
ON INDEPENDENT CIRCUITS CONTAINED IN A GRAPH 

p. ERDOS AND L. POSA 

A family of circuits of a graph G is said to be independent if no two of the 
circuits have a common vertex; it is called edge-independent if no two of them 
have an edge in common. A set of vertices will be called a representing set 
for the circuits (for the sake of brevity we shall call it a representing set), 
if every circuit of G passes through at least one vertex of the representing set. 
Denote by 1(G) = k the maximum number of circuits in an independent 
family and by R(G) the minimum number of vertices of a representing set. 
Dirac and Gallai asked whether there is any relation between 1(G) and R(G) 
(trivially R(G) > 1(G)). B. Bollobâs (unpublished) proved that if 1(G) = 1, 
then R(G) < 3 and the complete graph of five vertices shows that R(G) < 3 
is best possible. 

Consider now all graphs with 1(G) = k. Denote by r(k) the maximum value 
of R(G) for all graphs with 7(G) = k. It is not immediately obvious that 
r (k) is finite and the theorem of Bollobâs states that r( l) = 3. The value of 
r(2) does not seem to be known. We are going to prove the following 

THEOREM. There are absolute constants c\ and c2 such that 

(1) c\ k log k < r(k) < c2k log k. 

We cannot determine 

lim r(k)/k log k 

and in fact cannot even prove that the limit exists. 
First we prove the lower bound in (1). In fact we shall prove a somewhat 

stronger result. Denote by E(G) the maximum number of edge-independent 
circuits of G. We shall show that for every k there is a graph G with 1(G) = k 
and 
(2) r(k) > c*E(G)logE(G). 

(2) is stronger than the lower bound in (1) since clearly E(G) > 1(G) = k. 
We shall prove (2) by a probabilistic argument and cannot at present give 

an explicit example of a graph satisfying (2). Our proof will be very similar to 
the one used in (1, 2, and 3). 

First we introduce a few notations. Vertices of G will be denoted by 
Xi, . . . , ju • • • ; circuits will be denoted by CÙ the subgraph of G spanned by 
the vertices Xi, . . . , Xi will be denoted by G(xi, . . . , xt); G(n;m) will denote 
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a graph of n vertices and m edges; II(G) denotes the number of edges of G\ 
the edges of G will be denoted by eu or by {xu x/)\ and G — e\ — . . . — em 

will denote the graph from which the edges eu . . . , em have been omitted. The 
length of a circuit d is the number of its edges. 

Consider all graphs G(n\ lOOn) with n labelled vertices xu • • • , xn. The 
number of these graphs is clearly 

(3) [ \ 2 / = A 

First we state two lemmas. 

LEMMA 1. All but o(An) graphs G(n; lOOn) have the property that for every 
choice xtl . . . , xipy p = [n/2], of p vertices, 

(4) n ( G ( s f l , . . . ,*<p) >2n. 

LEMMA 2. Put I = [(log n)/\00]. All but o(An) graphs G(n\ lOOn) have fewer 
than n circuits of length < /. 

Assume that the lemmas have already been proved. Then we prove (2) as 
follows. By Lemmas 1 and 2 for n > n0 there is a G(n; lOOn) which satisfies 
(4) and for which the number of circuits of length not exceeding I is less than 
n. Denote by Cu 1 < i < m < n, these circuits, and let e* be an arbitrary 
edge of C^ The e's are not necessarily different. Put 

G' = G — ei — . . . — em. 

Clearly each circuit of G' has more than / edges and since Gf has at most 
lOOn edges, we evidently have 

(5) E(G') < I00n/l < 20,000 n/(log n). 

On the other hand 

(6) R(G') > n/2. 

To prove (6) observe that if xu . . . , xk, k < n/2, would represent all circuits 
of Gf, then G'(xk+\, . . . , xn) would not contain any circuits, hence would have 
fewer than n — k edges, or 

n(G'(xfc+i> • • • J xn)) < n — k < n. 

But we evidently have by (4) and m < n (n — k > n/2) 

U(Gf(Xfc+ll . . . , xn)) > U(G(xk+u . . . , xn)) — m > 2n — n = n, 

an evident contradiction. Hence (6) is proved. (5) and (6) easily imply (2). 
To see this, let n be the largest integer with 20,000n/(log n) < k. For our 
graph G' we have by (5) and (6) 

E(G') < *, R(G') > cklogk 
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and by perhaps adding to G some (at most k) independent circuits we clearly 
obtain a graph G\ with 

/ ( G / ) = *, E(GV) < 2k, .Rid') > czEW) logE(G/) , 

which completes the proof of (2), if (5) and (6) are assumed. 
Thus to complete the proof of (2) we only have to prove our lemmas. To 

prove Lemma 1, observe that the number of graphs G(n\ lOOn) which have 
p vertices xilf . . . , xip with 

IL(G(xtl, . . . ,xip)) < 2n 

is at most (1, pp. 35-6) 

.) ,=(«)z(®)(©-©)<2».2-(©Y©-©) 
W K*. \ l J \ mn _l ) \2n/\ 98n / 

since 

< 2 " , 0 
and a simple computation shows that the terms in the sum (7) are increasing 
for / < 2n. Now e2n > (2n)2n/(2nl) and p = [n/2] imply that 

P\\ / z2\2w / -J\2n 

and for n > nQ we obtain by a simple computation and (3) 

(9) 
9Sn / \9Sn 

< (1 + 
\100n/ 

From (7), (8), and (9) we have 

In < (1 + o(l))M,,(i)»w200*» = o{An). 

- o + .(.»• ^ ( ! ) - ( ^ ) * . 

which proves Lemma 1. 
Now we prove Lemma 2 (1, p. 36). The number of graphs G(n\ lOOn) which 

contain a given circuit (xi, x2), (#2, x3), . . . , (x/-i, x r), (xr, Xi) clearly equals 

CD 
aoo» - r> 
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A circuit is determined by its vertices and their order. Thus there are 
n(n — 1) . . . (n — r + 1) < nr such circuits. Therefore the expected number 
of circuits of length r < / = [(log#)/100] is less than 

< (l + o(l)) £ nr\ n\ =o(n). 
\l00»/ 3 < r < ! \l00»-r/ 3 < r < ! \ \ 2 / / 

Therefore by a simple and well-known argument the number of graphs 
G{n\ 100?z) having n or more circuits of length not exceeding / is o(An), which 
proves Lemma 2 and hence the proof of (2) is complete. 

To complete the proof of our theorem we now have to prove that 
r(k) < Czk log k. We are going to use two theorems, the first, due to ourselves 
(1, p. 9), which states: There exists an absolute constant c3 so that every 
G(n, n + /) contains at least £3 //log / edge-independent circuits. 

Assume now that every vertex of our graph has valency < 3 . Then clearly 
it contains c^l/logl independent circuits; since if two circuits are edge-
independent and not independent, then every common vertex of the two circuits 
must have valency 4. 

The second theorem is due to T. Gallai (4). Let G be a graph. Designate 
some of its vertices, say Xi, . . . , xu, as principal vertices; the other vertices, 
3>i, . . . , yr of G, will be the subsidiary vertices. A path is called a principal 
path if its end points are principal vertices and it contains no other principal 
vertices. (A circuit having only one principal vertex is not allowed.) Denote by 
Vma,x the maximum number of independent principal paths (two principal 
paths are called independent if they have no vertex [principal or subsidiary] 
in common). IImin denotes the smallest integer such that there are nmin vertices 
representing all the principal paths—in other words there are k = IImin 

vertices xh, . . . , Xik (principal or subsidiary) so that every principal path 
contains one of the x z / s and one cannot find fewer than k vertices with this 
property. Gallai's theorem asserts that 

(10) n m i n < 2 F m a x . 

Now we are ready to prove the right-side inequality of (1). Assume that in G 
the maximum number of independent circuits is k and let 

(7) Ci9 1 < i < k, 

be a maximal system of independent circuits of G. Omit all the edges of Cu 

1 < i < k, but retain the vertices of Ct. Thus we obtain the graph G\. Let the 
principal vertices of Gi be the vertices of Cu 1 < i < k, all other vertices being 
subsidiary ones. Consider now a maximal system of independent principal 
paths of G\. The circuits Ct and the maximal system of independent paths 
define a graph G* every vertex of which has valency not exceeding three. 
(G* is a subgraph of G but not of Gi.) Let m denote the number of vertices of 
G*. Then clearly the number of edges of G* is 
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(ii) m + ymax 

since each principal path gives an excess of 1 of the number of edges over the 
number of vertices. Thus by our theorem G* (and therefore G) contains at 
least 

C3 ^ m a x / l o g Vmax 

independent circuits. Hence 

(12) ~^^x-<k or Vm&x<c4klogk. 
AOg vmSiX 

Now let yi, . . . , yt be a minimal system of vertices representing all the principal 
paths of G\. By (12) and Gallai's theorem 

(13) t < 2c, k log k. 

For some i, 1 < i < k, there may exist a circuit Dt which has one (and only 
one) common vertex xt with Cu which is independent of Cj(l < j < k,j 9e i) 
and does not pass through any of the yjf 1 < j < t. But for a given i there 
cannot be two such £>/s, say Du and Di2, whose unique common vertex with 
Ct is xtl and xi2, where xtl and xi2 are distinct. To see this, observe that if 
Dtl and Di2 are independent, then the k + 1 circuits 

Cj(l <j<k,J5* i), DUl Di2 

would be independent, which contradicts the maximality property of k. If 
Dtl and Di2 are not independent, then their union contains a principal path 
connecting xtl and xi2; hence it contains one of the vertices yj(l < j < t), 
which by assumption represent all principal paths; but this contradicts our 
assumption that Dix and Di2 do not contain any of the yj(l < j < t). 

If Ct is such that there is a Dj corresponding to it, adjoin their common 
vertex xt to the y's; otherwise choose any vertex of Cu denote it by xt, and 
adjoin it to the y's. Some of the x / s might have already occurred amongst the 
y's; but in any case the system 

(14) yj(l <j<t)t xt(l<i<k) 

contains at most 

2c4 k log k + k < C2 k log k 

vertices. Our proof will be complete if we show that the system (14) represents 
every circuit of G. Let C be any circuit of G. We have to show that it contains 
at least one of the vertices (14). The circuits d are clearly represented by the 
vertices (14) ; thus we can assume that C ^ Ciy 1 < i < k. If C contains 
at least two of the vertices of Cu 1 < i < k, then C contains a principal path 
of Gi and hence one of the vertices yjt 1 < j < t. If C contains only one of the 
vertices of d and does not contain any of the yj (1 < j < t), then it contains 
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Xf, 1 < i < k. Finally, C cannot be disjoint of all the C/s because of the maxi­
mal ly property of the Cif 1 < i < k. This completes the proof of our theorem. 

It would be easy to obtain explicit inequalities for c\ and c2 but they would 
be very far from being best possible. 
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