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LETTER TO THE EDITOR

Dear Editor,
Convex hulls on a hemisphere

We write to describe how recent identities on convex hulls in Euclidean space, proved by this
letter’s first author (see [2] and [3]), can be applied to a study of random points on a hemisphere
published by the second author (see [4]).

Cowan [2] showed that, for points P1, P2, . . . , Pn distributed exchangeably in R
d , with any

probability law µ for the common distribution of each point,

E Vn = 1

2

n−d−1∑
j=1

(−1)j−1
(

n

j

)
E Vn−j , (n − d) ≥ 2 and even, (1)

where Vj is defined as the volume of Hj , the convex hull of P1, P2, . . . , Pj . We have noticed
from [4] that, somewhat surprisingly, the d = 2 version of this formula also holds on a
hemisphere H . So identities like E V4 = 2 E V3, E V6 = 1

2 (6 E V5 − 15 E V4 + 20 E V3),
and E V8 = 1

2 (8 E V7 −28 E V6 +56 E V5 −70 E V4 +56 E V3)—and so on—hold on the plane
and on the hemisphere too.

A set X on a topologically open hemisphere H (a hemisphere without its great-circle
boundary) is convex if all shorter great circle arcs joining pairs of points belonging to H
lie wholly within the set. With this definition, Miles [4] studied the polygonal convex hull of
n points uniformly and independently distributed on H—this being the convex set of minimal
area on H covering all n points. This set’s boundary comprises parts of great circles.

Miles’ Table 3 gives numerically the expectations of the convex hull’s area Vn, perimeter
Sn, and number of sides Nn. These are given theoretically for n ≥ 1 (using our notation and
replacing Equation (8.2) of [4]) by

E Vn = π(2 − nγn−1); E Sn = 2π(1 − γn); E Nn =
(

n

2

)
γn−2, n > 1, (2)

with E N1 = 1. Here, for n ≥ 0,

γn :=
∫ π

0

(
1 − θ

π

)n

sin θ dθ,

and from this we obtain γ0 = 2 and γ1 = 1, and, for n ≥ 2,

γn = 1 − n(n − 1)

π2 γn−2.

Using this γn recurrence, it is easily shown that the d = 2 version of (1) holds. It is also easy
to establish that Cowan’s [3] identity for E Nn in R

d , namely

E Nn = n

2
+ 1

2

n−1∑
j=1

(−1)j−1
(

n

j

)
E Nn−j , (n − d) ≥ 3 and odd, (3)
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augmented by E Nn = n for n ≤ d + 1, also applies in Miles’ hemisphere study; we can
readily show that the expression for E Nn given in (2) satisfies (3). Identity (3) has been proved
in [3] under less general conditions than those in identity (1)—exchangeability is replaced
by independence and the probability law µ must give zero measure to any j -dimensional flat
(j < d).

Greater geometric insight into why the volume identity (1) applies to a hemisphere can be
gained by utilising another identity, proved in [3]:

E ν(Hn) = 1

2

n−d−1∑
j=1

(−1)j−1
(

n

j

)
E ν(Hn−j ), (4)

where ν is any measure on the Borel sets of R
d , absolutely continuous with respect to the

Lebesgue measure. Equation (1) is an example of (4) with ν equal to the volume measure V

in R
d .

Let us construct another example by projecting n points, which have been placed randomly
on H using any exchangeable probability law, into R

2 via the usual projection P from an open
hemisphere to the plane. This projection is defined as follows. Place the centre of a sphere S
of radius r at the point C = (0, 0, r) ∈ R

3; so S is tangential to the xy-plane. The hemisphere
of S lying in the region 0 ≤ z < r is called H . Then, for Q ∈ H , P(Q) := P , where P is the
unique point in the xy-plane such that C, Q, and P are collinear. Thus, we obtain, as a result
of projection, n exchangeable points P1, P2, . . . , Pn ∈ R

2 with some common exchangeable
law. We now choose the measure ν on R

2 induced by the projection. That is, a Borel set X

in R
2 is given the measure ν(X) equal to the area of the set on the hemisphere which, when

projected, gives X. This is obviously absolutely continuous, so (4) holds, initially as a result
for the planar convex hulls. But the polygonal convex hull of j points on H projects into the
convex hull of the projections of these j points (and vice versa using the inverse map), so the
result holds for the polygonal convex hulls on the hemisphere.

So we have proved that (1) applies to points distributed with any exchangeable probability
distribution on H—a rather more general situation than the independent uniform case studied by
Miles. Furthermore, because the hemispherical projection conserves Nn, we have also proved
that (3) applies for hemispheres—when points are distributed independently by any probability
measure that gives zero mass to points and great circles in H .

The findings of this letter also apply to the situation where n points are distributed
exchangeably on a sphere, conditional upon all of them being contained in some hemisphere;
this conditional construction was also considered in [4] for the independent uniform case.

Remark 1. Miles’ [4] Equation (6.16) is incorrect. It should be

γn = 1 +
n/2−1∑
i=1

(
n

2i

)
(−1)i(2i)!

π2i
+ 2(−1)n/2 n!

πn
(n even)

= 1 +
(n−1)/2−1∑

i=1

(
n

2i

)
(−1)i(2i)!

π2i
+ (−1)(n−1)/2 n!

πn−1 (n odd).

Remark 2. Formula (1) first appeared in 1990 (see [1]) using the less-general assumption that
points are independent and identically distributed. Our argument depends on the more recent
result (4). By a similar use of projection arguments we can prove that (4), with ν replaced by
ν∗ (an absolutely continuous measure on the Borel sets of H ), holds on H .
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Remark 3. The findings of this letter apply to hemispheres of higher dimension, because (1)
and (4) are formulae in R

d , and a suitable projection P mapping H (which is now part of a
d-sphere ⊂ R

d+1) to R
d can be defined.
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