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AN ESTIMATE OF RAMANUJAN RELATED TO THE
GREATEST INTEGER FUNCTION

S. BHARGAVA, CHANDRASHEKAR ADIGA AND D.D. SOMASHEKARA

If a and n are positive integers and if [ J is the greatest integer function we obtain
oo

upper and lower estimates for J^ [n/a J stated by Ramanujan in his notebooks.
*=i

1. INTRODUCTION

Let [x\ denote the greatest integer not exceeding the real number x. If p is a
oo

prime it is well known [3, p.80] that the sum e of the series £) Ln/P*J *s iae largest
fc=i

exponent such that n! is divisible by pe. In this note we prove a proposition stated
in the third notebook of Ramanujan [4, p.378] which, along with its predecessors are
being edited by Berndt [1].

oo
PROPOSITION 1. (Ramanujan). If a and n are positive integers, then 53 Ln/°*J

J b = l

lies between (n — l)/(o — 1) and {n/{a — 1)} — {log (n + 1)/ log a} .

We observe that we may assume in the proposition o ^ 2 and n ^ 2. Further,
on using the binomial theorem, we have

(1 + n)0"1 - o ^ 1 + (a - l)n - a = (n - l)(a - 1) > 0.

Hence (1 + n)°~ > a and this gives, on taking logarithms,

{n/(a - 1)} - {log (n + l)/log a} < (n - l)/(o - 1).

In order to establish Proposition 1 we therefore prove the following theorem.

THEOREM 1. (Ramanujan). Let a > 2 and n ^ 2 be integers. Then

(1) {n/(a - 1)} - {log(n + l)/loga} < f > / a * J < (n - l)/(« - 1).

In the next section we first obtain two lemmas which enable us to prove Theorem 1.
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2. P R O O F OF THEOREM 1

LEMMA 1 . Ifn ^ 2 and Jfc ^ 2, then

(2) (n + Jfe)n<(n + l ) n + * - \

Further, (2) becomes an equality in the cases

(i) n = 0, Jfc 5* 1, (ii) n = 1, Jfc = 0, 1, (x£î  n = 2, Jfc = 1.

PROOF: In the case n = 2 , we have for each Jfe ^ 2 ,

= (1 + 2)* + 1 - (2 + Jfc)2

l ) t ( f c - l ) ( t - 2 ) 4

L 2 - 3 - 4 2

since by hypothesis Jfc ^ 2. Thus (2) is true for n — 2 and each Jfe ^ 2.

Let us assume that (2) holds for each Jfc ^ 2 and some m (= n) ^ 2. That is

(2') (m + Jfe)ro<(m + l ) m + f c - 1 .

Now, for each Jfc ^ 2,

(' ! ) (m + l + Jfe)
m + J

^ j V + l + *) (by (2'))

2 ) m + * .
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In writing the last inequality we have used the Bernoulli inequality:

(3) as)a > l + a x ( a > l , x ^ -1)

with x = l/(m + 1) and a = k. We have thus shown that (2) is true with n = m + 1.
Thus we have proved Lemma 1 by induction on n. D

LEMMA 2 . If a, b0, bi, ..., bk are integers such that a ^ 2 and 0 < 6< < a,
i = 0, 1, 2, . . . , k, then

(4) abo+bl+...+bk

PROOF: Consider

» = 0 m=l 0 $u<ij

k

m=l

k

m=l \ 2 < «! <t2 <•••<«,• $ m

fc-

m = 0

i=0

Taking the (o — l) - th power on both sides and using Lemma 1, we have (4). D

P R O O F OF THEOREM 1: It is convenient to consider the cases n = a,n < a and

n > a separately.

oo

CASE (i). n = a ^ 2: We then have n < ak for each k ^ 2 and so X) Ln/°*J = *

and the second half of (1) is trivially true with equality prevailing. The first inequality
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of (1) is true in the strict sense, since

oo

£ Ka*J - {n/(a - 1)} + {log (n + 1)/ log a}

= {log(n + l)/logn}-{l/(n-l)}

= log{(n + l)n-Vn}/(n - l)logn > 0.

oo
CASE (il). (2 < ) n < o: We then have n < ak for each Jb ̂  1 and so £ Ln/a*J = °

J b = l

and the second half of (1) holds trivially in the strict sense. The first half of (1) is also
true since

f>/o*J + {log(n + l)/loga} - {n/(a- 1)}
Jb=i

= {log (n + 1)/ log a} - {n/(a - 1)} > 0,

on using (2) with k = a — n there, provided a ^ n + 2. In the other subcase a = n + 1 ,
the left and the middle expressions of (1) both being 0, we indeed have equality in the
first half of (1).

CASE (ill). n> a(^ 2): In this case there exists an integer k > 2 such that

or

In the subcase n = a*"1, we

oo

m = l

J f e -

have

1 <

a*"1

1

1 
II
 

1

log n/ log a

^n<ak.

k-l

m=l

a*"2 + ak~

a*-1 - 1
a - 1

n - 1

<k,

' + ••• + !

a - 1

and thus the second half of (1) holds with equality. The first half of (1) also holds since

\n/am\ - {n/(o - 1)} + {log (n + 1)/ log a}

= {- l / (o-1)} +{log(n + 1)/logo}

> {log (a -

> 0

m = l
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as shown at the end of the concluding step of case (I).

We are thus left with the subcase a*"1 < n < a*. In this case we can write

(5) n = t o * * " 1 + biak-2 + ••• + bk-2a + bk-i

(0 < bi < a, i = 0, 1, . . . , Jfe - 1, &o > 1) and

m = l

m = l

7 — 0

= {(boa"-1 +-.. + 6*_i)/(o - 1)} - {(60 + • • • + 6*-i)/(a - 1)}

= {n/(o - 1)} - {(60 + & ! + • • • + **- i ) / (a - 1)}.

The second half of (1) follows immediately since bo ^ 1. The first half is also true
since

[n/am\ - {n/(a - 1)} + {log(n + l)/logo}
m=l

= {log(n + l)/loga} - I ( 5 > J / ( a -1)1 ^ 0,

on using (4) and (5).

This completes the proof of Theorem 1 and hence Proposition 1 is established. D

An alternate proof of Proposition 1 due to Berndt [2] is being incorporated in one
of the forthcoming volumes of his editions of Ramanujan's Notebooks [1].
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