate conscious cultural encoding, they suggest latent
representational patterns worthy of further exploration.

Spatial organization

The floor plans generated by ChatGPT demonstrated a relatively
coherent level of spatial organization, with discernible functional
zoning in cities like Jakarta, Alice Springs, and Madrid. In particu-
lar, the Jakarta plan for a tropical climate suggested a plausible
spatial sequence between indoor and semi-outdoor areas, aligning
with biophilic principles and local climatic conditions. However,
proportional inconsistencies were observed in some layouts — most
notably in the Tromse plan — where spatial adjacencies comprom-
ised privacy and spatial logic, indicating a prioritization of formal
expression over functional rigor.
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Table 6. Daylight simulation results for Jakarta, Indonesia (Microsoft Copilot Image Creator-generated plan) (Author, 2025)

Equinox (March 21)

Solstice (June 21) Equinox (September 21)  Solstice (December 21)

Jakarta, Indonesia Plan
(tropical climate)
6.2088° S
106.8456° E
Microsoft Copilot Image
Creator
Section
Living room

Average illuminance (lux)  442.7

388.5 434 425.9

Kitchen

Average illuminance (lux)

1051 1182

Bedroom

Average illuminance (lux)  496.4

435.9 474.8

Conversely, plans produced by Microsoft Copilot displayed only
moderate spatial intelligibility. While the selected outputs pre-
sented visual completeness, their internal spatial relationships often
lacked the clarity and responsiveness necessary for residential use.
In several instances, the delineation between public and private
zones remained ambiguous, reflecting the tool’s limited capacity to
resolve complex spatial hierarchies.

Functionality and circulation

ChatGPT’s outputs exhibited relatively well-defined circulation
patterns, with effective transitions between entry zones and pri-
mary living spaces, particularly in the Alice Springs and Madrid
examples. The logic of spatial sequencing — while not always
optimal — was generally comprehensible. However, certain design
choices, such as the direct adjacency between the kitchen and the
living area in the Jakarta plan, suggested a lack of sensitivity to
functional separation and user comfort.

In contrast, the circulation patterns in Microsoft Copilot’s plans
were less intelligible. For instance, the Alice Springs output lacked
clear spatial transitions, making navigation within the layout
ambiguous. The Al-generated plans often remained at a conceptual
level, lacking the operational logic required for architectural imple-
mentation and spatial legibility.

Climate responsiveness (presimulation)
ChatGPT’s ability to respond to climate-adaptive design prompts
was partially successful. In the Winnipeg plan, for example, the
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inclusion of large, south-facing glazed areas and minimal north-
facing openings adhered to passive solar design principles. Simi-
larly, in Alice Springs, the introduction of a central courtyard and
thick masonry walls suggested a meaningful engagement with hot-
arid climate strategies. Nonetheless, these responses remained
inconsistent; in the Tromse plan, the placement and scale of
windows did not adequately address the thermal or daylighting
challenges of a polar climate.

Microsoft Copilot’s outputs demonstrated a more superficial
engagement with the climate context. While the tropical plans
featured large openings, critical passive design strategies, such
as orientation control, shading devices, and compact volume
manipulation, were inconsistently applied or entirely absent, rais-
ing concerns about the tool’s comprehension of climatic specificity.

Architectural coherence

From a standpoint of architectural coherence, ChatGPT-generated
plans exhibited a higher degree of internal consistency. The Madrid
example, in particular, reflected a rational structural system, coher-
ent material logic (e.g., masonry and timber use), and a buildable
configuration grounded in local construction practices. These qual-
ities suggest an implicit awareness of tectonic and spatial discipline
within the AD’s generative logic.

By comparison, Microsoft Copilot’s plans, although aesthet-
ically engaging, lacked structural legibility. In several cases,
wall continuity and the implied load-bearing structure were
either unresolved or implausible, undermining the technical
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Table 7. Daylight simulation results for Alice Springs, Australia (ChatGPT-generated plan) (Author, 2025)

Equinox (March 21)

Solstice (June 21)

Equinox (September 21) Solstice (December 21)

Alice Springs,  Plan
Australia
(sesert
climate)

23.6980° S

133.8807° E

ChatGPT
Section

Living room

Average illuminance (lux) 567

521 593.2

Kitchen

Average illuminance (lux)

Bedroom

Average illuminance (lux)  625.4

455.9

573 635.2

feasibility of the architectural proposals. As such, the Copilot
outputs appeared more representational than architecturally
grounded.

In light of the visualizations presented in Table 2, ChatGPT
emerged as the more competent model in terms of spatial articu-
lation, functional hierarchy, climate responsiveness, and archi-
tectural buildability. Although Microsoft Copilot succeeded in
producing compositionally coherent images, its outputs lacked
the structural clarity and environmental sensitivity required for
viable architectural design. LookX Al, which was excluded from
further analysis due to fundamental representational deficiencies
(e.g., absence of fenestration), further underscored the necessity
of rigorous architectural criteria when assessing AI-generated
content. These findings collectively suggest that while T2I models
can support schematic visualization, their capacity to internalize
and apply architectural principles — particularly in the context of
climate-responsive housing — remains limited and warrants fur-
ther refinement.

The architectural evaluation was conducted by the lead
researcher, who is a licensed architect and associate professor
with expertise in design theory and Al-driven generative
methods. The assessment followed a structured content analysis
protocol based on established architectural criteria (Li et al,,
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2024), ensuring consistency and interpretive depth across
both AI models. Four core dimensions — spatial organization,
functionality and circulation, climate responsiveness, and
architectural coherence — were used to comparatively assess
the plans produced by ChatGPT and Microsoft Copilot. Each
criterion was rated on a five-point scale, where higher scores
indicate greater alignment with architectural logic and climate-
adaptive design principles. The resulting scores are presented in
Table 14 as a synthesized comparison of the two models’ archi-
tectural performance. Although the architectural evaluation
involved qualitative judgments, the use of predefined criteria, a
calibrated scoring system, and a structured comparison frame-
work ensured a high degree of methodological objectivity. The
evaluation did not rely on subjective preferences but rather on
professional architectural standards and simulation-informed
assessments, allowing for replicable and critically grounded
interpretations.

In addition to the unweighted qualitative scores (Table 14), a
supplementary weighted scoring matrix (Table 15) was introduced
to enhance transparency and quantifiability. Criterion-specific
weights were assigned based on their relevance to spatial perform-
ance, and final scores were computed as weighted sums. This
method offers a more structured comparative lens, reaffirming
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Table 8. Daylight simulation results for Alice Springs, Australia (Microsoft Copilot Image Creator-generated plan) (Author, 2025)

Equinox (March 21)

Solstice (June 21) Equinox (September 21)  Solstice (December 21)

Alice Springs, Australia Plan
(desert climate)
23.6980° S
133.8807° E
Microsoft Copilot
Image Creator

Section

Living room

Average illuminance (lux)  306.1

223.7 281

Kitchen

Average illuminance (lux)  547.6

399.6 504.9 576.3

Bedroom

Average illuminance (lux)  708.1

518.4 652.9 747

ChatGPT’s relative strength in spatial reasoning while addressing
reviewer concerns regarding subjectivity.

Daylight performance analysis

To assess the daylighting performance of Al-generated architec-
tural plans, simulations were conducted using VDV on four key
solar dates {spring equinox [March 21], summer solstice [June 21],
autumn equinox [September 21], and winter solstice [December
21]} at 12:00 h local solar time. Each plan was evaluated across three
primary functional zones: the living room, the kitchen, and the
bedroom. Average illuminance values (lux) were extracted using
false color mapping, providing a visual and quantitative under-
standing of spatial daylight distribution. The performance metric
was average illuminance (lux) across these rooms during daytime
hours (12:00 h). Results were compared to daylighting benchmarks
derived from literature. According to Reinhart and Walkenhorst
(2001) and IES Lighting Handbook (2011), the thresholds presented
in Table 16 were applied.

In tropical and desert climates (Jakarta and Alice Springs),
ChatGPT-generated plans generally met or exceeded the recom-
mended daylight thresholds for all rooms, reflecting a relatively
robust spatial openness and appropriate window placement. Par-
ticularly, the Jakarta plan exhibited an average illuminance of over
900 lux in the living area across equinox dates, suggesting potential
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for glare and over-illumination, yet confirming ample daylight
availability. In contrast, Copilot outputs in the same locations
showed underperformance in the living room (e.g., 306.1 lux in
Alice Springs), but surprisingly high kitchen values (e.g., 1347.8 lux
in Jakarta), possibly due to exaggerated opening placements or
unshaded orientations.

In temperate and cold continental climates (Madrid and Win-
nipeg), ChatGPT plans performed reliably within the daylight
thresholds, although solstice data revealed seasonal drops, espe-
cially in the winter months (e.g., kitchen illuminance of 193.5 lux in
Winnipeg). Microsoft Copilot’s outputs in Winnipeg revealed very
high illuminance levels in summer (e.g., 1740.6 lux in the living
room), indicating limited passive shading logic and poor modula-
tion of seasonal exposure.

In Tromse’s polar context, ChatGPT’s floor plan exhibited
critically low daylight performance in winter (e.g., only 9.6 lux in
the living room), aligning with extreme daylight limitations at high
latitudes. Even during the equinox, results hovered below min-
imum standards, suggesting the need for active daylighting systems
or architectural adaptations like larger glazed surfaces or light-
reflecting interiors.

Comparative analysis across all plans highlights that while
some Al-generated layouts coincidentally met daylighting stand-
ards, these successes were not consistently climate-responsive or
seasonally calibrated. In particular, Copilot’s outputs showed
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Table 9. Daylight simulation results for Madrid, Spain (ChatGPT-generated plan) (Author, 2025)

Equinox (March 21)

Solstice (June 21) Equinox (September 21)  Solstice (December 21)

Madrid, Spain Plan
(Mediterranean
climate)
40.4168° N
3.7038° W
ChatGPT
h m
Living room l:l——]
k

Average illuminance (lux)

702 607.3 339.9

Kitchen

Average illuminance (lux)  665.3 898.4 776.5 434.8
Bedroom ‘
Average illuminance (lux) 655 883.3 765.5 427.4

erratic performance patterns, with certain spaces far exceeding
thresholds while others failed to meet minimum requirements.
This inconsistency suggests that generative Al tools, despite inter-
preting prompt keywords like “natural light” or “cross-
ventilation,” do not yet possess a functional understanding of
solar geometry or daylight performance across seasons.

Figures 1-3 present a comparative analysis of average daylight
illuminance levels across three critical residential spaces (living
room, kitchen, and bedroom) based on Al-generated plans from
ChatGPT and Microsoft Copilot. Overall, ChatGPT-generated
layouts exhibited more consistent performance within the
recommended daylight thresholds defined by Illuminating
Engineering Society (2011), particularly in temperate and trop-
ical climates. In kitchens, both AI tools produced sufficiently
high illuminance values, often exceeding the 500 lux threshold;
however, Copilot outputs occasionally demonstrated overexpos-
ure, suggesting a lack of refined daylight modulation. For bed-
rooms, where the target range is lower (200-300 lux), most Al
outputs, especially from ChatGPT, surpassed minimum require-
ments but also risked excessive lighting in equatorial and desert
contexts. The graphical comparisons underscore the variability
in daylight response between models and highlight the need for
postgenerative calibration when employing Al-driven plans in
performance-sensitive design workflows.
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Overall, ChatGPT-based plans demonstrated greater coherence
in spatial logic and lighting performance, although even these
required careful adjustment to mitigate overexposure or insuffi-
cient daylight during certain periods. The findings emphasize that
current T2I Al tools can generate plausible architectural layouts,
but their capacity to produce climate- and daylight-aware design
solutions remains limited without postgenerative environmental
refinement.

A synthesis of the findings (Table 17 and Figure 4) reveals that
ChatGPT demonstrates a marked superiority in architectural
criteria, particularly in terms of Architectural Coherence and
Spatial Organization. However, its performance in daylight com-
pliance remains limited, indicating a strong capacity for formal
composition but a notable deficiency in meeting illumination
thresholds. In contrast, Microsoft Copilot exhibits weaker archi-
tectural performance, yet achieves comparatively higher scores in
Daylight Compliance, particularly in certain climate-space con-
figurations. The radar chart (Figure 4) visually reinforces these
observations, highlighting ChatGPT’s architectural advantage
while simultaneously underscoring the inconsistency of both
models in climate-responsive daylight performance. This suggests
that while generative models excel in visual form-making, their
output remains insufficiently informed by performance-oriented
design logic.
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Table 10. Daylight simulation results for Winnipeg, Canada (ChatGPT-generated plan) (Author, 2025)

Equinox (March 21)

Solstice (June 21)

Equinox (September 21) Solstice (December 21)

Winnipeg, Plan
Canada
(cold
continental
climate)
49.8951° N
97.1384° W
ChatGPT Section
Living room
Average 824 1271.3 1036.2 444.1
illuminance (lux)
- ' I I r ]
_ i
Average 359.6 551.4 445.2 193.5
illuminance (lux)
Bedroom —— -Y
A I I ? A
Average 293.6 449.2 362.3 157.8

illuminance (lux)

Conclusion

This study critically examined the integration of generative
AT tools within the early-stage design process of sustainable
housing in diverse climate zones, with a specific focus on daylight
performance. By combining T2I diffusion models, CAD-based
digital reconstruction, and validated daylight simulation methods,
the research offers a novel mixed-methods approach that bridges
speculative design generation and performance-based environmen-
tal assessment.

The findings reveal that while current AI-driven models, such
as ChatGPT (OpenAl) and Microsoft Copilot, are capable of
producing visually coherent floor plan representations, their
capacity to embed climate-responsive logic, particularly in rela-
tion to solar orientation, fenestration, and seasonal daylight
modulation, remains inconsistent and largely superficial.
ChatGPT-generated plans displayed comparatively higher archi-
tectural legibility and more balanced illuminance values across
different functional spaces. However, even these outputs
required substantial postprocessing for standardization and
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simulation compatibility. The exclusion of LookX AI due to its
inability to render fundamental spatial features, such as window
openings, further underscores the limitations of existing domain-
specific AI models in producing technically operable architectural
solutions.

From a methodological perspective, the study contributes to
the growing discourse on performance-driven generative design
by establishing a replicable workflow that spans prompt engin-
eering, architectural visualization, CAD reconstruction, and
dynamic simulation. The comparative evaluation across five dis-
tinct climate contexts revealed the sensitivity of daylight adequacy
not only to spatial configuration but also to AI model behavior,
suggesting that generative intent alone does not guarantee envir-
onmental suitability. While the use of a single standardized
prompt per location enhanced experimental control, future
research should explore the effects of prompt variation and repe-
tition. Repeating the experiment with diverse prompts could yield
more robust conclusions regarding the stability and generalizabil-
ity of Al-generated design outcomes across different environmen-
tal contexts.
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Table 11. Daylight simulation results for Winnipeg, Canada (Microsoft Copilot Image Creator-generated plan) (Author, 2025)

Equinox (March 21)

Solstice (June 21) Equinox (September 21)  Solstice (December 21)

Winnipeg, Canada (cold  Plan
continental climate)

49.8951° N
97.1384° W
Microsoft Copilot Image
Creator
Section
Living room

Average illuminance (lux)

1396.2 614

Kitchen

Average illuminance (lux) 854

13115 1042.7

Bedroom »

Average illuminance (lux)  207.3

3173 255.4 112.4

It is important to note that the scope of this research was
limited to a fixed spatial program and a single set of daylight
performance metrics; therefore, future studies should expand the
analysis to include more complex building typologies, additional
environmental variables (e.g., thermal comfort, glare, and energy
loads), and a broader range of AI models. Future research should
consider expanding the range of AI models tested to include
emerging platforms, such as Midjourney and Stable Diffusion,
which exhibit distinct stylistic and spatial affordances. This
would allow for a more comprehensive evaluation of generative
model behavior in architectural contexts. Furthermore, the simu-
lation process assumed static material reflectance values and did
not account for context-specific obstructions or dynamic fagade
systems, which may affect real-world daylighting outcomes.
Addressing these limitations through more comprehensive data-
sets and real-time AI feedback loops could significantly enhance
the environmental fidelity and architectural applicability of gen-
erative design outputs. While this study focused exclusively on
daylighting performance as a measurable environmental indica-
tor, future research could be extended to include additional
parameters, such as natural ventilation potential, thermal gain/
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loss, and operational energy demands, particularly for climate-
sensitive residential design scenarios.

Future research should explore how generative models might
be refined not only through prompt engineering at the input
stage but also through performance-based feedback loops that
allow for iterative fine-tuning of existing design outputs. Rather
than regenerating entire schemes when performance deficits are
identified, such as inadequate daylight compliance or poor spa-
tial organization, models could be steered incrementally using
evaluative feedback to adjust form and layout. This would align
with emerging research in reinforcement learning and adaptive
conditioning in Al-assisted architectural design, paving the
way for more intelligent, environmentally responsive generative
systems.

Ultimately, this research calls for the development of next-
generation Al systems that move beyond aesthetic speculation
and toward semantically aware, performance-informed architec-
tural reasoning. Such advancements will be essential if generative
tools are to support architects meaningfully in addressing pressing
challenges such as climate adaptation, daylight sufficiency, and
energy equity in the built environment.


https://doi.org/10.1017/S0890060425100085

18

Table 12. Daylight simulation results for Tromsg, Norway (ChatGPT-generated plan) (Author, 2025)

Tugce Celik

Equinox (March 21) Solstice (June 21)

Equinox (September 21) Solstice (December 21)

Tromsg, Plan
Norway
(polar
climate)

69.6496° N

18.9560° E

ChatGPT
Section

Living room

Average illuminance (lux)

145.3

Kitchen

Average illuminance (lux)

290 733

472.6

Bedroom

Average illuminance (lux)

190.3

307.8 14.3

Table 13. Multilayered evaluation framework

Criterion

Evaluation questions

Key considerations

a. Spatial organization

Do the spatial arrangements address user needs
effectively?

Logical room layout, appropriate room sizes, and
functional relationships (Li et al., 2024)

b. Functionality and circulation

Are the usable areas sufficient?
Are circulation paths clear?
Is the plan legible?

Clear zoning, unambiguous movement flow, and ease of
understanding the plan

c. Climate responsiveness
(presimulation)

Are openings positioned to enable natural ventilation?
Are there climate-specific design features?

Wide eaves (tropical), compact forms (polar),
orientation, and passive design strategies

d. Architectural coherence

Does the design exhibit a unified architectural concept?
Is it technically buildable?

Consistency in design logic and realistic structural and
spatial configuration
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Table 14. Comparative scoring of Al models based on architectural evaluation

Table 16. Daylight thresholds

19

criteria
. L. . i Room Recommended average illuminance
Evaluation criteria ChatGPT (OpenAl) Microsoft copilot
X L Living room 300-500 lux
A. Spatial organization 4.0/5 2.5/5
K R K R Kitchen 500-750 lux
B. Functionality and circulation 3.5/5 2.0/5
R R Bedroom 200-300 lux
C. Climate responsiveness 4.0/5 2.0/5
D. Architectural coherence 4.5/5 2.5/5
Total (average score) 4.0/5 2.25/5
Scoring legend (1-5 scale):
1= Very poor: No architectural value or responsiveness.
2 = Poor: Inadequate spatial or climatic logic.
3 = Fair: Acceptable but limited architectural consistency.
4 = Good: Functionally and environmentally thoughtful.
5 = Excellent: Highly coherent, climate-adaptive, and buildable.
Table 15. Weighted architectural evaluation matrix
Criteria Weight ChatGPT score Copilot score ChatGPT weighted Copilot weighted
Spatial clarity 0.30 4 3 1.20 0.90
Functional hierarchy 0.25 3 2 0.75 0.50
Circulation logic 0.20 4 3 0.80 0.60
Environmental responsiveness 0.25 3 2 0.75 0.50
Final weighted score 1.00 3.50 2.50
Living Room Daylight Performance by City and Al Model
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Figure 1. Living room daylight performance by city and Al model.
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Kitchen Daylight Performance by City and Al Model
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Figure 2. Kitchen daylight performance by city and Al model.
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Figure 3. Bedroom daylight performance by city and Al model.
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Table 17. Summary comparative chart of architectural and environmental
performance

Axis Scale Source
Spatial organization 1-5 Table 14
Functionality and circulation 1-5 Table 14
Climate responsiveness 1-5 Table 14
Architectural coherence 1-5 Table 14
Daylight compliance 0-5 (normalized)® Tables 5-12

“The number of spaces within the recommended daylight thresholds was proportionally
scaled from 0 to 1, and then linearly converted to a 0-5 range.
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Figure 4. Summary comparative chart of architectural and environmental findings.
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