
JFP 26, e4, 62 pages, 2016. c© Cambridge University Press 2016

doi:10.1017/S0956796816000058

1

Testing noninterference, quickly

C Ă T Ă L I N H R I Ţ C U

Inria Paris, Prosecco team, Paris, France

(e-mail: catalin.hritcu@inria.fr)

L E O N I D A S L A M P R O P O U L O S, A N T A L S P E C T O R - Z A B U S K Y

and A R T H U R A Z E V E D O D E A M O R I M

Department of Computer and Information Science, University of Pennsylvania, Philadelphia, USA

M A X I M E D É N È S

Inria Paris, Gallium team, Paris, France

J O H N H U G H E S

Computer Science and Engineering, Chalmers University, Gothenburg, Sweden

B E N J A M I N C. P I E R C E

Department of Computer and Information Science, University of Pennsylvania, Philadelphia, USA

D I M I T R I O S V Y T I N I O T I S

Programming Principles and Tools group, Microsoft Research, Cambridge, UK

Abstract

Information-flow control mechanisms are difficult both to design and to prove correct. To

reduce the time wasted on doomed proof attempts due to broken definitions, we advocate

modern random-testing techniques for finding counterexamples during the design process.

We show how to use QuickCheck, a property-based random-testing tool, to guide the design

of increasingly complex information-flow abstract machines, leading up to a sophisticated

register machine with a novel and highly permissive flow-sensitive dynamic enforcement

mechanism that is sound in the presence of first-class public labels. We find that both

sophisticated strategies for generating well-distributed random programs and readily falsifiable

formulations of noninterference properties are critically important for efficient testing. We

propose several approaches and evaluate their effectiveness on a collection of injected bugs of

varying subtlety. We also present an effective technique for shrinking large counterexamples

to minimal, easily comprehensible ones. Taken together, our best methods enable us to quickly

and automatically generate simple counterexamples for more than 45 bugs. Moreover, we show

how testing guides the discovery of the sophisticated invariants needed for the noninterference

proof of our most complex machine.

1 Introduction

Secure information-flow control (IFC) is nearly impossible to achieve by careful

design alone. The mechanisms involved are intricate and easy to get wrong: static

type systems must impose numerous constraints that interact with other typing

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

2 C. Hriţcu et al.

rules in subtle ways (Sabelfeld & Myers, 2003), while dynamic mechanisms must

appropriately propagate taints and raise security exceptions when necessary (Fenton,

1974; Austin & Flanagan, 2009; Sabelfeld & Russo, 2009; Austin & Flanagan, 2010).

In a dynamic setting, allowing IFC labels to vary dynamically (i.e., performing

flow-sensitive analysis) can lead to subtle information leaks through the labels

themselves (Zheng & Myers, 2007; Russo & Sabelfeld, 2010); these leaks are

particularly hard to avoid if labels are observable inside the language (Stefan

et al., 2011; Hriţcu et al. 2013a). This intricacy makes it hard to be confident in

the correctness of such mechanisms without detailed proofs; however, carrying out

these proofs while designing the mechanisms can be an exercise in frustration, with

a great deal of time spent attempting to verify broken definitions! The question we

address in this paper is: Can we use modern testing techniques to discover bugs in

IFC enforcement mechanisms quickly and effectively? If so, then we can use testing

to catch most errors during the design phase, postponing proof attempts until we

are reasonably confident that the design is correct.

To answer this question, we undertake two case studies. The first is aimed at

extending a simple abstract stack-and-pointer machine to track dynamic information

flow and enforce termination-insensitive noninterference (Sabelfeld & Myers, 2003).

Although this machine is simple, the exercise is nontrivial. While even simpler

notions of dynamic taint tracking are well studied for both high- and low-level

languages, it has only recently been shown (Austin & Flanagan, 2009; Sabelfeld &

Russo, 2009) that dynamic checks are capable of soundly enforcing strong security

properties. Moreover, until recently (Hriţcu et al. 2013b; Azevedo de Amorim et al.,

2014; Bichhawat et al. 2014a), sound dynamic IFC has been studied only in the

context of high-level languages (Austin & Flanagan, 2009; Sabelfeld & Russo,

2009; Stefan et al., 2011; Hedin & Sabelfeld, 2012; Hriţcu et al. 2013a; Bichhawat

et al., 2014b); the unstructured control flow of a low-level machine poses additional

challenges.

We show how QuickCheck (Claessen & Hughes, 2000), a popular property-based

testing tool, can be used to formulate and test noninterference properties of our

abstract machine, quickly find a variety of missing-taint and missing-exception

bugs, and incrementally guide the design of a correct version of the machine. One

significant challenge is that both the strategy for generating random programs and

the precise formulation of the noninterference property have a dramatic impact

on the time required to discover bugs; we benchmark several variations of each

to identify the most effective choices. In particular, we observe that checking the

unwinding conditions (Goguen & Meseguer, 1984) of our noninterference property

can be much more effective than directly testing the original property.

The second case study demonstrates the scalability of our techniques by targeting

the design of a novel and highly permissive flow-sensitive dynamic IFC mechanism.

This experiment targets a more sophisticated register machine that is significantly

more realistic than the first and that includes advanced features such as first-class

public labels and dynamically allocated memory with mutable labels. We still quickly

find all introduced flaws. Moreover, we can use testing to discover the sophisticated

invariants required by a complex noninterference proof.

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 3

Our results should be of interest both to researchers in language-based security,

who can now add random testing to their tools for debugging subtle IFC enforcement

mechanisms and their noninterference proofs; and to the random-testing community,

where our techniques for generating and shrinking random programs may be useful

for checking other properties of abstract machines. Our primary contributions

are: (1) a demonstration of the effectiveness of random testing for discovering

counterexamples to noninterference in low-level information-flow machines; (2)

a range of program generation strategies for finding such counterexamples; (3)

an empirical comparison of how effective combinations of these strategies and

formulations of noninterference are in finding counterexamples; (4) an effective

methodology for shrinking large counterexamples to smaller, more readable ones;

(5) a demonstration that these techniques can speed the design of a state-of-the-

art flow-sensitive dynamic IFC mechanism that is highly permissive and sound

even though labels are observable; (6) a demonstration that our techniques can

aid in discovering the complex invariants involved in the noninterference proofs

for this novel IFC mechanism; (7) a mechanized noninterference proof for this

mechanism.

Sections 2 to 7 gradually introduce our testing methodology using the simple stack

machine as the running example. Section 8 shows that our methodology scales up to

the more realistic register machine with advanced IFC features. Section 9 presents

related work and Section 10 concludes and discusses future work. Accompanying

Haskell code associated to this paper and the Coq proofs mentioned in Section 8

and Appendix B are available online at https://github.com/QuickChick.

A preliminary version of this work appeared in the proceedings of the ICFP

2013 conference (Hriţcu et al. 2013b). Section 8 of this paper and the contributions

therein (points 5 to 7 above) are new. The other sections have also been improved

and extended with additional counterexamples.

2 Basic IFC

We begin by introducing the core of our abstract stack machine. In Section 5, we

will extend this simple core with control flow (jumps and procedure calls), but the

presence of pointers already raises opportunities for some subtle mistakes in IFC.

Some notation: we write [] for the empty list and x : xs for the list whose

first element is x and whose tail is xs; we also write [x0, x1, . . . , xn] for the list

x0 : x1 : · · · : xn : []. If xs is a list and 0 � j < |xs|, then xs(j) selects the jth element

of xs and xs[j := x] produces the list that is like xs except that the jth element is

replaced by x.

2.1 Bare stack machine

The most basic variant of our stack machine (without information-flow labels) has

seven instructions:

Instr ::= Push n | Pop | Load | Store | Add | Noop | Halt.

The n argument to Push is an integer (an immediate constant).

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

4 C. Hriţcu et al.

A machine state S is a 4-tuple consisting of a program counter pc (an integer), a

stack s (a list of integers), a memory m (another list of integers), and an instruction

memory i (a list of instructions), written pc s m i . Since i is cannot change during

execution, we will often write just pc s m for the varying parts of the machine state.

The single-step reduction relation on machine states, written S ⇒ S ′, is defined

by the following rules:

i(pc) = Noop

pc s m ⇒ pc+1 s m
(Bare-Noop)

i(pc) = Push n

pc s m ⇒ pc+1 n : s m
(Bare-Push)

i(pc) = Pop

pc n : s m ⇒ pc+1 s m
(Bare-Pop)

i(pc) = Load m(p) = n

pc p : s m ⇒ pc+1 n : s m
(Bare-Load)

i(pc) = Store m′ = m[p := n]

pc p : n : s m ⇒ pc+1 s m′
(Bare-Store)

i(pc) = Add

pc n1 : n2 : s m ⇒ pc+1 (n1+n2) : s m
(Bare-Add)

This relation is a partial function: it is deterministic, but some machine states don’t

step to anything. Such a stuck machine state is said to be halted if i(pc) = Halt and

failed in all other cases (e.g., if the machine is trying to execute an Add with an

empty stack, or if the pc points outside the bounds of the instruction memory). We

write ⇒∗ for the reflexive, transitive closure of ⇒. When S ⇒∗ S ′ and S ′ is a stuck

state, we write S ⇓ S ′.

2.2 Stack machine with labeled data

In a (fine-grained) dynamic IFC system (Austin & Flanagan, 2009; Sabelfeld &

Russo, 2009; Stefan et al., 2011; Hedin & Sabelfeld, 2012; Hriţcu et al. 2013a;

Azevedo de Amorim et al., 2014; Bichhawat et al., 2014b) security levels (called

labels) are attached to runtime values and propagated during execution, enforcing

the constraint that information derived from secret data does not leak to untrusted

processes or to the public network. Each value is protected by an individual IFC

label representing a security level (e.g., secret or public). We now add labeled data

to our simple stack machine. Instead of bare integers, the basic data items in the

instruction and data memories and the stack are now labeled integers of the form

n@�, where n is an integer and � is a label :

� ::= L | H.

We read L as “low” (public) and H as “high” (secret). We order labels by L � H

and write �1 ∨ �2 for the join (least upper bound) of �1 and �2.

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 5

The instructions are exactly the same except that the immediate argument to Push

becomes a labeled integer:

Instr ::= Push n@� | Pop | Load | Store | Add | Noop | Halt.

Machine states have the same shape as the basic machine, with the stack and

memory now being lists of labeled integers. The set of initial states of this machine,

Init, contains states of the form 0 [] m0 i , where m0 can be of any length and

contains only 0@L. We use Halted to denote the set of halted states of the machine,

i.e., i(pc) = Halt.

2.3 Noninterference (EENI)

We define what it means for this basic IFC machine to be “secure” using a standard

notion of termination-insensitive noninterference (Sabelfeld & Myers, 2003; Austin

& Flanagan, 2009; Hriţcu et al. 2013a; Azevedo de Amorim et al., 2014); we call

it end-to-end noninterference (or EENI) to distinguish it from the stronger notions

we will introduce in Section 6. The main idea of EENI is to directly encode the

intuition that secret inputs should not influence public outputs. By secret inputs, we

mean integers labeled H in the initial state; because of the form of our initial states,

such labeled integers can appear only in instruction memories. By secret outputs, we

mean integers labeled H in a halted state. More precisely, EENI states that for any

two executions starting from initial states that are indistinguishable to a low observer

(or just indistinguishable) and ending in halted states S1 and S2, the final states

S1 and S2 are also indistinguishable. Intuitively, two states are indistinguishable

if they differ only in integers labeled H . To make this formal, we define an

equivalence relation on states compositionally from equivalence relations over their

components.

2.1 Definition:

• Two labeled integers n1@�1 and n2@�2 are said to be indistinguishable, written

n1@�1 ≈ n2@�2, if either �1 = �2 = H or else n1 = n2 and �1 = �2 = L.

• Two instructions i1 and i2 are indistinguishable if they are the same, or if

i1 = Push n1@�1, and i2 = Push n2@�2, and n1@�1 ≈ n2@�2.

• Two lists (memories, stacks, or instruction memories) xs and ys are indistin-

guishable if they have the same length and xs(i) ≈ ys(i) for all i such that

0 � i < |xs|.

For machine states, we have a choice as to how much of the state we want to

consider observable; we choose (somewhat arbitrarily) that the observer can only

see the data and instruction memories, but not the stack or the pc. (Other choices

would give the observer either somewhat more power—e.g., we could make the

stack observable—or somewhat less—e.g., we could restrict the observer to some

designated region of “I/O memory,” or extend the architecture with I/O instructions

and only observe the traces of inputs and outputs (Azevedo de Amorim et al., 2014).)

2.2 Definition: Machine states S1 = pc1 s1 m1 i1 and S2 = pc2 s2 m2 i2 are

indistinguishable with respect to memories, written S1 ≈mem S2, if m1 ≈ m2 and i1 ≈ i2.

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

6 C. Hriţcu et al.

2.3 Definition: A machine semantics is end-to-end noninterfering with respect to

some sets of states Start and End and an indistinguishability relation ≈, written

EENIStart,End,≈, if for any S1, S2 ∈ Start such that S1 ≈ S2 and such that S1 ⇓ S ′
1,

S2 ⇓ S ′
2, and S ′

1, S
′
2 ∈ End, we have S ′

1 ≈ S ′
2.

We take EENIInit,Halted,≈mem
as our baseline security property; i.e., we only consider

executions starting in initial states and ending in halted states, and we use indistin-

guishability with respect to memories. The EENI definition above is, however, more

general, and we will consider other instantiations of it later.

2.4 Information-flow rule design with QuickCheck

Our next task is to enrich the rules for the step function to take information-flow

labels into account. For most of the rules, there are multiple plausible ways to do

this, and some opportunities for subtle mistakes even with these few instructions. To

illustrate the design methodology we hope to support, we first propose a naive set

of rules and then use counterexamples generated using QuickCheck and our custom

generation and shrinking techniques (described in detail in the following sections)

to identify and help repair mistakes until no more can be found.

i(pc) = Noop

pc s m ⇒ pc+1 s m
(Noop)

i(pc) = Push n@�

pc s m ⇒ pc+1 n@� : s m
(Push)

i(pc) = Pop

pc n@� : s m ⇒ pc+1 s m
(Pop)

i(pc) = Load m(p) = n@�n

pc p@�p : s m ⇒ pc+1 n@�n : s m
(Load*)

i(pc) = Store m′ = m[p := n@�n]

pc p@�p : n@�n : s m ⇒ pc+1 s m′
(Store*ab)

i(pc) = Add

pc n1@�1 : n2@�2 : s m ⇒ pc+1 (n1+n2)@L : s m
(Add*)

The Noop rule is the same as in the unlabeled machine. In the Push and Pop rules,

we simply change from bare to labeled integers; luckily, this obvious adaptation

happens to be correct. But now our luck runs out: the simple changes that we’ve

made in the other rules will all turn out to be wrong. (We include a star in the names

of incorrect rules to indicate this. The rule Store*ab actually contains two bugs,

which we refer to as a and b; we will discuss them separately later.) Fortunately,

QuickCheck can rapidly pinpoint the problems, as we will see.

Figure 1 shows the first counterexample that QuickCheck gives us when we

present it with the step function defined by the six rules above and ask it to try to

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 7

i =
[
Push 1@L,Push

0
1

@H, Store,Halt
]

pc m s i(pc)

0 [0@L, 0@L] [] Push 1@L

1 [0@L, 0@L] [1@L] Push
0
1

@H

2 [0@L, 0@L]
[

0
1

@H, 1@L
]

Store

3
[

1
0

@L,
0
1

@L
]

[] Halt

Figure 1. Counterexample to Store*ab.

invalidate the EENI property. (The LATEX source for all the figures was generated

automatically by our QuickCheck testing infrastructure.) The first line of the figure

is the counterexample itself: a pair of four-instruction programs, differing only in

the constant argument of the second Push. The first program pushes 0@H , while

the second pushes 1@H , and these two labeled integers are indistinguishable. We

display the two programs, and the other parts of the two machine states, in a

“merged” format. Pieces of data that are the same between the two machines are

written just once; at any place where the two machines differ, the value of the first

machine is written above the value of the second machine, separated by a horizontal

line. The rest of the figure shows what happens when we run this program. On the

first step, the pc starts out at 0; the memory, which has two locations, starts out

as [0@L, 0@L]; the stack starts out empty; and the next instruction to be executed

(i(pc)) is Push 1@L. On the next step, this labeled integer has been pushed on the

stack and the next instruction is either Push 0@H or Push 1@H; one or the other

of these labeled integers is pushed on the stack. On the next, we Store the second

stack element (1@L) into the location pointed to by the first (either 0@H or 1@H),

so that now the memory contains 1@L in either location 0 or location 1 (the other

location remains unchanged, and contains 0@L). At this point, both machines halt.

This pair of execution sequences shows that EENI fails: in the initial state, the two

programs are indistinguishable to a low observer (their only difference is labeled H),

but in the final states the memories contain different integers at the same location,

both of which are labeled L.

Thinking about this counterexample, it soon becomes apparent what went wrong

with the Store instruction: since pointers labeled H are allowed to vary between the

two runs, it is not safe to store a low integer through a high pointer. One simple but

draconian fix is simply to stop the machine if it tries to perform such a store (i.e.,

we could add the side-condition �p = L to the rule). A more permissive option is to

allow the store to take place, but require it to taint the stored value with the label

on the pointer:

i(pc) = Store m′ = m[p := n@(�n∨�p)]

pc p@�p : n@�n : s m ⇒ pc+1 s m′
(Store*b)

Unfortunately, QuickCheck’s next counterexample (Figure 2) shows that this rule

is still not quite good enough. This counterexample is quite similar to the first one,

but it illustrates a more subtle point: our definition of noninterference allows the

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

8 C. Hriţcu et al.

i =
[
Push 0@L,Push

0
1

@H, Store,Halt
]

pc m s i(pc)

0 [0@L, 0@L] [] Push 0@L

1 [0@L, 0@L] [0@L] Push
0
1

@H

2 [0@L, 0@L]
[

0
1

@H, 0@L
]

Store

3
[
0@

H
L
, 0@

L
H

]
[] Halt

Figure 2. Counterexample to Store*b.

i =

[
Push

0
1

@H,Push 0@L,Add,Push 0@L, Store,

Halt

]

pc m s i(pc)

0 [0@L] [] Push
0
1

@H

1 [0@L]
[

0
1

@H
]

Push 0@L

2 [0@L]
[
0@L,

0
1

@H
]

Add

3 [0@L]
[

0
1

@L
]

Push 0@L

4 [0@L]
[
0@L,

0
1

@L
]

Store

5
[

0
1

@L
]

[] Halt

Figure 3. Counterexample to Add*.

observer to distinguish between final memory states that differ only in their labels.1

Since the Store*b rule taints the label of the stored integer with the label of the

pointer, the fact that the Store changes different locations is visible in the fact that

a label changes from L to H on a different memory location in each run. To avoid

this issue, we adopt the “no sensitive upgrades” rule (Zdancewic, 2002; Austin &

Flanagan, 2009), which demands that the label on the current contents of a memory

location being stored into are above the label of the pointer used for the store —i.e.,

it is illegal to overwrite a low value via a high pointer (and trying to do so results

in a fatal failure). Adding this side condition brings us to a correct version of the

Store rule.

i(pc) = Store m(p) = n′@�′
n �p � �′

n m′ = m[p := n@(�n∨�p)]

pc p@�p : n@�n : s m ⇒ pc+1 s m′
(Store)

The next counterexample found by QuickCheck (Figure 3) points out a straight-

forward problem in the Add* rule: adding 0@L to 0@H yields 0@L. The problem

is that the taints on the arguments to Add are not propagated to its result. The Store

1 See the first clause of Definition 2.1. One might imagine that this could be fixed easily by changing
the definition so that whether a label is high or low is not observable—i.e., n@L ≈ n@H for any n.
Sadly, this is known not to work (Fenton, 1974; Russo & Sabelfeld, 2010). (QuickCheck can also find
a counterexample, which we present in Section A.1. The counterexample relies on control flow, which
is only introduced in Section 5.)

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 9

i =

[
Push 0@L,Push 1@L,Push 0@L, Store,Push

0
1

@H,

Load, Store,Halt

]

pc m s i(pc)

0 [0@L, 0@L] [] Push 0@L

1 [0@L, 0@L] [0@L] Push 1@L

2 [0@L, 0@L] [1@L, 0@L] Push 0@L

3 [0@L, 0@L] [0@L, 1@L, 0@L] Store

4 [1@L, 0@L] [0@L] Push
0
1

@H

5 [1@L, 0@L]
[

0
1

@H, 0@L
]

Load

6 [1@L, 0@L]
[

1
0

@L, 0@L
]

Store

7
[

1
0

@L, 0@L
]

[] Halt

Figure 4. Counterexample to Load*.

is needed in order to make the difference observable. The easy (and standard) fix is

to use the join of the argument labels as the label of the result:

i(pc) = Add

pc n1@�1 : n2@�2 : s m ⇒ pc+1 (n1+n2)@(�1∨�2) : s m
(Add)

The final counterexample found by QuickCheck (Figure 4) alerts us to the fact

that the Load* rule contains a similar mistake to the original Store*ab rule: loading

a low value through a high pointer should taint the loaded value. The program in

Figure 4 is a little longer than the one in Figure 1 because it needs to do a little

work at the beginning to set up a memory state containing two different low values.

It then pushes a high address pointing to one or the other of those cells onto the

stack; loads (different, low addresses) through that pointer; and finally stores 0@L

to the resulting address in memory and halts. In this case, we can make the same

change to Load* as we did to Store*ab: we taint the loaded integer with the join

of its label and the address’s label. This time (unlike the case of Store, where the

fact that we were changing the memory gave us additional opportunities for bugs),

this change gives us the correct rule for Load,

i(pc) = Load m(p) = n@�n

pc p@�p : s m ⇒ pc+1 n@(�n ∨ �p) : s m
(Load)

and QuickCheck is unable to find any further counterexamples.

2.5 More bugs

The original IFC version of the step rules illustrate one set of mistakes that we

might plausibly have made, but there are more possible ones:

i(pc) = Push n@�

pc s m ⇒ pc+1 n@L : s m
(Push*)

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

10 C. Hriţcu et al.

i(pc) = Store m′ = m[p := y@L]

pc p@�p : n@�n : s m ⇒ pc+1 s m′
(Store*c)

Although it is unlikely that we’d write these rather silly rules by accident, it

is worth including them in our experiments because they can be invalidated by

short counterexamples and thus provide useful data points for less effective testing

strategies.

We will also gather statistics for a partially fixed but still wrong rule for Store,

in which the no-sensitive-upgrades check is performed but the result is not properly

tainted:

i(pc) = Store m(p) = n′@�′
n �p � �′

n m′ = m[p := n@�n]

pc p@�p : n@�n : s m ⇒ pc+1 s m′
(Store*a)

3 QuickCheck

We test noninterference using QuickCheck (Claessen & Hughes, 2000), a tool that

tests properties expressed in Haskell. Often, QuickCheck is used to test properties

that should hold for all inhabitants of a certain type. QuickCheck repeatedly

generates random values of the desired type, instantiates the property with them,

and checks it directly by evaluating it to a Boolean. This process continues until

either a counterexample is found or a specified timeout is reached. QuickCheck

supplies default test data generators for many standard types. Additionally, the

user can supply custom generators for their own types. In order to test EENI, for

example, we needed to define custom generators for labeled integers, instructions,

and machine states (each of which depends on the previous generator: machine states

contain instructions, some of which contain labeled integers). The effectiveness of

testing (i.e., mean time to discover bugs) depends on the sophistication of these

generators, a topic we explore in detail in Section 4.

QuickCheck properties may also be guarded by preconditions; EENI is an example

of why this is necessary, as it only applies to pairs of indistinguishable initial

machine states that both successfully execute to halted states. Testing a property

with a precondition proceeds similarly: a sequence of random values are generated

and tested, up to a user-specified maximum. The difference is that if there is a

precondition, it is instantiated with the random value first. If the precondition does

not hold, this random value is summarily discarded. If the precondition does hold,

then the rest of the property is checked just as before. Although preconditions

are very useful, too high a proportion of discards can lead to very ineffective

testing or a badly skewed distribution of test cases (since some kinds of test case

may be discarded much more often than others). To help diagnose such problems,

QuickCheck can collect statistics about the tests it tried.

When a test fails, the failing test case is often large, containing many irrelevant

details. QuickCheck then tries to shrink the test case, by searching for a similar

but smaller test case that also fails. To do this, it greedily explores a number

of “shrinking candidates”: modifications of the original failing test case that are

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 11

“smaller” in some sense. The property is tested for each of these, and as soon as

a failure is found, that candidate becomes the starting point for a new shrinking

search (and the other candidates are discarded). Eventually, this process terminates

in a failing test case that is locally minimal: none of its shrinking candidates fails.

This failing case is then reported to the user. It is often very much smaller than

the original randomly generated test case, and it is thus easy to use it to diagnose

the failure because it (hopefully) contains no irrelevant details. Just like generation

strategies, shrinking strategies are type dependent; they are defined by QuickCheck

for standard types, and by the user for other types. We discuss the custom shrinking

strategies we use for machine states in Section 7.

4 State generation strategies

We are ready now to begin exploring ways to generate potential counterexamples.

At the outset, we need to address one fundamental issue. Noninterference properties

quantify over a pair of indistinguishable starting states: ∀S1, S2 ∈ Start. S1 ≈ S2 =⇒
. . . . This is a very strong precondition, which is extremely unlikely to be satisfied for

independently generated states. Instead, we generate indistinguishable pairs of states

together. The first state is generated randomly using one of the techniques described

later in this section. The second is obtained by randomly varying the “high parts”

of the first. We refer to the second state as the variation of the first. The resulting

pair thus satisfies indistinguishability by construction. Note that when implemented

correctly this does not compromise completeness: by generating a random state

and randomly varying we still guarantee that it is possible to generate all pairs

of indistinguishable states. Naturally, the resulting distributions will depend on the

specifics of the generation and variation methods used, as we shall see.

Since EENI considers only executions that start at initial states, we only need to

randomly generate the contents of the instruction memory (the program that the

machine executes) together with the size of the data memory (in initial states, the

contents of the memory are fixed and the stack is guaranteed to be empty).

Figure 5 offers an empirical comparison of all the generation strategies described

in this section. For a given test-generation strategy, we inject the bugs from Section 2

one at a time into the machine definition and measure the time spent on average

until that bug is found (mean time to failure, or MTTF). Tests were run one at a time

on seven identical machines, each with 4× 2.4 GHz Intel processors and 11.7 GB of

RAM; they were running Fedora 18 and GHC 7.4.1, and using QuickCheck 2.7.6.

We run each test for 5 minutes (300 seconds) or until 4,000 counterexamples are

found, whichever comes first.

4.1 Naive instruction generation

The simplest way to generate programs is by choosing a sequence of instructions

independently and uniformly. We generate individual instructions by selecting an

instruction type uniformly (i.e., Noop, Push, etc.) and then filling in its fields using

QuickCheck’s built-in generators. Labels are also chosen uniformly. We then build

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

12 C. Hriţcu et al.

Figure 5. Comparison of generation strategies for the basic machine. The first part of the

table shows the mean time to find a failing test case (MTTF) in milliseconds for each bug.

The second part lists the arithmetic and geometric mean for the MTTF over all bugs. The

third part shows the number of tests per second and the proportion of test cases that were

discarded because they did not satisfy some precondition.

Average number of execution steps: 0.47

74% stack underflow

21% halt

4% load or store out of range

Figure 6. Initial-Naive-False: Execution statistics for naive instruction generation.

Executions fail early, and the main reason for failure is stack underflow.

the instruction memory by sampling a number (currently a random number between

20 and 50) of instructions from this generator.

The first column of Figure 5 shows how this strategy performs on the bugs

from Section 2. Disappointingly, but perhaps not too surprisingly, naive instruction

generation can only find four of the six bugs within 5 minutes. How can we do better?

One obvious weakness is that the discard rate is quite high, indicating that one or

both machines often fail to reach a halted state. By asking QuickCheck to collect

statistics on the execution traces of test cases (Figure 6), we can also see a second

problem: the average execution length is only 0.47 steps! Such short runs are not

useful for finding counterexamples to EENI (at a minimum, any counterexample

must include a Store instruction to put bad values into the memory and a Halt so that

the run terminates, plus whatever other instructions are needed to produce the bad

states). So our next step is to vary the distribution of instructions so as to generate

programs that run for longer and thus have a chance to get into more interesting

states.

4.2 Weighted distribution on instructions

Figure 6 shows that by far the most common reason for early termination is a stack

underflow. After a bit of thought, this makes perfect sense: the stack is initially

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 13

Average number of execution steps: 2.69

38% halt

35% stack underflow

25% load or store out of range

Figure 7. Initial-Weighted-False: Execution statistics when generating instructions with a

weighted distribution. The main reason for failure is now Halt, followed by stack underflow.

Average number of execution steps: 3.86

37% halt

28% load or store out of range

20% stack underflow

13% sensitive upgrade

Figure 8. Initial-Sequence-False: Execution statistics when generating sequences of

instructions. Out-of-range addresses are now the biggest reason for termination.

empty, so if the first instruction that we generate is anything but a Push, Halt, or

Noop, we will fail immediately. Instead of a uniform distribution on instructions,

we can do better by increasing the weights of Push and Halt—Push to reduce the

number of stack underflows, and Halt because each execution must reach a halted

state to satisfy EENI’s precondition. The results after this change are shown in

the second column of Figure 5. Although this strategy still fails to find the Load*

and Store*a bugs in the allocated time, there is a significant improvement on both

discard rates and the MTTF for the other bugs. Run length is also better, averaging

2.69 steps. As Figure 7 shows, executing Halt is now the main reason for termination,

with stack underflows and out-of-range accesses close behind.

4.3 Generating useful instruction sequences more often

To further reduce stack underflows, we additionally generate sequences of instruc-

tions that make sense together. For instance, in addition to generating single Store

instructions, we also generate sequences of the form [Push n@�,Push ma@�′, Store],

where ma is a valid memory address. We also generate such sequences for the other

two instructions that use stack elements: [Push ma@�,Load] where ma is a valid

memory address, and [Push n1@�1,Push n2@�2,Add]. The results are shown in the

third column of Figure 5. With sequence generation, we can now find all bugs, faster

than before. Programs run for slightly longer (3.86 steps on average). As expected,

stack underflows are less common than before (Figure 8) and out-of-range addresses

are now the second biggest reason for termination.

4.4 Smart integers: generating addresses more often

To reduce the number of errors caused by out-of-range addresses, we additionally

give preference to valid memory addresses, i.e., integers within (data and instruction)

memory bounds, when generating integers. We do this not only when generating the

state of the first machine, but also when varying it, since both machines need to halt

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

14 C. Hriţcu et al.

Average number of execution steps: 4.22

41% halt

21% stack underflow

21% load or store out of range

15% sensitive upgrade

Figure 9. Initial-Sequence-True: Execution statistics when using smart integers with

sequences of instructions. The percentage of address out of range errors has halved.

successfully in order to satisfy the precondition of EENI. Column four of Figure 5

shows the results after making this improvement to the previous generator. We see

an improvement on the MTTF. The average run length is now 4.22 steps, and the

percentage of address-out-of-range errors is decreased (Figure 9).

4.5 Generation by execution

We can go even further. In addition to weighted distributions, sequences, and smart

integers, we try to generate instructions that do not cause a crash. In general (for more

interesting machines), deciding whether an arbitrary instruction sequence causes a

crash is undecidable. In particular, we cannot know in advance all possible states in

which an instruction will be executed. We can only make a guess—a very accurate

one for this simple machine. This leads us to the following generation by execution

strategy: We generate a single instruction or a small sequence of instructions, as

before, except that now we restrict generation to instructions that do not cause the

machine to crash in the current state. When we find one, we execute it to reach a new

state and then repeat the process to generate further instructions. We continue until

we have generated a reasonably sized instruction stream (currently, randomly chosen

between 20–50 instructions). We discuss how this idea generalizes to machines with

nontrivial control flow in Section 5.3.

As we generate more instructions, we increase the probability of generating a

Halt instruction, to reduce the chances of the machine running off the end of the

instruction stream. As a result, (i) we maintain low discard ratios for EENI since

we increase the probability that executions finish with a Halt instruction, and (ii) we

avoid extremely long executions whose long time to generate and run could be more

fruitfully used for other test cases.

The MTTF (last column of Figure 5) is now significantly lower than in any

previous generation method, although this strategy runs fewer tests per second than

the previous ones (because both test case generation and execution take longer).

Figure 10 shows that 94% of the pairs both successfully halt, which is in line with the

very low discard rate of Figure 5, and that programs run for much longer. Happily,

varying a machine that successfully halts has a high probability of generating a

machine that also halts.

5 Control flow

Up to this point, we’ve seen how varying the program generation strategy can make

orders-of-magnitude difference in the speed at which counterexamples are found for

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 15

Generated Variation

Steps 11.60 11.26

95% halt halt

3% halt load or store out of range

1% halt sensitive upgrade

Figure 10. Initial-ByExec-True: Execution statistics for generation by execution, broken

down for the variations.

i =

[
Push

2
5

@H, Jump,Push 1@L,Push 0@L, Store,

Halt

]

pc m s i(pc)

0 [0@L] [] Push
2
5

@H

1 [0@L]
[

2
5

@H
]

Jump

Machine 1 continues. . .

2 [0@L] [] Push 1@L

3 [0@L] [1@L] Push 0@L

4 [0@L] [0@L, 1@L] Store

5 [1@L] [] Halt

Machine 2 continues. . .

5 [0@L] [] Halt

Figure 11. Counterexample to Jump*ab: A textbook example of an implicit flow.

a very simple—almost trivial—information-flow stack machine. Now we are ready

to make the machine more interesting and see how these techniques perform on the

new bugs that arise, as well as how their performance changes on the bugs we’ve

already seen. In this section, we add Jump, Call, and Return instructions—and, with

them, the possibility that information can leak via the program’s control flow.

5.1 Jumps, implicit flows, and the pc label

We first add a new Jump instruction that takes the first element from the stack and

sets the pc to that address:

i(pc) = Jump

pc n@�n : s m ⇒ n s m
(Jump*ab)

(The jump target may be an invalid address. In this case, the machine will be stuck

on the next instruction.)

Note that this rule simply ignores the label on the jump target on the stack.

This is unsound, and QuickCheck easily finds the counterexample in Figure 11—a

textbook case of an implicit flow (Sabelfeld & Myers, 2003). A secret is used as

the target of a jump, which causes the instructions that are executed afterwards to

differ between the two machines; one of the machines halts immediately, whereas

the other one does a Store to a low location and only then halts, causing the final

memories to be distinguishable.

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

16 C. Hriţcu et al.

i =

[
Push 1@L,Push

4
6

@H, Jump,Halt,Push 0@L,

Store,Push 3@L, Jump

]

pc m s i(pc)

0@L [0@L] [] Push 1@L

1@L [0@L] [1@L] Push
4
6

@H

2@L [0@L]
[

4
6

@H, 1@L
]

Jump

Machine 1 continues. . .

4@H [0@L] [1@L] Push 0@L

5@H [0@L] [0@L, 1@L] Store

6@H [1@L] [] Push 3@L

7@H [1@L] [3@L] Jump

3@L [1@L] [] Halt

Machine 2 continues. . .

6@H [0@L] [1@L] Push 3@L

7@H [0@L] [3@L, 1@L] Jump

3@L [0@L] [1@L] Halt

Figure 12. Counterexample to Jump*b: Jump should not lower the pc label.

The standard way to prevent implicit flows is to label the pc—i.e., to make it a

labeled integer, not a bare integer. Initial states have pc@�pc = 0@L, and after a

jump to a secret address the label of the pc becomes H:

i(pc) = Jump

pc@�pc n@�n : s m ⇒ n@�n s m
(Jump*b)

While the pc is (labeled) high, the two machines may be executing different

instructions, and so we cannot expect the machine states to correspond. We therefore

extend the definition of ≈mem so that all high machine states are deemed equivalent.

(We call a state “high” if the pc is labeled H , and “low” otherwise.)

5.1 Definition: Machine states S1 = pc1@�pc1
s1 m1 i1 and S2 =

pc2@�pc2
s2 m2 i2 are indistinguishable with respect to memories, written S1 ≈mem

S2, if either �pc1
= �pc2

= H or else �pc1
= �pc2

= L and m1 ≈ m2 and i1 ≈ i2.

The Jump*b rule is still wrong, however, since it not only raises the pc label when

jumping to a high address but also lowers it when jumping to a low address. The

counterexample in Figure 12 illustrates that the latter behavior is problematic. The

fix is to label the pc after a jump with the join of the current pc label and the label

of the target address.

i(pc) = Jump

pc@�pc n@�n : s m ⇒ n@(�n ∨ �pc) s m
(Jump)

With this rule for jumps QuickCheck no longer finds any counterexamples. Some

readers may find this odd: In order to fully address implicit flows, it is usually

necessary to modify the rules for memory stores to handle the case where the pc

is labeled high (Austin & Flanagan, 2009; Russo & Sabelfeld, 2010). The current

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 17

machine doesn’t require this, but the reason is subtle: here, the pc can go from L

to H when we jump to a secret address, but it never goes from H to L! It doesn’t

matter what the machine does when the pc is high, because none of its actions will

ever be observable—all high machine states are indistinguishable.

To make things more interesting, we need to enrich the machine with some

mechanism that allows the pc to safely return to L after it has become H . One way

to achieve this is to add Call and Return instructions, a task we turn to next.

5.2 Restoring the pc label with calls and returns

IFC systems (both static and dynamic) generally rely on control flow merge points

(i.e., post-dominators of the branch point in the control flow graph where the control

was tainted by a secret) to detect when the influence of secrets on control flow is no

longer relevant and the pc label can safely be restored. Control flow merge points

are, however, much more evident for structured control features such as conditionals

than they are for jumps (as long as we don’t have exceptions (Hriţcu et al. 2013a;

Bichhawat et al. 2014a)). Moreover, since we are doing purely dynamic IFC we

cannot distinguish between safe uses of jumps and unsafe ones (e.g., the one in

Figure 12). So we keep jumps as they are (only raising the pc label) and add support

for structured programming and restoring the pc label in the form of Call and

Return instructions, which are of course useful in their own right.

To support these instructions, we need some way of representing stack frames. We

choose a straightforward representation, in which each stack element e can now be

either a labeled integer n@� (as before) or a return address, marked R, recording the

pc (including its label!) from which the corresponding Call was made. We also extend

the indistinguishability relation on stack elements so that return addresses are only

equivalent to other return addresses and R(n1@�1) ≈ R(n2@�2) if either �1 = �2 = H

or else n1 = n2 and �1 = �2 = L (this is the same as for labeled integers). (High

return addresses and high integers need to be distinguishable to a low observer, as

we discovered when QuickCheck generated an unexpected counterexample, which

we list in Section A.3—understanding it requires reading the rest of this section.)

We also need a way to pass arguments to and return results from a called

procedure. For this, we annotate the Call and Return instructions with a positive

integer indicating how many integers should be passed or returned (0 or 1 in the

case of Return). Formally, Call k expects an address n@�n followed by k integers ns

on the stack. It sets the pc to n, labels this new pc by the join of �n and the current

pc label (as we did for Jump—we’re eliding the step of getting this bit wrong at first

and letting QuickCheck find a counterexample), and adds the return address frame

to the stack under the k arguments.

i(pc) = Call k ns = n1@�1 : . . . : nk@�k

pc@�pc n@�n : ns : s m ⇒ n@(�n ∨ �pc) ns : R((pc+1)@�pc) : s m
(Call*b)

Return k′ traverses the stack until it finds the first return address and jumps to it.

Moreover, it restores the pc label to the label stored in that R entry, and preserves

the first k′ elements on the stack as return values, discarding all other elements in

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

18 C. Hriţcu et al.

i =

[
Push

3
6

@H,Call 0,Halt,Push 1@L,Push 0@L,

Store,Return 0

]

pc m s i(pc)

0@L [0@L] [] Push
3
6

@H

1@L [0@L]
[

3
6

@H
]

Call 0

Machine 1 continues. . .

3@H [0@L] [R(2@L)] Push 1@L

4@H [0@L] [1@L,R(2@L)] Push 0@L

5@H [0@L] [0@L, 1@L,R(2@L)] Store

6@H [1@L] [R(2@L)] Return 0

2@L [1@L] [] Halt

Machine 2 continues. . .

6@H [0@L] [R(2@L)] Return 0

2@L [0@L] [] Halt

Figure 13. Counterexample to Store*de rule: Raising pc label is not enough to prevent

implicit flows. Once we have a mechanism (like Return) for restoring the pc label, we need to

be more careful about stores in high contexts.

this stack frame (like ns, ns′ stands for a list of labeled integers; in particular it

cannot contain return addresses).

i(pc) = Return k′ k′ ∈ {0, 1} ns = n1@�1 : . . . : nk′ @�k′

pc@�pc ns : ns′ : R(n@�n) : s m ⇒ n@�n ns : s m
(Return*ab)

Finally, we observe that we cannot expect the current EENI instantiation to hold

for this changed machine, since now one machine can halt in a high state while the

other can continue, return to a low state, and only then halt. Since we cannot equate

high and low states (see Section A.2 for a counterexample; again understanding

it requires reading the rest of this section), we need to change the EENI instance

we use to EENIInit,Halted∩Low,≈mem
, where Low denotes the set of states with �pc = L.

Thus, we only consider executions that end in a low halting state.

After these changes, we can turn QuickCheck loose and start finding more bugs.

The first one, listed in Figure 13, is essentially another instance of the implicit

flow bug, which is not surprising given the discussion at the end of the previous

subsection. We adapted the Store rule trivially to the new setting, but that is clearly

not enough:

i(pc) = Store m(p) = n′@�′
n �p � �′

n m′ = m[p := n@(�n∨�p)]

pc@�pc p@�p : n@�n : s m ⇒ (pc+1)@�pc s m′
(Store*de)

We need to change this rule so that the value written in memory is tainted with the

current pc label:

i(pc) = Store m(p) = n′@�′
n �p � �′

n m′ = m[p := n@(�n∨�p∨�pc)]

pc@�pc p@�p : n@�n : s m ⇒ (pc+1)@�pc s m′
(Store*e)

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 19

i =

[
Push

3
6

@H,Call 0,Halt,Push 0@L,Push 0@L,

Store,Return 0

]

pc m s i(pc)

0@L [0@L] [] Push
3
6

@H

1@L [0@L]
[

3
6

@H
]

Call 0

Machine 1 continues. . .

3@H [0@L] [R(2@L)] Push 0@L

4@H [0@L] [0@L, R(2@L)] Push 0@L

5@H [0@L] [0@L, 0@L,R(2@L)] Store

6@H [0@H] [R(2@L)] Return 0

2@L [0@H] [] Halt

Machine 2 continues. . .

6@H [0@L] [R(2@L)] Return 0

2@L [0@L] [] Halt

Figure 14. Counterexample to Store*d: Implicit flow via labels.

This eliminates the current counterexample; QuickCheck then finds a very sim-

ilar one in which the labels of values in the memories differ between the two

machines (Figure 14). The usual way to prevent this problem is to extend the no-

sensitive-upgrades check so that low-labeled data cannot be overwritten in a high

context (Zdancewic, 2002; Austin & Flanagan, 2009). This leads to the correct rule

for stores:

i(pc) = Store m(p) = n′@�′
n �p∨�pc � �′

n m′ = m[p := n@(�n∨�p∨�pc)]

pc@�pc p@�p : n@�n : s m ⇒ (pc+1)@�pc s m′
(Store)

The next counterexample found by QuickCheck (Figure 15) shows that returning

values from a high context to a low one is unsound if we do not label those values

as secrets. To fix this, we taint all the returned values with the pre-return pc label.

i(pc) = Return k′ k′ ∈ {0, 1} ns = n1@�1 : . . . : nk′ @�k′

nspc = n1@(�1∨�pc) : . . . : nk′ @(�k′ ∨�pc)

pc@�pc ns : ns′ : R(n@�n) : s m ⇒ n@�n nspc : s m
(Return*b)

The next counterexample, listed in Figure 16, shows (maybe somewhat surpris-

ingly) that it is unsound to specify the number of results to return in the Return

instruction, because then the number of results returned may depend on secret

flows of control. To restore soundness, we need to pre-declare at each Call whether

the corresponding Return will return a value—i.e., the Call instruction should be

annotated with two integers, one for parameters and the other for results. Stack

elements e are accordingly either labeled values n@� or (labelled) pairs of a return

address n and the number of return values k.

e ::= n@� | R(n, k)@�

These changes lead us to the correct rules:

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

20 C. Hriţcu et al.

i =

[
Push 1@L,Push

7
6

@H,Call 1,Push 0@L, Store,

Halt,Push 0@L,Return 1

]

pc m s i(pc)

0@L [0@L] [] Push 1@L

1@L [0@L] [1@L] Push
7
6

@H

2@L [0@L]
[

7
6

@H, 1@L
]

Call 1

Machine 1 continues. . .

7@H [0@L] [1@L,R(3@L)] Return 1

3@L [0@L] [1@L] Push 0@L

4@L [0@L] [0@L, 1@L] Store

5@L [1@L] [] Halt

Machine 2 continues. . .

6@H [0@L] [1@L,R(3@L)] Push 0@L

7@H [0@L] [0@L, 1@L,R(3@L)] Return 1

3@L [0@L] [0@L] Push 0@L

4@L [0@L] [0@L, 0@L] Store

5@L [0@L] [] Halt

Figure 15. Counterexample to Return*ab: Return needs to taint the returned values.

i =

[
Push 0@L,Push

6
7

@H,Call 0,Push 0@L, Store,

Halt,Return 0,Push 0@L,Return 1

]

pc m s i(pc)

0@L [0@L] [] Push 0@L

1@L [0@L] [0@L] Push
6
7

@H

2@L [0@L]
[

6
7

@H, 0@L
]

Call 0

Machine 1 continues. . .

6@H [0@L] [R(3@L), 0@L] Return 0

3@L [0@L] [0@L] Push 0@L

4@L [0@L] [0@L, 0@L] Store

5@L [0@L] [] Halt

Machine 2 continues. . .

7@H [0@L] [R(3@L), 0@L] Push 0@L

8@H [0@L] [0@L,R(3@L), 0@L] Return 1

3@L [0@L] [0@H, 0@L] Push 0@L

4@L [0@L] [0@L, 0@H, 0@L] Store

5@L [0@H] [0@L] Halt

Figure 16. Counterexample to Call*b and Return*b: It is unsound to choose how many

results to return on Return.

i(pc) = Call k k′ k′ ∈ {0, 1} ns = n1@�1 : . . . : nk@�k

pc@�pc n@�n : ns : s m ⇒ n@(�n ∨ �pc) ns : R(pc+1, k′)@�pc : s m
(Call)

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 21

i =

⎡
⎢⎣

Push 5@L,Call 0 1,Push 0@L, Store,Halt,

Push 0@L,Push
8
9

@H,Call 0 0,Pop,Push 0@L,

Return

⎤
⎥⎦

pc m s i(pc)

0@L [0@L] [] Push 5@L

1@L [0@L] [5@L] Call 0 1

5@L [0@L] [R(2, 1)@L] Push 0@L

6@L [0@L] [0@L, R(2, 1)@L] Push
8
9

@H

7@L [0@L]
[

8
9

@H, 0@L,R(2, 1)@L
]

Call 0 0

Machine 1 continues. . .

8@H [0@L] [R(8, 0)@L, 0@L,R(2, 1)@L] Pop

9@H [0@L] [0@L, R(2, 1)@L] Push 0@L

10@H [0@L] [0@L, 0@L,R(2, 1)@L] Return

2@L [0@L] [0@H] Push 0@L

3@L [0@L] [0@L, 0@H] Store

4@L [0@H] [] Halt

Machine 2 continues. . .

9@H [0@L] [R(8, 0)@L, 0@L,R(2, 1)@L] Push 0@L

10@H [0@L] [0@L, R(8, 0)@L, 0@L,R(2, 1)@L] Return

8@L [0@L] [0@L, R(2, 1)@L] Pop

9@L [0@L] [R(2, 1)@L] Push 0@L

10@L [0@L] [0@L, R(2, 1)@L] Return

2@L [0@L] [0@L] Push 0@L

3@L [0@L] [0@L, 0@L] Store

4@L [0@L] [] Halt

Figure 17. Counterexample to Pop*: It is unsound not to protect the call stack.

i(pc) = Return ns = n1@�1 : . . . : nk′ @�k′

nspc = n1@(�1∨�pc) : . . . : nk′ @(�k′ ∨�pc)

pc@�pc ns : ns′ : R(n, k′)@� : s m ⇒ n@� nspc : s m
(Return)

The final counterexample found by QuickCheck is quite a bit longer (see Fig-

ure 17). It shows that we cannot allow instructions like Pop to remove return

addresses from the stack, as does the following broken rule (recall that e denotes an

arbitrary stack entry):

i(pc) = Pop

pc@�pc e : s m ⇒ (pc+1)@�pc s m
(Pop*)

To protect the call frames on the stack, we change this rule to only pop integers (all

the other rules can already only operate on integers).

i(pc) = Pop

pc@�pc n@�n : s m ⇒ (pc+1)@�pc s m
(Pop)

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

22 C. Hriţcu et al.

5.3 Generation by execution and control flow

Generation by execution is still applicable in the presence of interesting control flow

but we have to make small modifications to the original algorithm. We still generate

a single instruction or sequence2 that does not crash, as before, and we execute it to

compute a new state. However, unlike before, while executing this newly generated

sequence of instructions, it is possible to “land” in a position in the instruction

stream where we have already generated an instruction (e.g., via a backward jump).

If this happens, then we keep executing the already generated instructions. If the

machine halts (or we reach a loop-avoiding cutoff), then we stop the process and

return the so-far generated instruction stream. If there are no more instructions to

execute, then we go on to generate more instructions. There is one more possibility

though: the machine may crash while executing an already generated instruction.

To address this issue, we make sure that we never generate an instruction (e.g., a

jump) that causes the machine to crash in a certain number of steps. We refer to

this number of steps as the lookahead parameter and in our experiments we use a

lookahead of 2 steps. If we cannot generate any instruction satisfying this constraint,

we retry with a smaller lookahead, until we succeed.

Since it now becomes possible to generate instruction streams that cause the

machine to crash in some number of steps, one might be worried about the discard

ratio for EENI. However, the ever increasing probability of generating a Halt

(discussed in Section 4.5) counterbalances this issue.

5.4 Finding the bugs

We experimentally evaluated the effectiveness of testing for this new version of the

stack machine, by adding the bugs discussed in this section to the ones applicable

for the previous machine. The results of generation by execution with lookahead

for this machine are shown in the first column of Figure 18. As we can see, all

old bugs are still found relatively fast. It takes longer to find them when compared

to the previous machine, but this is to be expected: when we extend the machine,

we are also increasing the state space to be explored. The new control-flow-specific

bugs are all found, with the exception of Pop*, which requires a larger timeout.

Discard rates are much higher compared to generation by execution in Figure 5,

for two reasons. First, control flow can cause loops, so we discard machines that

run for more than 50 steps without halting. Detailed profiling revealed that 18% of

the pairs of machines both loop, and loopy machines push the average number of

execution steps to 22. Second, as described previously, generation by execution in

the presence of control flow is much less accurate.

2 In addition to the instruction sequences from Section 4.3, we use two new sequences for Jump and
Call : [Push ia@�, Jump] and [Push nk@�k, . . . ,Push n1@�1,Push ia@�,Call k k’], where ia is a valid
memory address.

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 23

Figure 18. Experiments for control flow machine. MTTF given in milliseconds.

5.5 Alternative generation strategies

Generation by execution has proved effective in finding bugs. Even this method,

however, required some tuning, driven by experimental evaluation. For instance, our

first implementations did not involve gradually increasing the probability of Halt

instructions. We also experimented with different lookahead values. Larger looka-

heads introduce significant overheads in generation as every generated instruction

costs many steps of execution, and the payoff of lower discard rates was not worth

the increased generation cost.

We have also explored (and dismissed) several other generation strategies, and we

outline two of these below:

• Generation by forward execution. Generation by execution fills in the instruction

stream in patches, due to generated jumps. It is hence possible for the instruc-

tion stream to contain “holes” filled with Noop instructions. An alternative

strategy is to generate instructions in a forward style only: if we generate a

branch, then we save the current state along with the branch target, but keep

generating instructions as if the branch was not taken. If we ever reach the

target of the branch, we may use the saved state as a potentially more accurate

state that we can use to generate more instructions. This strategy delivered

similar results as generation by execution, but due to its more complicated

nature we dismissed it and used the basic design instead.

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

24 C. Hriţcu et al.

• Variational generation by execution. In this strategy, we first generate a machine

with generation by execution. We then vary the machine and run generation

by execution for the resulting machine, in the hope that we can fill in the

holes in the originally generated instruction stream with instructions from a

variational execution. As before, we did not find that the results justified the

generation overheads and complexity of this strategy.

6 Strengthening the tested property

The last few counterexamples in Section 5.2 are fairly long and quite difficult for

QuickCheck to find, even with the best test-generation strategy. In this section,

we explore a different approach: strengthening the property we are testing so

that counterexamples become shorter and easier to find. Figure 18 in Section 5.4

summarizes the variants of noninterference that we consider and how they affect

test performance.

6.1 Making entire low states observable

Every counterexample that we’ve seen involves pushing an address, executing a Store

instruction, and halting. These steps are all necessary because of the choice we made

in Section 2.3 to ignore the stack when defining indistinguishability on machine

states. A counterexample that leaks a secret onto the stack must continue by storing

it into memory; similarly, a counterexample that leaks a secret into the pc must

execute Store at least twice. This suggests that we can get shorter counterexamples

by redefining indistinguishability as follows:

6.1 Definition: Machine states S1 = pc1 s1 m1 i1 and S2 = pc2 s2 m2 i2 are

indistinguishable with respect to entire low states, written S1 ≈low S2, if either

�pc1
= �pc2

= H or else �pc1
= �pc2

= L, m1 ≈ m2, i1 ≈ i2, s1 ≈ s2, and pc1 ≈ pc2.

We now strengthen EENIInit,Halted∩Low,≈mem
, the property we have been testing so

far, to EENIInit,Halted∩Low,≈low
; this is stronger because ≈mem and ≈low agree on initial

states, while for halted states ≈low ⊂ ≈mem . Indeed, for this stronger property,

QuickCheck finds bugs faster (compare the first two columns of Figure 18).

6.2 Quasi-initial states

Many counterexamples begin by pushing values onto the stack and storing values

into memory. This is necessary because each test starts with an empty stack and

low, zeroed memory. We can make counterexamples easier to find by allowing the

two machines to start with arbitrary (indistinguishable) stacks and memories; we

call such states quasi-initial. Formally, the set QInit of quasi-initial states contains

all states of the form 0@L s m i , for arbitrary s, m, and i.

The advantage of generating more varied start states is that parts of the state

space may be difficult to reach by running generated code from an initial state;

for example, to get two return addresses on the stack, we must successfully execute

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 25

two Call instructions (see e.g., Figure 17). Thus, bugs that are only manifested in

these hard-to-reach states may be discovered very slowly or not at all. Generating

“intermediate” states directly gives us better control over their distribution, which

can help eliminate such blind spots in testing. The disadvantage of this approach is

that a quasi-initial state may not be reachable from any initial state, so in principle

QuickCheck may report spurious problems that cannot actually arise in any real

execution. In general, we could address such problems by carefully formulating the

important invariants of reachable states and ensuring that we generate quasi-initial

states satisfying them. In practice, though, for this extremely simple machine, we

have not encountered any spurious counterexamples, even with quasi-initial states.

(This is different for the more complex register machine from Section 8; in that

setting a generator for non-initial states needs to produce only states satisfying

strong invariants associated with reachable states.)

Instantiating EENI with QInit , we obtain a stronger property

EENIQInit,Halted∩Low,≈low
(stronger because Init ⊂ QInit) that finds bugs faster, as

column 3 of Figure 18 shows.

6.3 LLNI: Low-lockstep noninterference

While making the full state observable and starting from quasi-initial states sig-

nificantly improves EENI, we can get even better results by moving to a yet

stronger noninterference property. The intuition is that EENI generates machines

and runs them for a long time, but it only compares the final states, and only when

both machines successfully halt; these preconditions lead to rather large discard

rates. Why not compare intermediate states as well, and report a bug as soon as

intermediate states are distinguishable? While the pc is high, the two machines

may be executing different instructions, so their states will naturally differ; we

therefore ignore these states and require only that low execution states are pointwise

indistinguishable. We call this new property low-lockstep noninterference (or LLNI).

We write S ⇒∗
t when an execution from state S produces trace t (a list of states).

Since this is just a state-collecting variant of the reflexive transitive closure of ⇒,

we allow partial executions and in particular do not require that the last state in the

trace is stuck or halting.

6.2 Definition: A machine semantics is low-lockstep noninterfering with respect to the

indistinguishability relation ≈ (written LLNI≈) if, for any quasi-initial states S1 and

S2 if with S1 ≈ S2, S1 ⇒∗
t1

, and S2 ⇒∗
t2

, we have t1 ≈∗ t2, where indistinguishability

on traces ≈∗ is defined inductively by the following rules:

S1, S2 ∈ Low S1 ≈ S2 t1 ≈∗ t2

(S1 : t1) ≈∗ (S2 : t2)
(Low Lockstep)

S1 �∈ Low t1 ≈∗ t2

(S1 : t1) ≈∗ t2
(High Filter)

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

26 C. Hriţcu et al.

t ≈∗ []
(End)

t1 ≈∗ t2

t2 ≈∗ t1
(Symmetry)

The rule Low Lockstep requires low states in the two traces to be pointwise

indistinguishable, while High Filter (together with Symmetry) simply filters out

high states from either trace. The remaining rule is about termination: because we

are working with termination-insensitive noninterference, we allow one of the traces

to continue (maybe forever) even if the other has terminated. We implement these

rules in Haskell as a recursive predicate over finite traces.

In general, LLNI implies EENI (see Appendix Appendix B.), but not vice versa.

However, the correct version of our machine does satisfy LLNI, and we have not

observed any cases where QuickChecking a buggy machine with LLNI finds a bug

that is not also a bug with regard to EENI. Testing LLNI instead of EENI leads to

significant improvement in the bug detection rate for all bugs, as the results in the

fourth column Figure 18 show. In these experiments, no generated machine states

are discarded, since LLNI applies to both successful (halting) executions and failing

executions. The generation strategies described in Section 4 apply to LLNI without

much change; also, as for EENI, generation by execution (with lookahead of two

steps) performs better than the more basic strategies, so we don’t consider those for

LLNI.

6.4 SSNI: Single-step noninterference

Until now, we have focused on using sophisticated (and potentially slow) techniques

for generating long-running initial (or quasi-initial) machine states, and then checking

equivalence for low halting states (EENI) or at every low step (LLNI). An alternative

is to define a stronger property that talks about all possible single steps of execution

starting from two indistinguishable states.

Proofs of noninterference usually go by induction on a pair of execution traces; to

preserve the corresponding invariant, the proof needs to consider how each execution

step affects the indistinguishability relation. This gives rise to properties known as

“unwinding conditions” (Goguen & Meseguer, 1984); the corresponding conditions

for our machine form a property we call single-step noninterference (SSNI).

We start by observing that LLNI implies that, if two low states are indistinguish-

able and each takes a step to another low state, then the resulting states are also

indistinguishable. However, this alone is not a strong enough inductive invariant to

guarantee the indistinguishability of whole traces. In particular, if the two machines

perform a Return from a high state to a low state, we would need to conclude

that the two low states are equivalent without knowing anything about the original

high states. This indicates that, for SSNI, we can no longer consider all high states

indistinguishable. The indistinguishability relation on high states needs to be strong

enough to ensure that if both machines return to low states, those low states are also

indistinguishable. Moreover, we need to ensure that if one of the machines takes a

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 27

step from a high state to another high state, then the old and new high states are

equivalent. The following definition captures all these constraints formally.

6.3 Definition: A machine semantics is single-step noninterfering with respect to

the indistinguishability relation ≈ (written SSNI≈) if the following conditions are

satisfied:

1. For all S1, S2 ∈ Low, if S1 ≈ S2, S1 ⇒ S ′
1, and S2 ⇒ S ′

2, then S ′
1 ≈ S ′

2;

2. For all S �∈ Low if S ⇒ S ′ and S ′ �∈ Low, then S ≈ S ′;

3. For all S1, S2 �∈ Low, if S1 ≈ S2, S1 ⇒ S ′
1, S2 ⇒ S ′

2, and S ′
1, S

′
2 ∈ Low, then

S ′
1 ≈ S ′

2.

Note that SSNI talks about completely arbitrary states, not just (quasi-)initial ones.

The definition of SSNI is parametric in the indistinguishability relation used,

and it can take some work to find the right relation. As discussed above, ≈low is

too weak and QuickCheck can easily find counterexamples to condition 3, e.g., by

choosing two indistinguishable machine states with i = [Return], pc = 0@H , and

s =
[
R(0

1
, 0)@L

]
; after a single step, the two machines have distinguishable pcs

0@L and 1@L, respectively. On the other hand, treating high states exactly like

low states in the indistinguishability relation is too strong. In this case QuickCheck

finds counterexamples to condition 2, e.g., a single machine state with i =
[
Pop

]
,

pc = 0@H , and s = [0@L] steps to a state with s = [], which would not be

considered indistinguishable. These counterexamples show that indistinguishable

high states can have different pcs and can have completely different stack frames

at the top of the stack. So all we can require for two high states to be equivalent

is that their memories and instruction memories agree and that the parts of the

stacks below the topmost low return address are equivalent. This is strong enough

to ensure condition 3.

6.4 Definition: Machine states S1 = pc1 s1 m1 i1 and S2 = pc2 s2 m2 i2 are

indistinguishable with respect to whole machine states, written S1 ≈full S2, if m1 ≈ m2,

i1 ≈ i2, �pc1
= �pc2

, and additionally

• if �pc1
= L then s1 ≈ s2 and pc1 ≈ pc2, and

• if �pc1
= H then cropStack s1 ≈ cropStack s2.

The cropStack helper function takes a stack and removes elements from the top

until it reaches the first low return address (or until all elements are removed). (As

most of our definitions so far, this definition is tailored to a 2-element lattice; we

will generalize it to an arbitrary lattice in Section 8.4.)

The fifth column of Figure 18 shows that, even with arbitrary starting states

generated completely naively, SSNI≈full
performs very well. If we tweak the weights

a bit and additionally observe that since we only execute the generated machine for

only one step, we can begin with very small states (e.g., the instruction memory can

be of size 2), then we can find all bugs very quickly. As the last column of Figure 18

illustrates, each bug is found in under 20 ms. (This last optimization is a bit risky,

since we need to make sure that these very small states are still large enough to

exercise all bugs we might have—e.g., an instruction memory of size 1 is not enough

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

28 C. Hriţcu et al.

to exhibit the Call*b+Return*b bug using SSNI.) Compared to other properties,

QuickCheck executes many more tests per second with SSNI for both generation

strategies.

6.5 Discussion

In this section, we have seen that strengthening the noninterference property is

a very effective way of improving the effectiveness of random testing our IFC

machine. It is not without costs, though. Changing the security property required

some expertise and, in the case of LLNI and SSNI, manual proofs showing that the

new property implies EENI, the baseline security property (see Appendix Appendix

B.). In the case of LLNI and SSNI, we used additional invariants of our machine

(e.g., captured by ≈full) and finding these invariants is the most creative part of

doing a full security proof. While we could use the counterexamples provided by

QuickCheck to guide our search for the right invariants, for more realistic machines

the process of interpreting the counterexamples and manually refining the invariants

is significantly harder than for our very simple machine (see Section 8).

The potential users of our techniques will have to choose a point in the continuum

between testing and proving that best matches the characteristics of their practical

application. At one end, we present ways of testing the original EENI property

without changing it in any way, by putting all the smarts in clever generation

strategies. At the other end, one can imagine using random testing just as the first

step towards a full proof of a stronger property such as SSNI. For a variant of our

simple stack machine, Azevedo de Amorim et al. (2014) did in fact prove recently

in Coq that SSNI holds, and did not find any bugs that had escaped our testing.

Moreover, we proved in Coq that under reasonable assumptions SSNI implies LLNI

and LLNI implies EENI (see Appendix Appendix B.).

7 Shrinking strategies

The counterexamples presented in this paper are not the initial randomly generated

machine states; they are the result of QuickCheck shrinking these to minimal

counterexamples. For example, randomly generated counterexamples to EENI for

the Push* bug usually consist of 20–40 instructions; the minimal counterexample

uses just 4 (see Figure 2). In this section, we describe the shrinking strategies we

used.

7.1 Shrinking labeled values and instructions

By default, QuickCheck already implements a shrinking strategy for integers. For

labels, we shrink H to L, because we prefer to see counterexamples in which labels

are only H if this is essential to the failure. Values are shrunk by shrinking either

the label or the contents. If we need to shrink both the label and the contents, then

this is achieved in two separate shrinking steps.

We allow any instruction to shrink to Noop, which preserves a counterexample

if the instruction was unnecessary; or to Halt, which preserves a counterexample if

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 29

the bug had already manifested by the time that instruction was reached. To avoid

an infinite shrinking loop, we do not shrink Noop at all, while Halt can shrink

only to Noop. Instructions of the form Push n@� are also shrunk by shrinking n@�.

Finally, instructions of the form Call n n′ are shrunk by shrinking n or n′, or by

being replaced with Jump.

7.2 Shrinking machine states

Machine states contain a data memory, a stack, an instruction memory, and the pc.

For data memories, we can simply shrink the elements using the techniques of the

previous subsection. In addition, we allow shrinking to remove arbitrary elements

of the data memory completely. However, the first element that we try to remove

is the last one: removing other elements changes all subsequent memory addresses,

potentially invalidating the counterexample. Stacks can be shrunk similarly: we can

shrink their data elements or remove them completely. We need to be extra clever

in shrinking return addresses—otherwise, it is very easy to obtain crashing states.

This is elaborated in the next subsection.

In the case of the instruction memory, we only try to remove Noop instructions,

since removing other instructions is likely to change the stack or the control

flow fairly drastically, and is thus likely to invalidate any counterexample. Other

instructions can still be removed in two stages, by first shrinking them to a Noop.

Finally, we choose not to shrink the pc. Generation by execution works by

generating valid instructions starting from the initial pc. Shrinking its address will

most likely lead to immediate failure. One strategy we considered is shrinking by

execution, where we shrink by taking a step in the machine. However, we didn’t

get a lot of benefit from such an approach. Even worse, if the indistinguishability

relation is too coarse grained, then shrinking by execution can lead our states past

the point where they become distinct, but are still considered equivalent; such a

counterexample is not useful for debugging!

7.3 Shrinking variations

One difficulty that arises when shrinking noninterference counterexamples is that the

test cases must be pairs of indistinguishable machines. Shrinking each machine state

independently will most likely yield distinguishable pairs, which are invalid test cases,

since they fail to satisfy the precondition of the property we are testing. In order to

shrink effectively, we need to shrink both states of a variation simultaneously, and

in the same way.

For instance, if we shrink one machine state by deleting a Noop in the middle of its

instruction memory, then we must delete the same instruction in the corresponding

variation. Similarly, if a particular element gets shrunk in a memory location, then

the same location should be shrunk in the other state of the variation, and only in

ways that produce indistinguishable states. We have implemented all of the shrinking

strategies described above as operations on pairs of indistinguishable states, and

ensured that they generate only shrinking candidates that are also indistinguishable.

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

30 C. Hriţcu et al.

When we use the full state equivalence ≈full , we can shrink stacks slightly

differently: we only need to synchronize shrinking steps on the low parts of the

stacks. Since the equivalence relation ignores the high half of the stacks, we are

free to shrink those parts of the two states independently, provided that high return

addresses don’t get transformed into low ones.

7.4 Optimizing shrinking

We applied a number of optimizations to make the shrinking process faster and

more effective. One way we sped up shrinking was by turning on QuickCheck’s

“smart shrinking,” which optimizes the order in which shrinking candidates are

tried. If a counterexample a can be shrunk to any bi, but the first k of these are

not counterexamples, then it is likely that the first k shrinking candidates for bk+1

will not be counterexamples either, because a and bk+1 are likely to be similar in

structure and so to have similar lists of shrinking candidates. Smart shrinking just

changes the order in which these candidates are tried: it defers the first k shrinking

candidates for bk+1 until after more likely ones have been tried. This sped up

shrinking dramatically in our tests.

We also observed that many reported counterexamples contained Noop

instructions—in some cases many of them—even though we implemented Noop

removal as a shrinking step. On examining these counterexamples, we discovered

that they could not be shrunk because removing a Noop changes the addresses of

subsequent instructions, at least one of which was the target of a Jump or Call

instruction. So to preserve the behavior of the counterexample, we needed to remove

the Noop instruction and adjust the target of a control transfer in the same shrinking

step. Since control transfer targets are taken off the stack, and such addresses can be

generated during the test in many different ways, we simply allowed Noop removal to

be combined with any other shrinking step—which might, for example, decrement

any integer on the initial stack, or any integer stored in the initial memory, or

any constant in a Push instruction. This combined shrinking step was much more

effective in removing unnecessary Noops.

Occasionally, we observed shrunk counterexamples containing two or more

unnecessary Noops, but where removing just one Noop led to a non-counterexample.

We therefore used QuickCheck’s double shrinking, which allows a counterexample to

shrink in two steps to another counterexample, even if the intermediate value is not

a counterexample. With this technique, QuickCheck could remove all unnecessary

Noops, albeit at a cost in shrinking time.

We also observed that some reported test cases contained unnecessary sequences

of instructions, which could be elided together, but not one by one. We added a

shrinking step that can replace any two instructions by Noops simultaneously (and

thus, thanks to double shrinking, up to four), which solved this problem.

With this combination of methods, almost all counterexamples we found shrink to

minimal ones, from which no instruction, stack element, or memory element could

be removed without invalidating the counterexample.

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 31

8 Information-flow register machine

We demonstrate the scalability of the techniques above by studying a more realistic

information-flow register machine. Beyond registers (Section 8.1), this machine

includes advanced features such as first-class public labels (Section 8.2) and dynam-

ically allocated memory with mutable labels (Section 8.3). The combination of these

features makes the design of sound IFC rules highly nontrivial, and thus discovering

flaws early by testing even more crucial. The counterexamples produced by testing

have guided us in designing a novel and highly permissive flow-sensitive dynamic

enforcement mechanism and in the discovery of the sophisticated invariants needed

for the final noninterference proof (Section 8.4). Most importantly for the purpose of

this paper, we experimentally evaluate the scalability of our best generation strategy

(generation by execution) and readily falsifiable formulations of noninterference by

testing this more complex machine (Section 8.5).

8.1 The core of the register machine

The core instructions of the new machine are very similar to those of the simple

stack machine from the previous sections:

Instr ::= Put n rd | Mov rs rd | Load rp rd | Store rp rs | Add r1 r2 rd | Mult r1 r2 rd |
Noop | Halt | Jump r | BranchNZ n r | Call r1 r2 r3 | Return.

The main difference is that the instructions now take their arguments from and store

their result into registers. We use the meta-variable r to range over a finite set of

register identifiers. The register machine has no Pop instruction and the Push n@�

instruction of the stack machine is replaced by Put n rd, which stores the integer

constant n into the destination register rd. Mov rs rd copies the contents of register

rs into register rd. Load rp rd and Store rp rs take the pointer from register rp, and

load the result into rd or store the value of rs into memory. On top of the familiar

Add we also add a multiplication instruction Mult. Noop, Halt, and Jump work as

before, and we additionally add a BranchNZ n r (branch not zero) instruction that

performs a conditional relative jump by adding the integer n to the pc if the register

r contains a non-zero integer value; otherwise the pc is simply incremented.

While most instructions of the new machine only work with registers, the Call

and Return instructions also use a (protected) call stack. We hard-code a simple

calling convention in which the values of all registers are passed from the callee to

the caller, but only one register is used for passing back a result value, while all

the other registers are automatically restored to the values before the call. Similarly

to the simple stack machine, where to enforce noninterference it was necessary to

specify the number of returned values on calls, on the register machine the register

in which the result is returned and the label of the result are both specified on Call,

saved on the stack, and used on the corresponding Return.

The states of the register machine have the form pc@�pc rf cs m i and include

the register file (rf, mapping register identifiers and to their values) and the call stack

(cs, a list of stack frames). The labeled pc, the data memory m, and the instruction

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

32 C. Hriţcu et al.

memory i (omitted by convention below) are familiar from the stack machine. The

stepping rules for most instructions above are simple; for instance:

i(pc) = Mult r1 r2 rd rf [r1] = n1@�1 rf [r2] = n2@�2

rf ′ = rf [rd := (n1 × n2)@(�1∨�2)]

pc@�pc rf cs m ⇒ (pc+1)@�pc rf ′ cs m
(Mult)

The interaction between public labels and Call and Return, however, is complex; we

discuss it in detail in Section 8.2. The precise structure of the data memory and the

rules for Load and Store are discussed in Section 8.3.

8.2 First-class public labels

First-class public labels are an important feature of several recent IFC systems

for functional programming languages (Stefan et al., 2011; Hriţcu et al. 2013a).

They support the development of realistic applications in which new principals and

labels are created dynamically (Giffin et al., 2012), and they are a key ingredient in

recently proposed mechanisms for soundly recovering from IFC violations (Stefan

et al., 2012; Hriţcu et al. 2013a). While for simplicity, we consider neither dynamic

labels nor recoverable exceptions, our register machine does have first-class public

labels. Enforcing noninterference for public labels is highly nontrivial, especially in

the presence of varying memory labels (Section 8.3).

Even before that, adding a LabelOf rs rd instruction that puts in rd the label of

the value in rs as a public first-class value is unsound for a label lattice with at

least three elements and a standard mechanism for restoring the pc on control flow

merge point (e.g., the Calls and Returns of the stack machine in Section 5.2). In a

functional language, we would write the counterexample as follows:

LabelOf (if m then 0@M else 0@H).

This encodes the secret bit m protected by label M (where L � M � H) by varying

the label of the conditional’s result (M on the if branch and H on the else one), and

then uses LabelOf to expose that label. Note that the counterexample involves two

different labels (in our case M and H) that are higher or equal in lattice order (�)

than the label of a secret (M); a two-point lattice is not rich enough.

To express the same counterexample on our low-level machine, consider two

indistinguishable states 0@L rf1 [] [] and 0@L rf2 [] [] differing only in the

value of the r0 register, which contains a secret bit labeled M: rf1[r0] = 0@M while

rf2[r0] = 1@M. We use three more registers with the same value in both states:

rf1[r1] = rf2[r1] = 3@L, rf1[r2] = rf2[r2] = 0@M, and rf1[r3] = rf2[r3] = 0@H . The

instruction memory of both machines contains the following program:

[Call r1 r3, LabelOf r3 r0, Halt, BranchNZ 2 r0, Mov r2 r3, Return].

The Call transfers control to the BranchNZ instruction and specifies r3 as the return

register. Together with the Return, this ensures that the pc label is restored to L

after branching on the secret bit via BranchNZ. The BranchNZ ensures that the Mov

is executed when r0 is 0@M (the first execution) and skipped when r0 is 1@M (the

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 33

second one). The pc is raised to M on the BranchNZ, but that cannot have any effect

on the Mov since the labels of the values in r2 and r3 are anyway higher or equal

than M. Similarly, the Return could potentially join the pc label M to the label of

the returned register r3, but that would again have no effect. After the Return, the

pc is again labeled L and the register r3 stores 0@M in the first execution and 0@H

in the second. Executing LabelOf exposes this label difference to the value level. In

the end, the first machine halts with M@L in register r3, while the second one halts

with H@L in r3, a distinguishable difference.

Following Hriţcu et al. (2013a) and Stefan et al. (2011), we can solve this problem

by separating the choice of label (which needs to be done in a low context) from the

computation of the labeled data (which happens in a high context). Concretely, we

require the programmer to specify the label of the result of each procedure as part

of the Call (in our simple instruction language the first-class label is first put in a

register with PutLabel, and only then passed to the Call). In the example above, the

Return succeeds on both branches only if the Call is annotated with H , i.e., a label

that is more secure than the label of the result register on either branch:

[PutLabel H r4, Call r1 r3 r4, LabelOf r3 r0, Halt, BranchNZ 2 r0, Mov r2 r3, Return].

Regardless of which branch is chosen, the procedure will return 0@H in register r3,

thus preventing m from being leaked via the labels. Concretely, the new PutLabel

instruction loads the label H into register r4, and then this register is passed as a

third argument to the Call. The Call saves the H label in the new stack frame, and

the Return checks that the pc label and the label of the result in r3 are both below

or equal to H (which is trivially true on both branches) and then raises the label of

the result to H . The check performed on Return would fail at least on one of the

branches if the Call were wrongly annotated with L or M.

The rest of this subsection explains the part of our machine definition concerning

first-class public labels, culminating with the stepping rules for Call and Return. For

the sake of brevity, in the rest of this and the following subsections, as opposed

to Section 2 and Section 5, we do not list wrong rules and the QuickCheck-found

counterexamples that have guided our search for the right formulations. For testing,

we consider labels drawn from a four-element diamond lattice:

� ::= L | M1 | M2 | H,

where L � M1, L � M2, M1 � H , and M2 � H . The labels M1 and M2

are incomparable. This four-element lattice was rich enough for finding all bugs

introduced in the experiments from Section 8.5. With this richer lattice our definition

of “low” and “high” becomes relative to an arbitrary observer label �: we call �1

low with respect to � if �1 � � and high otherwise. The noninterference proof from

Section 8.4 is parameterized over an arbitrary finite lattice.

The register machine works with labeled values v@�, where v is an integer n or

a first-class label � or a pointer (more on pointers in Section 8.3). Besides PutLabel

and LabelOf, which we have seen above, we add three more new instructions that

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

34 C. Hriţcu et al.

work with first-class labels:

Instr ::= . . . | PutLabel � rd | LabelOf rs rd | PcLabel rd | Join r1 r2 rd | FlowsTo r1 r2 rd.

PcLabel returns the label of the pc, while Join and FlowsTo compute ∨ and � on

first-class labels. The stepping rules for these new instructions are all very simple:

i(pc) = PutLabel � rd rf ′ = rf [rd := �@L]

pc@�pc rf cs m ⇒ (pc+1)@�pc rf ′ cs m
(PutLabel)

i(pc) = LabelOf rs rd rf [rs] = n@� rf ′ = rf [rd := �@L]

pc@�pc rf cs m ⇒ (pc+1)@�pc rf ′ cs m
(LabelOf)

i(pc) = PcLabel rd rf ′ = rf [rd := �pc@L]

pc@�pc rf cs m ⇒ (pc+1)@�pc rf ′ cs m
(PcLabel)

i(pc) = Join r1 r2 rd rf [r1] = �1@�′
1 rf [r2] = �2@�′

2

rf ′ = rf [rd := (�1 ∨ �2)@(�′
1 ∨ �′

2)]

pc@�pc rf cs m ⇒ (pc+1)@�pc rf ′ cs m
(Join)

i(pc) = FlowsTo r1 r2 rd rf [r1] = �1@�′
1 rf [r2] = �2@�′

2

n = if �1 � �2 then 1 else 0 rf ′ = rf [rd := n@(�′
1 ∨ �′

2)]

pc@�pc rf cs m ⇒ (pc+1)@�pc rf ′ cs m
(FlowsTo)

Note that result of the LabelOf instruction is a “label value” that is itself labeled

L. So in a low context the labels of values in registers—even labels on secret

data—are public information.

The stepping rules for Call and Return are more complex. The Call r1 r2 r3

instruction has three register arguments: r1 stores the address of a procedure, r2 is

marked as a result register and is not restored on return, and r3 stores a first-class

label that is used to label the result value on return. On executing Call r1 r2 r3, the

return address (pc+1), the contents of the whole register file (rf), the return register

identifier r2, and the label in r3 (�), are all saved in a new stack frame, and control

is passed to the address in r1 (n):

i(pc) = Call r1 r2 r3 rf [r1] = n@�n rf [r3] = �@�′

pc@�pc rf cs m ⇒ n@(�pc ∨ �n) rf ((pc+1)@(�pc ∨ �′), rf, r2, �) : cs m
(Call)

As was the case in Section 5.2, the address of the called procedure (n) can be

influenced by secrets, so we join its label (�n) to the pc label (�pc). Finally, since the

label used to annotate the call (�) is first class, it has itself a protecting label (�′),

which we join to the label of the return address (pc+1).

On a Return the top frame on the call stack is popped, the saved pc and register

file are restored to their previous values, with the exception of the return register

whose content is preserved, so that a value is passed from the callee to the caller in

this register.

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 35

i(pc) = Return rf [r] = v@� � ∨ �pc � �′ ∨ �′
pc rf ′′ = rf ′[r := v@�′]

pc@�pc rf (n@�′
pc , rf

′, r, �′) : cs m ⇒ n@�′
pc rf ′′ cs m

(Return)

The label check considers the total protection of a value as the join of its explicit

label and the pc label Hriţcu et al. (2013a). This check ensures that the total

protection of the returned value (v) after the Return (label �′ ∨ �′
pc) is at least as

strong as its protection before the return (�∨�pc); in other words, it prevents Return

from declassifying the result, which would break noninterference.

8.3 Permissive flow-sensitive memory updates

Testing has helped us more easily explore the intricate space of IFC mechanisms

and design a new one that addresses a current research challenge in an interesting

way. The challenge we address is allowing the labels of the values in memory to vary

at runtime yet still be observable. IFC systems that allow labels to change during

execution are usually called flow-sensitive, and are generally more permissive than

flow-insensitive systems that require labels to be fixed once and for all. Devising flow-

sensitive dynamic IFC systems is, however, challenging. The first solutions proposed

in the literature used static analysis to soundly approximate the effects of branches

not taken on IFC labels (Guernic et al., 2006; Guernic, 2007; Russo & Sabelfeld,

2010). Later, sound purely dynamic flow-sensitive monitors were proposed, based on

dynamic checks called no-sensitive-upgrades (Zdancewic, 2002; Austin & Flanagan,

2009) (which we used for the stack machine in Section 5.2) and permissive upgrades

(Austin & Flanagan, 2010; Bichhawat et al., 2014b). These checks are, however, not

sound when labels are observable (e.g., via the LabelOf instruction we introduced

in Section 8.2); intuitively they allow secret information to leak into the labels of

the values in memory and ensure soundness by preventing these labels from being

observed. We are aware of only one flow-sensitive IFC system featuring public (i.e.,

observable) labels: the one recently proposed by Buiras et al. (2014). Our solution

is similar but in many ways more permissive than the one by Buiras et al. (2014);

on the other hand, their technique extends well to concurrency, while here we only

study a sequential setting. The precise connection to Buiras et al. (2014) is discussed

throughout this subsection.

The main idea is simple: we associate a label with each memory block and this

label protects not only the values inside, but also their individual labels ((Buiras

et al., 2014) don’t store values in blocks, but use a similar concept called “the label

on the reference label”). This block label is chosen by the programmer at allocation

time and is fixed throughout execution, while the label on the values in the block can

vary more or less arbitrarily. The only restriction we impose is that label updates

can only happen in contexts that are less classified than the label of the memory

block containing the updated label. The rest of this subsection presents the technical

details of our solution.

The register machine features a block-based memory model (Leroy & Blazy, 2008;

Leroy et al., 2012; Azevedo de Amorim et al., 2014). As mentioned above, values

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

36 C. Hriţcu et al.

include integers, first-class labels, and pointers:

v ::= n | � | (b, o).

A pointer is a pair (b, o) of a block identifier b and an integer offset o. The memory

m is a partial function from a block identifier to a labeled list of labeled values

vs@�b; we call �b the block label. The stepping rule for Load rp rd looks up the

value of rp in the register file, and proceeds only if it is a pointer (b, o) labeled �p:

i(pc) = Load rp rd rf [rp] = (b, o)@�p
m[b] = vs@�b vs[o] = v@�v rf ′ = rf [rd := v@�v]

pc@�pc rf cs m ⇒ (pc+1)@(�pc ∨ �p ∨ �b) rf ′ cs m
(Load)

It looks up the block identifier b in the memory m and if the block is allocated it

obtains a list of values vs labeled by the block label �b. The result of the Load is

a labeled value v@�v obtained by looking up at offset o in vs. The most interesting

part is that the resulting pc label is the join of the previous pc label �pc , the pointer

label �p, and the block label �b. Intuitively, before the load, the labels �b and �p
protect the value v as well as its label �v . After the load, we could have protected

the value v by joining �b and �p to �v instead of the pc label and that would have

been more permissive. However, this would have left the label �v unprotected, and

directly accessible via LabelOf, breaking noninterference.

The stepping rule for Store takes a labeled value v@�v and writes it to memory,

overwriting the previous value at that location as well as its label.

i(pc) = Store rp rs rf [rp] = (b, o)@�p rf [rs] = v@�v
m[b] = vs@�b (�pc ∨ �p) � �b vs′ = vs[o := v@�v] m′ = m[b := vs′@�b]

pc@�pc rf cs m ⇒ (pc+1)@�pc rf cs m′
(Store)

Because the previous value is overwritten its label doesn’t need to be related in

any way with the label of the new value. This allows for arbitrary label changes

in memory and is thus more permissive than previous work based on upgrade

operations that can only raise the label of a value in memory (Hedin & Sabelfeld,

2012; Buiras et al., 2014). The label check (�pc ∨ �p) � �b ensures that the label �b
that will protect v@�v after the store is high enough to prevent revealing information

about the context in which or the pointer through which this store happened. This

ensures that no program can branch on a secret and based on this change a labeled

value in a memory block with a public block label, since this would be observable

via Load as soon as the branching ends and the pc label is restored. Similarly, this

ensures that no program can vary a pointer based on secrets and then use that

pointer to do a store to a block with a public block label, since that block can

potentially also be accessible via public pointers that can observe the stored value or

its label. This is analogous to one of the checks performed for the upgrade operation

of Buiras et al. (2014) (upgrade is further discussed below); perhaps, surprisingly

this is the only check we need for our Store instruction.

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 37

Beyond Load and Store, we have eight other instructions that deal with pointers

and memory:

Instr ::= . . . | Alloc rn rl rd | Write rp rs | Upgrade rp rl | Eq r1 r2 rd | GetOffset rp rd
| SetOffset rp ro rd | GetBlockSize rp rd | GetBlockLabel rp rd

The Alloc rn rl rd instruction allocates a fresh block of size rn with block label rl
and stores in rd a pointer to the first position in this block. The block is initially

filled with 0@L:

i(pc) = Alloc rn rl rd rf [rn] = n@�n n > 0 rf [rl] = �@�′

fresh m (�pc ∨ �n ∨ �′) = b m′ = m[b := [0@L, 0@L, . . . , 0@L]@�]

rf ′ = rf [rd := (b, 0)@(�n ∨ �′)]

pc@�pc rf cs m ⇒ (pc+1)@�pc rf ′ cs m′
(Alloc)

The returned pointer is protected by both �n, the label of the requested block size,

and by �′, the label of the requested block label. If the requested block size is

positive and there are still blocks left, our Alloc rule succeeds; in particular, the

block label � can be chosen arbitrarily. This allows us to allocate a low block in

high context, knowing that at the end of the high context access to these blocks

will only be possible through high pointers; this invariant is a cornerstone of

our noninterference proof (Section 8.4). This is more permissive than the reference

allocation rule of Buiras et al. (2014), which can only use “the current label” (roughly

analogous to our pc label) as “the label on the reference label” (analogous to our

block label). We return to the fresh m . . . = b condition in Section 8.4.

Our Store instruction arbitrarily changes the label of the overwritten value.

Inspired by Buiras et al. (2014), we additionally provide a Write instruction that

behaves the same as Store, just that it keeps the label of the overwritten value

unchanged:

i(pc) = Write rp rs rf [rp] = (b, o)@�p rf [rs] = v@�v m[b] = vs@�b vs[o]=v′@�′
v

(�pc ∨ �p ∨ �v) � (�b ∨ �′
v) vs′=vs[o := v@�′

v] m′=m[b := vs′@�b]

pc@�pc rf cs m ⇒ (pc+1)@�pc rf cs m′

(Write)

The label check is analogous to the one of Buiras et al. (2014); it can be broken

into two parts: The first part, (�pc ∨ �p) � (�b ∨ �′
v), is more permissive than the

(�pc ∨�p) � �b check of Store. Because the write keeps the label �′
v unchanged, we do

not need to additionally protect this label; we only need to protect the new value v

and for this �′
v can help. This allows for instance writing in a high context to a block

with a low label as long as we overwrite a value previously labeled high; a Store

would be disallowed in this setting, because it could potentially leak information via

a label change. The second part of the check, �v � (�b ∨ �′
v), ensures that the written

value v is at least as protected after the write (by the block label �b and the preserved

value label �′
v) as it was before the write (by �v). This check was unnecessary for

Store because the label of the stored value does not change.

Buiras et al. (2014) also have an upgrade operation that can raise the label of a

value in memory before entering a high context. This upgrade operation can in fact

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

38 C. Hriţcu et al.

be faithfully encoded using our Load and Store instructions (as well as judicious use

of Call and Return). For the purpose of stressing our testing methodology, we chose

to include this as a primitive instruction, with the following (otherwise derivable)

operational semantics rule:

i(pc) = Upgrade rp rl rf [rp] = (b, o)@�p rf [rl] = �@�′ �′
pc = �pc ∨ �′

m[b] = vs@�b vs[o] = v′@�′
v �′

v � (� ∨ �b)

(�′
pc ∨ �p) � �b vs′ = vs[o := v′@�] m′ = m[b := vs′@�b]

pc@�pc rf cs m ⇒ (pc+1)@�′
pc rf ′ cs m′

(Upgrade)

Perhaps surprisingly, this rule is more complex and more restrictive than our Store

rule. Store does not have to deal with the label �′ protecting the first-class label �,

or with the label �′
v of the value v′. In particular, our Store rule does not have the

�′
v � (� ∨ �b) check, because for a Store the value v′ is overwritten, and thus does

not need to be protected in any way. An important consequence of this is that Store

can change labels arbitrarily, while Upgrade can only change labels in a way that

does not diminish the total protection of the existing value in memory. Using Store

to overwrite a memory location with 0@� is thus a better way to change the label

of a location whose value is no longer relevant to �.

The remaining instructions are much simpler. Eq simply illustrates that all values,

including pointers, can be compared for equality. From an IFC perspective, the rule

for Eq is the same as the ones for for Add and Mult:

i(pc) = Eq r1 r2 rd rf [r1] = v1@�1 rf [r2] = v2@�2

if v1 == v2 then n = 1 else n = 0 rf ′ = rf [rd := n@(�1∨�2)]

pc@�pc rf cs m ⇒ pc+1@�pc rf ′ cs m
(Eq)

GetOffset and SetOffset allow direct access to the offset of any pointer:

i(pc) = GetOffset rp rd rf [rp] = (b, o)@�p rf ′ = rf [rd := o@�p]

pc@�pc rf cs m ⇒ (pc+1)@�pc rf ′ cs m
(GetOffset)

i(pc) = SetOffset rp ro rd rf [rp] = (b, o′)@�p rf [ro] = o@�o
rf ′ = rf [rd := (b, o)@(�p ∨ �o)]

pc@�pc rf cs m ⇒ (pc+1)@�pc rf ′ cs m
(SetOffset)

GetBlockSize rp rd returns the size of the block referenced by the pointer in rp:

i(pc) = GetBlockSize rp rd rf [rp] = (b, o)@�p
m[b] = vs@�b rf ′ = rf [rd := (length vs)@�b]

pc@�pc rf cs m ⇒ (pc+1)@(�pc ∨ �p) rf ′ cs m
(GetBlockSize)

The result has to be protected by the block label �b, which in turn has to be

protected by the pointer label �p. The latter is can only achieved by raising the pc

by �p. Finally, GetBlockLabel rp rd returns the label of the block referenced by the

pointer in rp:

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 39

i(pc) = GetBlockLabel rp rd rf [rp] = (b, o)@�p
m[b] = vs@�b rf ′ = rf [rd := �b@�p]

pc@�pc rf cs m ⇒ (pc+1)@�pc rf ′ cs m
(GetBlockLabel)

8.4 Per-level allocation, stamps, reachability, and noninterference

Dynamic allocation in high contexts can cause the values of the pointers to differ

between the two executions considered by noninterference (Banerjee & Naumann,

2005). We ensure soundness by breaking up each pointer into a memory block

identifier and an offset into the memory block. While offsets are fully observable

to the program, block identifiers are opaque and can only be tested for equality.

To further simplify the technical development, we allocate block identifiers “per

level”, i.e., we assume that we have a separate allocator for each allocation context

label. This assumption ensures that, at the level of abstraction we consider here,

allocations in high contexts cannot influence the values of pointers allocated in

low contexts, and we can thus use syntactic equality to check indistinguishability

of pointers. While this assumption on allocation might seem unrealistic, previous

work has shown formally that because block identifiers are opaque, this machine

can be realized by a lower-level machine with a single standard allocator (Azevedo

de Amorim et al., 2014).

To understand per-level allocation, one needs to understand the structure of the

block identifiers we have already used in the previous subsection. Block identifiers

are not opaque; they are pairs of a label �σ , which we will call a stamp, and an

integer index i:

b ::= (�σ, i).

As mentioned in Section 8.3, a memory m is a partial map between block identifiers

and labeled lists of values. One can also see the memory as a three-dimensional array

indexed first by stamps, then by indices, and finally by offsets. Stamps record the

level of the allocation, i.e., the label of the context in which the allocation occurred,

and ensure that allocation at one level cannot influence allocation at other levels.

The side-condition

fresh m (�pc ∨ �n ∨ �′) = b

in the Alloc rule from Section 8.3 implements this per-level allocation idea. The

function fresh takes a memory m and a stamp �σ = �pc ∨�n ∨�′, then uses �σ to index

into the memory m, then uses a deterministic strategy to find the first unallocated

index i in m[�σ], and finally returns the block identifier b = (�σ, i). Formally, we have

fresh m �σ = (�σ, find undefined index m[�σ]).

It turns out that stamps are not only a convenient mechanism for implementing

per-level allocation (thus simplifying the definition of indistinguishability for pointers

to just syntactic equality), but are also a crucial ingredient in another complex

invariant of our noninterference proof. The Alloc rule from Section 8.3 allows

choosing an arbitrary block label, even in a high context. This is only sound because

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

40 C. Hriţcu et al.

at the end of the high context access to the newly allocated blocks is only possible

through high pointers. The stamp in each block identifier captures precisely the label

of the context in which the allocation of that block occurred. A key invariant used

in our noninterference proof is that intuitively an allocated block with identifier (�σ, i)

can be reached from registers only via pointer paths that are protected by labels that

are, when taken together, at least as secure as �σ . In the following, we will formalize

this reachability invariant and use it to define indistinguishability.

We start by defining the “root set” of our reachability invariant, the memory

blocks that are directly accessible at a certain label �. Given a machine state

n@�pc rf cs m , the root set includes the blocks that can be directly accessed by

pointers (b, o)@�p in the register file rf for which (�p ∨�pc) � �. Because pointers are

protected both by their explicit label �p and the pc label �pc , if the machine is in a

high state (one for which �pc �� �), then the current register file does not contribute

at all to the root set. The saved register files on the call stack cs are added to the

root set or not depending on whether the label of the return address in the same

call frame is below � or not. The label of the return address becomes the new pc

on the corresponding Return, so even if the current pc is high the root set has to

include all the low pointers in all register files saved in low-saved-pc call frames.

More formally, we define root-set, a function from a label and a machine state to

a set of blocks, as follows:

root-set � n@�pc rf cs m = (root-set′ � cs) ∪
{

blocks � rf if �pc � �

∅ otherwise

root-set′ � ((n@�pc , rf , r, �res) : cs) = (root-set′ � cs) ∪
{

blocks � rf if �pc � �

∅ otherwise

root-set′ � [] = ∅

blocks � vs = {b | (b, i)@�v ∈ vs ∧ �v � �}

Reachability with respect to a label and a state is a relation on block identifiers

defined as the reflexive transitive closure of a direct link � m relation on block

identifiers:

reachable � pc rf cs m = (link � m)∗

link � m = {(b, b′) | m[b] = vs@�b ∧ �b � � ∧ b′ ∈ blocks � vs}

We formally state the reachability invariant as a well-formedness property of

stamps:

8.1 Definition: We call a machine state S well-stamped if for all labels � and for

all block identifiers b and b′, if b ∈ root-set � S and (b, b′) ∈ reachable � S , then

b′ = (σ, i) for some σ � �.

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 41

We have discovered and refined the form of the well-stamped property by testing.

Subsequently, we have also proved in Coq that it is indeed an invariant of the

execution of our register machine.3

8.2 Lemma: If S is well-stamped and S ⇒ S ′ then S ′ is well-stamped.

The effort of proving this lemma was reduced by considering the correct definitions

and statement from the start.

The indistinguishability relation for register machine states requires that both the

considered states are well-stamped. Like reachability, indistinguishability is defined

with respect to an observation level �.

8.3 Definition: Machine states S1 and S2 are indistinguishable given observer level �,

written S1 ≈�
full -ws S2, if S1 and S2 are both well-stamped and S1 ≈�

full S2.

The S1 ≈�
full S2 relation is defined similarly to the relation of the same name in

Section 6.4 (Definition 6.4):

8.4 Definition: Machine states S1 = pc1 rf1 cs1 m1 i1 and S2 =

pc2 rf2 cs2 m2 i2 are indistinguishable at level � with respect to whole machine

states, written S1 ≈�
full S2, if m1 ≈� m2, i1 ≈� i2, and additionally

• if �pc1
� � or �pc2

� � then pc1 = pc2 and rf1 ≈� rf2 and cs1 ≈� cs2.

• otherwise dropWhile (stack-frame-high �) cs1 ≈� dropWhile (stack-frame-high �)

cs2, where stack-frame-high � (n@�pc , rf, r, �res) = �pc �� �.

The differences with respect to Definition 6.4 are caused by moving from a 2-label

lattice to a more general one. In case one of the pcs is high we still compare the

stacks after cropping all high elements, just that “being high” is now defined as

being protected by a label that does not flow to the observation label �. Moreover,

if both pcs are high then the two pc labels are not required to be equal, while for

the 2-label lattice from Section 6.4 any two high labels have to be equal.

The definition above relies on several auxiliary relations, most interestingly on an

indistinguishability relation for memories defined as follows:

m1 ≈� m2 = ∀(�σ, i). �σ � � ⇒ (m1[(�σ, i)] ⇑ ∧ m2[(�σ, i)] ⇑) ∨ m1[(�σ, i)]

≈� m2[(�σ, i)].

We require each observable block identifier (�σ, i) either to be undefined in both

memories or to point to respectively indistinguishable blocks. Indistinguishability

for labeled things (used both for labeled blocks and the labeled values inside) is

defined as follows:

y1@�1 ≈� y2@�2 = (�1 = �2 ∧ (�1 � � =⇒ y1 ≈� y2)).

Indistinguishability for lists (of values or stack frames) is defined pointwise:

(y1 : ys1) ≈� (y2 : ys2) = y1 ≈� y2 ∧ ys1 ≈� ys2 and [] ≈� [].

3 Lemma well stamped preservation at https://github.com/QuickChick/IFC/blob/master/
NIProof.v

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

42 C. Hriţcu et al.

Because of per-level allocation, indistinguishability for values (including for pointers)

is defined simply as syntactic equality:

v1 ≈� v2 = (v1 = v2).

Indistinguishability for (potentially cropped, see Definition 8.4) stacks is defined

using list indistinguishability and the following indistinguishability relation on stack

frames:

(pc1, rf1, r1, �res1
) ≈� (pc2, rf2, r2, �res2

) =

(�pc1
� � ∨ �pc2

� �) =⇒ (pc1 = pc2 ∧ rf1 ≈� rf2 ∧ r1 = r2 ∧ �res1
= �res2

).

If one of the stored pcs is low, then the other has to be low as well, and all elements

of the stack frame have to be pointwise related. If both stored pcs are high, we do

not impose any additional constraints on the stack frame, in particular, the two high

pcs can have different labels. This mirrors the handing of pcs and register files in

Definition 8.4. While this definition seems natural in retrospect, it took us a while

to reach it;Section A.5 presents the wrong alternatives with which we started.

While we discovered the rules and the well-stamped invariant by testing, we finally

proved in Coq that this IFC mechanism has noninterference with respect to ≈full -ws .
4

8.5 Theorem: The register information-flow machine satisfies SSNI≈full -ws
.

While the proof of this theorem discovered no errors in the rules or the well-stamped

invariant, it did discover a serious flaw in the indistinguishability relation for stacks,

which was previously hidden by an error in our stack generator (the wrong definition

is described in Section A.5). This illustrates that keeping generators and checkers in

sync is challenging and brings further motivation to recent work on domain-specific

languages for generators (Claessen et al., 2014; Fetscher et al., 2015; Lampropoulos

et al., 2015).

8.5 Testing results

In order to evaluate how well our testing techniques scale, we apply the best strategies

from Sections 4 and 6 to the register machine and devise an even stronger property

that is even better at finding bugs. In this subsection, we explain and discuss in

detail the experimental results summarized in Figure 19.

For these experiments, we introduced bugs by dropping taints and checks and by

moving taints from the pc to the result. A missing taint bug is formed by dropping

some label in the result of the correct IFC rule. For example, we can insert a bug in

the Mult rule by only tainting the result with the label of one of its arguments (we

taint n1 × n2 with �1 instead or �1 ∨ �2):

i(pc) = Mult r1 r2 rd rf [r1] = n1@�1 rf [r2] = n2@�2

rf ′ = rf [rd := (n1 × n2)@�1]

pc@�pc rf cs m ⇒ (pc+1)@�pc rf ′ cs m
(Mult*)

4 https://github.com/QuickChick/IFC/blob/master/NIProof.v

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 43

Figure 19. Experiments for the register machine. MTTF given in milliseconds.

A missing check bug is formed by dropping some part of the requirements of the

IFC rule. For example, to insert a bug in the Store rule we turn the �pc ∨ �p � �b
check into just �p � �b:

i(pc) = Store rp rs rf [rp] = (b, o)@�p rf [rs] = v@�v
m[b] = vs@�b �p � �b vs′ = vs[o := v@�v] m′ = m[b := vs′]

pc@�pc rf cs m ⇒ (pc+1)@�pc rf cs m′
(Store*)

A final and more subtle class of bugs is moving the taint from the pc to the

result. For some rules, like the one for Load, it is imperative that the pc is tainted

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

44 C. Hriţcu et al.

instead of the result so that the labels involved are protected. The following incorrect

rule, in which we taint the value with the block label �b instead of the pc, yields a

counterexample:

i(pc) = Load rp rd rf [rp] = (b, o)@�p
m[b] = vs@�b vs[o] = v@�v rf ′ = rf [rd := v@(�v ∨ �b)]

pc@�pc rf cs m ⇒ (pc+1)@(�pc ∨ �p) rf ′ cs m
(Load*)

The baseline for our comparison is generation by execution and

EENIInit,Halted∩Low,≈ints-in-regs
, a basic instantiation of EENI (as defined in Section 2.3

and Appendix Appendix B.), stating that starting from empty initial states and

executing the same program, if both machines reach a low halting state then their

register files need to contain low integers at the same positions and these integers

need to be pairwise equal. Formally, we define indistinguishability as follows:

8.6 Definition: S1 = pc1 rf1 cs1 m1 and S2 = pc2 rf2 cs2 m2 are indistinguish-

able with respect to integers stored in registers, written S1 ≈ints-in-regs S2, if rf1 ≈ints rf2,

which is the pointwise extension of the following indistinguishability relation on

values:

v1@�1 ≈�
ints v2@�2 = (�1 = �2 ∧ (�1 � � =⇒ (v1 = n ⇔ v2 = n))).

We choose this property as the baseline because it is simple; in particular, it does not

compare pointers or memories or stacks, which as we saw in the previous subsection

is very involved. The results for this property appear in the first column of Figure 19

and as expected are not satisfactory: most of the bugs are not found at all even after

5 minutes of testing. For the rest of the experiments, we use the indistinguishability

relation ≈full -ws described in the previous subsection. Moreover, we start execution

from arbitrary states, which also significantly improves testing.

The next two columns show the result of using the EENIAny,Halted∩Low,≈full -ws

and LLNIAny,≈full -ws
properties (LLNI is defined generically in Section 6.3 and

Appendix Appendix B.). These properties do not actually use the full invariants

shown in Section 8.4, just the parts of it that pertain to low states, since both EENI

and LLNI will only compare such states. The generation strategy is again generation

by execution—simpler strategies result in very poor performance. The results show

that the extended machine is too complex for EENI to discover all injected bugs,

while LLNI does find all of them.

Two simple observations allow us to improve LLNI even further. The first one is

that our implementation of generation by execution is “naive” about generating each

next instruction. To be precise, we continuously update the uninitialized instruction

memory with new random instructions by repeatedly indexing into the list. This is

clearly the source of some overhead, which can be alleviated by using a random-

access data structure like a map or—as we chose to use—a zipper; a zipper provides

even faster average-case performance since most of the time the program counter is

only incremented by one. This improvement yields a small performance boost.

The second and more important observation is that some instructions have very

restrictive IFC checks (Store, Return, Write, and Upgrade), which often lead to the

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 45

machine failing as soon as they are encountered. This causes these instructions to

be underrepresented in the machine states produced by generation by execution,

which only chooses an instruction if this instruction can execute for at least a

step. Adjusting the frequency of instruction generation experimentally, so that each

instruction ends up being equally frequent among the ones that can successfully take

a step, leads to the optimized LLNI column of Figure 19. This strategy successfully

discovers all bugs relatively quickly. There is, however, a trade-off: the bugs that

were easier to find before become slightly harder to find.

We also consider an instance of the SSNI property (Section 6.4), SSNI≈full -ws
,

which we expect to take advantage of all our invariants. Similarly to LLNI, IFC-

check-heavy instructions cause a lot of failures; in this case, the failures lead to

many discarded tests, since only one instruction is run. In Figure 19, we show

the performance of SSNI≈full -ws
with uniform and weighted instruction generation so

that instructions empirically appear uniform in the non-discarded tests. The required

weights turn out to be very similar to the ones required for LLNI. Moreover, the

same trade-off appears here: we can find the hard-to-find bugs faster by sacrificing

a bit of speed for the easy-to-find ones.

As was the case for the basic machine, when optimizing the generation for SSNI,

we must be extremely cautious to avoid ruling out useful parts of the state space.

Since SSNI operates by executing a machine state for a single step to check the

invariant, being able to generate the entire state space of pairs of indistinguishable

machines becomes very important. For example, a reasonable assumption might

seem to be that the stacks are “monotonic”, as described in the end of the previous

section. However, if we use the incorrect indistinguishability relation in Equation

(A 1) and generate only “monotonic” stacks for the starting states, SSNI does not

uncover the bug in Figure A 7, whereas LLNI does.

Comparing LLNI and SSNI with respect to their efficiency in testing, we can spot

an interesting tradeoff. On the one hand, a significant limitation of LLNI is that

bugs that appear when the pc is high are not detected immediately, but only after

the pc goes back low, if ever. One example is the Store* buggy rule above, where

we do not check whether the pc label flows to the label of the memory cell. On

such bugs LLNI has orders of magnitude worse results. On the other hand, SSNI

is significantly less robust with respect to starting state generation. If we do not

generate every valid starting state, then SSNI will not test executions starting in the

missing states, since it only executes one instruction. LLNI avoids this problem as

long as all valid states are eventually reachable from the generated starting states.

These observations lead us to formulate a new property: multi-step noninterference

(MSNI), that combines the advantages of both LLNI and SSNI. The formal

definition of MSNI is given in Appendix Appendix B.. Informally, we start from an

arbitrary pair of indistinguishable machine states and we check the SSNI unwinding

conditions along a whole execution trace. Using generation by execution with uniform

and adjusted instruction frequencies for this property yields the last two columns of

Figure 19. MSNI performs on most bugs on par with the better of SSNI or LLNI

by uncovering IFC violations as soon as they appear; at the same time, unlike SSNI,

MSNI is robust against faulty generation.

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

46 C. Hriţcu et al.

9 Related work

Generating random inputs for testing is a large research area, but the particular

sub-area of testing language implementations by generating random programs is

less well studied. Redex (Klein, 2009; Klein & Findler, 2009; Klein et al., 2012;

Fetscher et al., 2015) (né PLT Redex) is a domain-specific language for defining

operational semantics within Racket (né PLT Scheme), which includes a property-

based random testing framework inspired by QuickCheck. This framework uses

a formalized language definition to automatically generate simple test-cases. To

generate better test cases, however, Klein et al. find that the generation strategy

needs to be tuned for the particular language; this agrees with our observation that

fine-tuned strategies are required to obtain the best results. They argue that the

effort required to find bugs using Redex is less than the effort required for a formal

proof of correctness, and that random testing is sometimes viable in cases where full

proof seems infeasible.

Klein et al. (2013) use PLT Redex’s QuickCheck-inspired random testing frame-

work to assess the safety of the bytecode verification algorithm for the Racket

virtual machine. They observe that naively generated programs only rarely pass

bytecode verification (88% discard rate), and that many programs fail verification

because of a few common violations that can be easily remedied in a post-generation

pass that for instance replaces out-of-bounds indices with random in-bounds ones.

These simple changes to the generator are enough for reducing the discard rate (to

42%) and for finding more than two dozen bugs in the virtual machine model, as

well as a few in the Racket machine implementation, but three known bugs were

missed by this naive generator. The authors conjecture that a more sophisticated

test generation technique could probably find these bugs.

CSmith (Yang et al., 2011) is a C compiler testing tool that generates random C

programs, avoiding ones whose behavior is undefined by the C99 standard. When

generating programs, CSmith does not attempt to model the current state of the

machine; instead, it chooses program fragments that are correct with respect to

some static safety analysis (including type-, pointer-, array-, and initializer-safety,

etc.). We found that modeling the actual state of our (much simpler) machine to

check that generated programs were hopefully well-formed, as in our generation

by execution strategy, made our test-case generation far more effective at finding

noninterference bugs. In order to get smaller counterexamples, Regehr et al. present

C-Reduce (Regehr et al., 2012), a tool for reducing test-case C programs such as

those produced by CSmith. They note that conventional shrinking methods usually

introduce test cases with undefined behavior; thus, they put a great deal of effort and

domain specific knowledge into shrinking well-defined programs only to programs

that remain well-defined. To do this, they use a variety of search techniques to find

better reduction steps and to couple smaller ones together. Our use of QuickCheck’s

double shrinking is similar to their simultaneous reductions, although we observed

no need in our setting for more sophisticated searching methods than the greedy one

that is guaranteed to produce a local minimum. Regehr et al.’s work on reduction

is partly based on Zeller and Hildebrandt’s formalization of the delta debugging

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 47

algorithm ddmin (Zeller & Hildebrandt, 2002), a non-domain-specific algorithm for

simplifying and isolating failure-inducing program inputs with an extension of binary

search. In our work, as in Regehr et al.’s, domain-specific knowledge is crucial for

successful shrinking. In recent work, Koopman et al. (2014) propose a technique for

model-based shrinking.

Another relevant example of testing programs by generating random input is

Randoop (Pacheco & Ernst, 2007), which generates random sequences of calls to Java

APIs. Noting that many generated sequences crash after only a few calls, before any

interesting bugs are discovered, Randoop performs feedback directed random testing,

in which previously found sequences that did not crash are randomly extended. This

enables Randoop to generate tests that run much longer before crashing, which

are much more effective at revealing bugs. Our generation by execution strategy is

similar in spirit, and likewise results in a substantial improvement in bug detection

rates.

A state-machine modeling library for (an Erlang version of) QuickCheck has

been developed by Quviq (Hughes, 2007). It generates sequences of API calls to a

stateful system satisfying preconditions formulated in terms of a model of the system

state, associating a (model) state transition function with each API call. API call

generators also use the model state to avoid generating calls whose preconditions

cannot be satisfied. Our generation-by-execution strategy works in a similar way for

straightline code.

A powerful and widely used approach to testing is symbolic execution—in

particular, concolic testing and related dynamic symbolic execution techniques

(Majumdar & Sen 2007; Cadar et al., 2011). The idea is to mix symbolic and

concrete execution in order to achieve higher code coverage. The choice of which

concrete executions to generate is guided by a constraint solver and path conditions

obtained from the symbolic executions. Originating with DART (Godefroid et al.,

2005) and PathCrawler (Williams et al., 2004), a variety of tools and methods have

appeared; some of the state-of-the-art tools include CUTE (Sen et al., 2005), CREST

(Burnim & Sen, 2008), and KLEE (Cadar et al., 2008) (which evolved from EXE

(Cadar et al., 2006)) . We wondered whether dynamic symbolic execution could be

used instead of random testing for finding noninterference bugs. As a first step, we

implemented a simulator for a version of our abstract machine in C and tested it

with KLEE. Using KLEE out of the box and without any expert knowledge in the

area, we attempted to invalidate various assertions of noninterference. Unfortunately,

we were only able to find a counterexample for Push*, the simplest possible bug,

in addition to a few implementation errors (e.g., out-of-bound pointers for invalid

machine configurations). The main problem seems to be that the state space we need

to explore is too large(Cadar & Sen, 2013), so we don’t cover enough of it to reach

the particular IFC-violating configurations. More recently, Torlak & Bodı́k (2014)

have used our information-flow stack machine and its bugs with respect to EENI

as a case study for their symbolic virtual machine, and report better results.

Balliu et al. (2012) created ENCoVer, an extension of Java PathFinder, to verify

information-flow properties of Java programs by means of concolic testing. In

their work, concolic testing is used to extract an abstract model of a program so

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

48 C. Hriţcu et al.

that security properties can be verified by an SMT solver. While ENCoVer tests

the security of individual programs, we use testing to check the soundness of an

entire enforcement mechanism. Similarly, Milushev et al. (2012) have used KLEE for

testing the noninterference of individual programs, as opposed to our focus on testing

dynamic IFC mechanisms that are meant to provide noninterference for all programs.

In recent work, (Lampropoulos et al., 2015) introduce a domain-specific language

for random generators that puts together random instantiation (Antoy, 2000;

Claessen et al., 2014; Fetscher et al., 2015) and constraint solving (Mohr &

Henderson, 1986). As a case study, they tests noninterference for the register machine

from Section 8 using our generators for indistinguishable machine states (including

generation by execution) and the SSNI and LLNI properties.

In interactive theorem provers, automatically generating counterexamples for false

conjectures can prevent wasting time and effort on proof attempts doomed to fail

(Groce et al., 2007). Dybjer et al. (2003) propose a QuickCheck-like tool for the

Agda/Alfa proof assistant. Berghofer & Nipkow (2004) proposed a QuickCheck-

like tool for Isabelle/HOL. This was recently extended by Bulwahn (2012a) to

also support exhaustive and narrowing-based symbolic testing(Lindblad, 2007;

Christiansen & Fischer, 2008; Runciman et al., 2008). Moreover, Bulwahn’s tool

uses Horn clause data flow analysis to automatically devise generators that only

produce data that satisfies the precondition of the tested conjecture (Bulwahn 2012b).

Eastlund (2009) implemented DoubleCheck, an adaption of QuickCheck for ACL2.

Chamarthi et al. (2011) later proposed a more advanced counterexample finding tool

for ACL2s, which uses the full power of the theorem prover and libraries to simplify

conjectures so that they are easier to falsify. While all these tools are general and

only require the statement of the conjecture to be in a special form (e.g., executable

specification), so they could in principle be applied to test noninterference, our

experience with QuickCheck suggests that for the best results one has to incorporate

domain knowledge about the machine and the property being tested. We hope

to compare our work against these tools in the future and provide experimental

evidence for this intuition. Recently, Paraskevopoulou et al. (2015) introduced

a port of Haskell QuickCheck to Coq together with a foundational verification

framework for testing code and use our testing noninterference techniques as their

main case study, proving our generator for “Tiny” indistinguishable states used to

test SSNI for the register machine (Section 8.5) sound and complete with respect to

indistinguishability.

On the dynamic IFC side, Birgisson et al. (2012) have a good overview of

related work. Our correct rule for Store for the stack machine is called the no-

sensitive-upgrades policy in the literature and was first proposed by Zdancewic (2002)

and later adapted to the dynamic IFC setting by Austin & Flanagan (2009). To

improve precision, Austin & Flanagan (2010) later introduced a different permissive-

upgrade policy, where public locations can be written in a high context as long as

branching on these locations is later prohibited, and they discuss adding privatization

operations that would even permit this kind of branching safely. Hedin & Sabelfeld

(2012) improve the precision of the no-sensitive-upgrades policy by explicit upgrade

annotations, which raise the level of a location before branching on secrets. They

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 49

apply their technique to a core calculus of JavaScript that includes objects, higher

order functions, exceptions, and dynamic code evaluation. Birgisson et al. (2012)

show that random testing with QuickCheck can be used to infer upgrade instructions

in this setting. The main idea is that whenever a random test causes the program

to be stopped by the IFC monitor because it attempts a sensitive upgrade, the

program can be rewritten by introducing an upgrade annotation that prevents

the upgrade from being deemed sensitive on the next run of the program. In

recent work, Bichhawat et al. (2014b) generalize the permissive-upgrade check to

arbitrary IFC lattices. They present involved counterexamples, apparently discovered

manually while doing proofs. We believe that our testing techniques are well-suited

at automatically discovering such counterexamples.

Terauchi & Aiken (2005) and later Barthe et al. (2011b) propose a technique

for statically verifying the noninterference of individual programs using the idea of

self-composition. This reduces the problem of verifying secure information flow for

a program P to a safety property for a program P̂ derived from P , by composing

P with a renaming of itself. Self-composition enables the use of standard (i.e., not

relational (Benton, 2004; Barthe et al. 2011a)) program logics and model checking

for showing noninterference. The problem we address in this paper is different: we

test the soundness of dynamic IFC mechanisms by randomly generating (a large

number of) pairs of related programs. One could imagine extending our technique

in the future to testing the soundness of static IFC mechanisms such as type systems

(Sabelfeld & Myers, 2003), relational program logics (Benton, 2004; Barthe et al.

2011a), and self-composition based tools (Barthe et al. 2011b).

In recent work, Ochoa et al. (2015) discuss a preliminary model-checking based

technique for discovering unwanted information flows in specifications expressed as

extended finite state machines. They also discuss about testing systems for unwanted

flows using unwinding-based coverage criteria and mutation testing. In a recent

position paper, Kinder (2015) discusses testing of hyperproperties (Clarkson &

Schneider, 2010).

10 Conclusions and outlook

We have shown how random testing can be used to discover counterexamples to

noninterference in a simple information-flow machine and how to shrink counterex-

amples discovered in this way to simpler, more comprehensible ones. The techniques

we present bring many orders of magnitude improvement in the rate at which bugs

are found, and for the hardest-to-find bugs (to EENI) the minimal counterexamples

are 10–15 instructions long—well beyond the scope of naive exhaustive testing. Even

if we ultimately care about full security proofs (Azevedo de Amorim et al., 2014),

using random testing should greatly speed the initial design process and allow us to

concentrate more of our energy on proving things that are correct or nearly correct.

We are hopeful that we can scale the methodology introduced in this paper to test

noninterference and other properties (Azevedo de Amorim et al., 2015) for abstract

machines built on top of real-life instruction set architectures. The results in Section

8 are particularly encouraging in this respect. For a real-life architecture, even if

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

50 C. Hriţcu et al.

were to find bugs 100× slower than for the machine in Section 8, that would still

only be a matter of seconds.

We expect that our techniques are flexible enough to be applied to checking other

relational properties of programs (i.e., properties of pairs of related runs(Benton,

2004; Clarkson & Schneider, 2010; Barthe et al. 2011a))—in particular, the many

variants and generalizations of noninterference, for instance, taking into account

declassification (Sabelfeld & Sands, 2005). Beyond noninterference properties, pre-

liminary experiments with checking correspondence between concrete and abstract

versions of our current stack machine suggest that many of our techniques can

also be adapted for this purpose. For example, the generate-by-execution strategy

and many of the shrinking tricks apply just as well to single programs as to pairs

of related programs. This gives us hope that they may be useful for checking yet

further properties of abstract machines.

Acknowledgments

We thank the participants in the discussion at the IFIP WG 2.8 meeting in Storulv̊an

that originated this work: Ulf Norell, Rishiyur S. Nikhil, Micha�l Pa�lka, Nick

Smallbone, and Meng Wang. We are grateful to Johannes Borgström, Cristian

Cadar, Delphine Demange, Matthias Felleisen, Robby Findler, Alex Groce, Casey

Klein, Ben Karel, Scott Moore, Micha�l Pa�lka, John Regehr, Howard Reubenstein,

Alejandro Russo, Deian Stefan, Greg Sullivan, and Andrew Tolmach for providing

feedback on a draft, and to the members of the CRASH/SAFE team and to Manolis

Papadakis for fruitful discussions. Finally, we thank the anonymous reviewers for

their suggestions and Andreas Haeberlen for kindly providing us computing time

on his cluster. This material is based upon work supported by the DARPA CRASH

program through the US Air Force Research Laboratory (AFRL) under Contract

No. FA8650-10-C-7090, and NSF award 1421243, Random Testing for Language

Design. The views expressed are those of the authors and do not reflect the official

policy or position of the Department of Defense or the U.S. Government. The work

is also partially funded under the Swedish Foundation for Strategic Research grant

RAWFP.

References

Antoy, S. (2000) A needed narrowing strategy. J. ACM 47(4), 776–822.

Austin, T. H. & Flanagan, C. (2009) Efficient purely-dynamic information flow analysis. In

Proceedings of 4th ACM SIGPLAN Workshop on Programming Languages and Analysis

for Security, PLAS’09. ACM, pp. 113–124.

Austin, T. H. & Flanagan, C. (2010) Permissive dynamic information flow analysis. In

Proceedings of 5th ACM SIGPLAN Workshop on Programming Languages and Analysis

for Security, PLAS’10. ACM, pp. 3:1–3:12.

Azevedo de Amorim, A., Collins, N., DeHon, A., Demange, D., Hriţcu, C., Pichardie, D., Pierce,

B. C., Pollack, R. & Tolmach, A. (January 2014) A verified information-flow architecture. In

Proceedings of 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL’14. ACM, pp. 165–178.

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 51

Azevedo de Amorim, A., Dénès, M., Giannarakis, N., Hriţcu, C., Pierce, B. C., Spector-

Zabusky, A. & Tolmach, A. (2015) Micro-policies: Formally verified, tag-based security

monitors. In Proceedings of 36th IEEE Symposium on Security and Privacy, SP’15. IEEE,

pp. 813–830.

Balliu, M., Dam, M. & Guernic, G. L. (2012) Encover: Symbolic exploration for information

flow security. In Proceedings of 25th IEEE Computer Security Foundations Symposium,

CSF’12. IEEE, pp. 30–44.

Banerjee, A. & Naumann, D. A. (2005) Stack-based access control and secure information

flow. J. Funct. Program. 15(2), 131–177.

Barthe, G., Crespo, J. M. & Kunz, C. (2011a) Relational verification using product programs.

In Proceedings of 17th International Symposium on Formal Methods, FM’11, Lecture Notes

in Computer Science, vol. 6664. Springer, pp. 200–214.

Barthe, G., D’Argenio, P. R. & Rezk, T. (2011b) Secure information flow by self-composition.

Math. Struct. Comput. Sci. 21(6), 1207–1252.

Benton, N. (2004) Simple relational correctness proofs for static analyses and program

transformations. In Proceedings of 31st ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL’04. ACM, pp. 14–25.

Berghofer, S. & Nipkow, T. (2004) Random testing in Isabelle/HOL. In Proceedings of 2nd

International Conference on Software Engineering and Formal Methods, SEFM’04. IEEE

CS, pp. 230–239.

Bichhawat, A., Rajani, V., Garg, D. & Hammer, C. (2014a) Information flow control in

WebKit’s JavaScript bytecode. In Proceedings of 3rd International Conference on Principles

of Security and Trust, POST’14, Lecture Notes in Computer Science, vol. 8414. Springer,

pp. 159–178.

Bichhawat, A., Rajani, V., Garg, D. & Hammer, C. (2014b) Generalizing permissive-upgrade

in dynamic information flow analysis. In Proceedings of 9th Workshop on Programming

Languages and Analysis for Security, PLAS’14. ACM, pp. 15–24.

Birgisson, A., Hedin, D. & Sabelfeld, A. (2012) Boosting the permissiveness of dynamic

information-flow tracking by testing. In Proceedings of 17th European Symposium on

Research in Computer Security, ESORICS’12, Lecture Notes in Computer Science, vol.

7459. Springer, pp. 55–72.

Buiras, P., Stefan, D., & Russo, A. (2014) On dynamic flow-sensitive floating-label systems.

In Proceedings of 27th IEEE Computer Security Foundations Symposium, CSF’14. IEEE,

pp. 65–79.

Bulwahn, L. (2012a) The new Quickcheck for Isabelle - random, exhaustive and symbolic

testing under one roof. In Proceedings of 2nd International Conference on Certified

Programs and Proofs, CPP’12, Lecture Notes in Computer Science, vol. 7679. Springer,

pp. 92–108.

Bulwahn, L. (2012b) Smart testing of functional programs in Isabelle. In Proceedings of 18th

International Conference on Logic for Programming, Artificial Intelligence, and Reasoning,

LPAR’12, Lecture Notes in Computer Science, vol. 7180, Springer, pp. 153–167.

Burnim, J. & Sen, K. (2008) Heuristics for scalable dynamic test generation. In Proceedings of

23rd IEEE/ACM International Conference on Automated Software Engineering, ASE’08,

IEEE Computer Society, pp. 443–446.

Cadar, C., Dunbar, D. & Engler, D. (2008) KLEE: Unassisted and automatic generation

of high-coverage tests for complex systems programs. In Proceedings of 8th USENIX

Conference on Operating Systems Design and Implementation, OSDI’08. USENIX

Association, pp. 209–224.

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

52 C. Hriţcu et al.

Cadar, C., Ganesh, V., Pawlowski, P. M., Dill, D. L. & Engler, D. R. (2006) EXE: Automatically

generating inputs of death. In Proceedings of 13th ACM Conference on Computer and

Communications Security, CCS’06. ACM, pp. 322–335.

Cadar, C., Godefroid, P., Khurshid, S., Păsăreanu, C. S., Sen, K., Tillmann, N. & Visser,

W. (2011) Symbolic execution for software testing in practice: preliminary assessment. In

Proceedings of 33rd International Conference on Software Engineering, ICSE’11. ACM,

pp. 1066–1071.

Cadar, C. & Sen, K. (2013) Symbolic execution for software testing: Three decades later.

Commun. ACM 56(2), 82–90.

Chamarthi, H. R., Dillinger, P. C., Kaufmann, M. & Manolios, P. (2011) Integrating testing and

interactive theorem proving. In Proceedings of 10th International Workshop on the ACL2

Theorem Prover and its Applications, Electronic Proceedings in Theoretical Computer

Science, vol. 70, pp. 4–19. http://www.eptcs.org/

Christiansen, J. & Fischer, S. (2008) EasyCheck – test data for free. In Proceedings of 9th

International Symposium on Functional and Logic Programming, FLOPS’08, Lecture Notes

in Computer Science, vol. 4989. Springer, pp. 322–336.

Claessen, K., Dureg̊ard, J. & Pa�lka, M. H. (2014) Generating constrained random data with

uniform distribution. In Proceedings of 12th International Symposium on Functional and

Logic Programming, Lecture Notes in Computer Science, vol. 8475. Springer, pp. 18–34.

Claessen, K. & Hughes, J. (2000) QuickCheck: A lightweight tool for random testing of

Haskell programs. In Proceedings of 5th ACM SIGPLAN International Conference on

Functional Programming, ICFP’00. ACM, pp. 268–279.

Clarkson, M. R. & Schneider, F. B. (2010) Hyperproperties. J. Comput. Secur. 18(6), 1157–1210.

Dybjer, P., Haiyan, Q. & Takeyama, M. (2003) Combining testing and proving in dependent

type theory. In Proceedings of 16th International Conference on Theorem Proving in

Higher Order Logics, TPHOLs’03, Lecture Notes in Computer Science, vol. 2758. Springer,

pp. 188–203.

Eastlund, C. (2009) DoubleCheck your theorems. In Proceedings of 8th International

Workshop on the ACL2 Theorem Prover and its Applications, ACL2’09. ACM, pp. 42–46.

Fenton, J. S. (1974) Memoryless subsystems. Comput. J. 17(2), 143–147.

Fetscher, B., Claessen, K., Palka, M. H., Hughes, J. & Findler, R. B. (2015) Making random

judgments: Automatically generating well-typed terms from the definition of a type-system.

In Proceedings of 24th European Symposium on Programming, ESOP’15, Lecture Notes in

Computer Science, vol. 9032. Springer, pp. 383–405.

Giffin, D. B., Levy, A., Stefan, D., Terei, D., Mazières, D., Mitchell, J. & Russo, A. (2012) Hails:

Protecting data privacy in untrusted web applications. In Proceedings of 10th Symposium

on Operating Systems Design and Implementation, OSDI’12. USENIX Association, pp.

47–60.

Godefroid, P., Klarlund, N., & Sen, K. (2005) DART: Directed automated random testing. In

Proceedings of 2005 ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI’05. ACM, pp. 213–223.

Goguen, J. A. & Meseguer, J. (1984) Unwinding and inference control. In Proceedings of

IEEE 1984 Symposium on Security and Privacy. IEEE CS, pp. 75–87.

Groce, A., Holzmann, G. J. & Joshi, R. (2007) Randomized differential testing as a prelude

to formal verification. In Proceedings of The 29th International Conference on Software

Engineering, ICSE’07. IEEE CS, pp. 621–631.

Guernic, G. L. (2007) Automaton-based confidentiality monitoring of concurrent programs.

In Proceedings of 20th Computer Security Foundations Symposium, CSF’07. IEEE CS, pp.

218–232.

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 53

Guernic, G. L., Banerjee, A., Jensen, T. P. & Schmidt, D. A. (2006) Automata-based

confidentiality monitoring. In Proceedings of 11th Asian Computing Science Conference,

ASIAN 2006. Springer, pp. 75–89.

Hedin, D. & Sabelfeld, A. (2012) Information-flow security for a core of JavaScript. In

Proceedings of 25th IEEE Computer Security Foundations Symposium (CSF), CSF’12.

IEEE CS, pp. 3–18.

Hriţcu, C., Greenberg, M., Karel, B., Pierce, B. C. & Morrisett, G. (2013a) All your

IFCException are belong to us. In Proceedings of 34th IEEE Symposium on Security

and Privacy, SP’13, IEEE CS, pp. 3–17.

Hriţcu, C., Hughes, J., Pierce, B. C., Spector-Zabusky, A., Vytiniotis, D., Azevedo de Amorim,

A. & Lampropoulos, L. (2013b) Testing noninterference, quickly. In Proceedings of 18th

ACM SIGPLAN International Conference on Functional Programming, ICFP’13. ACM,

pp. 455–468.

Hughes, J. (2007) QuickCheck testing for fun and profit. In Proceedings of 9th International

Symposium on Practical Aspects of Declarative Languages, PADL’07, Lecture Notes in

Computer Science, vol. 4354. Springer, pp. 1–32.

Kinder, J. (2015) Hypertesting: The case for automated testing of hyperproperties. In

Proceedings of 3rd Workshop on Hot Issues in Security Principles and Trust, HotSpot.

Klein, C. (August 2009) Experience with randomized testing in programming

language metatheory. Master’s Thesis, Northwestern. Available at:

http://plt.eecs.northwestern.edu/klein-masters.pdf. Accessed Feb 26, 2016.

Klein, C., Clements, J., Dimoulas, C., Eastlund, C., Felleisen, M., Flatt, M., McCarthy, J.

A., Rafkind, J., Tobin-Hochstadt, S. & Findler, R. B. (2012) Run your research: On

the effectiveness of lightweight mechanization. In Proceedings of 39th ACM SIGPLAN-

SIGACT Principles of Programming Languages, POPL’12, ACM, pp. 285–296.

Klein, C. & Findler, R. B. (2009) Randomized testing in PLT Redex. In Proceedings of

Workshop on Scheme and Functional Programming, SFP, ACM, pp. 26–36.

Klein, C., Flatt, M. & Findler, R. (2013) The Racket virtual machine and

randomized testing. In Higher-Order and Symbolic Computation, Springer, pp. 1–45.

http://dx.doi.org/10.1007/s10990-013-9091-1

Koopman, P. W. M., Achten, P. & Plasmeijer, R. (2014) Model-based shrinking for state-

based testing. In Proceedings of 14th International Symposium on Trends in Functional

Programming, TFP 2013, Lecture Notes in Computer Science, vol. 8322, Springer,

pp. 107–124.

Lampropoulos, L., Pierce, B. C., Hriţcu, C., Hughes, J., Paraskevopoulou, Z. & Xia,

L. (July 2015) Making our own Luck: A language for random generators. Draft.

https://www.cis.upenn.edu/∼llamp/pdf/Luck.pdf

Leroy, X., Appel, A. W., Blazy, S. & Stewart, G. (June 2012) The CompCert memory model,

version 2. Research report RR-7987, INRIA.

Leroy, X. & Blazy, S. (2008) Formal verification of a C-like memory model and its uses for

verifying program transformations. J. Autom. Reason. 41(1), 1–31.

Lindblad, F. (2007) Property directed generation of first-order test data. In Proceedings of

8th Symposium on Trends in Functional Programming, TFP’07, Trends in Functional

Programming, vol. 8. Intellect, pp. 105–123.

Majumdar, R. & Sen, K. (2007) Hybrid concolic testing. In Proceedings of 29th International

Conference on Software Engineering, ICSE’07. IEEE CS, pp. 416–426.

Milushev, D., Beck, W. & Clarke, D. (2012) Noninterference via symbolic execution. In

Proceedings of Joint 14th IFIP WG 6.1 International Conference on Formal Techniques

for Distributed Systems and 32nd IFIP WG 6.1 International Conference, FMOODS 2012

and FORTE 2012, Lecture Notes in Computer Science, vol. 7273. Springer, pp. 152–168.

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

54 C. Hriţcu et al.

Mohr, R. & Henderson, T. C. (1986) Arc and path consistency revisited. Artif. Intell. 28(2),

225–233.

Ochoa, M., Cuéllar, J., Pretschner, A. & Hallgren, P. (2015) Idea: Unwinding based model-

checking and testing for non-interference on EFSMs. In Proceedings of 7th International

Symposium on Engineering Secure Software and Systems, ESSoS’15, Lecture Notes in

Computer Science, vol. 8978. Springer, pp. 34–42.

Pacheco, C. & Ernst, M. D. (2007) Randoop: Feedback-directed random testing for Java.

In Proceedings of 22nd ACM SIGPLAN Conference on Object-Oriented Programming

Systems And Applications, OOPSLA’07. ACM, pp. 815–816.

Paraskevopoulou, Z., Hriţcu, C., Dénès, M., Lampropoulos, L. & Pierce, B. C. (2015)

Foundational property-based testing. In Proceedings of 6th International Conference on

Interactive Theorem Proving, Urban, C. & Zhang, X. (eds), ITP’15, Lecture Notes in

Computer Science, vol. 9236. Springer, pp. 325–343.

Regehr, J., Chen, Y., Cuoq, P., Eide, E., Ellison, C. & Yang, X. (2012) Test-case reduction

for C compiler bugs. In Proceedings of 33rd ACM SIGPLAN conference on Programming

Language Design and Implementation, PLDI’12. ACM, pp. 335–346.

Runciman, C., Naylor, M. & Lindblad, F. (2008) SmallCheck and Lazy SmallCheck:

Automatic exhaustive testing for small values. In Proceedings of 1st ACM SIGPLAN

Symposium on Haskell. ACM, pp. 37–48.

Russo, A. & Sabelfeld, A. (2010) Dynamic versus static flow-sensitive security analysis. In

Proceedings of 23rd Computer Security Foundations Symposium, CSF’10. IEEE CS, pp.

186–199.

Sabelfeld, A. & Myers, A. (January 2003) Language-based information-flow security. IEEE

J. Sel. Areas Commu. 21(1), 5–19.

Sabelfeld, A. & Russo, A. (2010) From dynamic to static and back: Riding the roller coaster

of information-flow control research. In Proceedings of 7th International Andrei Ershov

Memorial Conference, PSI 2009, Lecture Notes in Computer Science, vol. 5947. Springer,

pp. 352–365.

Sabelfeld, A. & Sands, D. (2005) Dimensions and principles of declassification. In Proceedings

of 18th IEEE Workshop on Computer Security Foundations, CSF’05. IEEE CS, pp. 255–

269.

Sen, K., Marinov, D. & Agha, G. (2005) CUTE: A concolic unit testing engine for C. In

Proceedings of 10th European Software Engineering Conference held jointly with 13th ACM

SIGSOFT International Symposium on Foundations of Software Engineering, ESEC/FSE-

13. ACM, pp. 263–272.

Stefan, D., Russo, A., Mitchell, J. C. & Mazières, D. (2011) Flexible dynamic information

flow control in Haskell. In Proceedings of 4th Symposium on Haskell. ACM, pp. 95–106.

Stefan, D., Russo, A., Mitchell, J. C. & Mazières, D. (July 2012) Flexible dynamic information

flow control in the presence of exceptions. ArXiv e-print 1207.1457.

Terauchi, T. & Aiken, A. (2005) Secure information flow as a safety problem. In Proceedings

of 12th International Symposium on Static Analysis, SAS 2005, Lecture Notes in Computer

Science, vol. 3672. Springer, pp. 352–367.

Torlak, E. & Bodı́k, R. (2014) A lightweight symbolic virtual machine for solver-aided host

languages. In Proceedings of ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI 2014. ACM, 2014, pp. 530–541.

Williams, N., Marre, B. & Mouy, P. (2004) On-the-fly generation of K-path tests for C

functions. In Proceedings of 19th IEEE International Conference on Automated Software

Engineering, ASE. IEEE CS, pp. 290–293.

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 55

Yang, X., Chen, Y., Eide, E. & Regehr, J. (2011) Finding and understanding bugs in C

compilers. In Proceedings of 32nd SIGPLAN Conference on Programming Language

Design and Implementation, PLDI’11, ACM, pp. 283–294.

Zdancewic, S. A. (2002) Programming Languages for Information Security . PhD Thesis, Cornell

University.

Zeller, A. & Hildebrandt, R. (2002) Simplifying and isolating failure-inducing input. IEEE

Trans. Softw. Eng. 28(2), 183–200.

Zheng, L. & Myers, A. C. (2007) Dynamic security labels and static information flow control.

Int. J. Inform. Secur. 6(2–3), 67–84.

Appendix A. Varying the indistinguishability relation

A.1 Labels being high or low needs to be observable

As seen in Section 2.4, our definition of indistinguishability of values (Definition 2.1)

allows the observer to distinguish between final memory states that differ only in

their labels. One might imagine changing the definition of indistinguishability so that

labels are not observable. There are at least two ways one can imagine doing this;

however, both are wrong. First, one could try defining indistinguishability of values so

that x@L ≈ y@H for any x and y. QuickCheck easily finds a counterexample to this

(Figure A 1). Second, one could try refining this so that only x@L ≈ x@H , i.e., a high

value is equivalent with a low one only when the payloads are equal. QuickCheck

also disproves this alternative (Figure A 2), and the counterexample produced by

QuickCheck illustrates how, even with the correct rules, a difference in the labels

of two values can be turned into a difference in the values of two values. This

counterexample is reminiscent of a well-known “flow-sensitivity attack” (Figure 1 in

Russo & Sabelfeld (2010); attributed to Fenton (1974)). This counterexample relies

on Call and Return as introduced in Section 5.

A.2 Weakening EENI when adding calls and returns

The counterexample in Figure A 3 shows that once we have a way to restore the

pc label, we can no longer expect all pairs of halting states to be indistinguishable

in EENI. In particular, as the counterexample shows, one machine can halt in

a high state, while the other can return to low, and only then halt. Since our

indistinguishability relation only equates states with the same pc label, these two

halting states are distinguishable. The solution we use in Section 5.2 is to weaken

the EENI instance, by considering only ending states that are both halting and low

(i.e., we change to EENIInit,Halted∩Low,≈mem
).

A.3 Indistinguishability for stack elements when adding calls and returns

In Section 5.2, we defined the indistinguishability relation on stack elements so that

return addresses are only equivalent to other return addresses and (as for values)

R(x1@�1) ≈ R(x2@�2) if either �1 = �2 = H or x1 = x2 and �1 = �2 = L. If

instead we considered high return addresses and high values to be indistinguishable,

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

56 C. Hriţcu et al.

i =

[
Push 1@L,Push 0@H,Push 1@L, Store,Push

1@H
0@L

,

Store,Halt

]

pc m s i(pc)

0@L [0@L, 0@L] [] Push 1@L

1@L [0@L, 0@L] [1@L] Push 0@H

2@L [0@L, 0@L] [0@H, 1@L] Push 1@L

3@L [0@L, 0@L] [1@L, 0@H, 1@L] Store

4@L [0@L, 0@H] [1@L] Push
1@H
0@L

5@L [0@L, 0@H]
[

1@H
0@L

, 1@L
]

Store

6@L
[

0
1

@L,
1
0

@H
]

[] Halt

Figure A 1. A counterexample showing that it is wrong to make high values be equivalent to

all other values.

i =

[
Push 1@L,Push 0@

H
L
,Push 0@L, Store,Push

7
9

@H,

Call 1 0,Halt,Push 0@L, Store,Return

]

pc m s i(pc)

0@L [0@L] [] Push 1@L

1@L [0@L] [1@L] Push 0@
H
L

2@L [0@L]
[
0@

H
L
, 1@L

]
Push 0@L

3@L [0@L]
[
0@L, 0@

H
L
, 1@L

]
Store

4@L
[
0@

H
L

]
[1@L] Push

7
9

@H

5@L
[
0@

H
L

] [
7
9

@H, 1@L
]

Call 1 0

Machine 1 continues. . .

7@H [0@H] [1@L,R(6, 0)@L] Push 0@L

8@H [0@H] [0@L, 1@L,R(6, 0)@L] Store

9@H [1@H] [R(6, 0)@L] Return

6@L [1@H] [] Halt

Machine 2 continues. . .

9@H [0@L] [1@L,R(6, 0)@L] Return

6@L [0@L] [] Halt

Figure A 2. A counterexample showing that it is also wrong to make high values equivalent

to low values with the same payload.

QuickCheck would find a counterexample. This counterexample requires quasi-initial

states (and ≈low) and is listed in Figure A 4. The first machine performs only one

Return that throws away two elements from the stack and then halts. The second

machine returns twice: the first time to the same Return, unwinding the stack and

raising the pc; and the second time to the Halt instruction, labeling the return value

high in the process. The final states are distinguishable because the elements on

the stack have different labels. As we saw earlier, such a counterexample can be

extended to one in which values also differ.

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 57

i =
[
Push

2
3

@H,Call 0 0,Halt,Return
]

pc m s i(pc)

0@L [] [] Push
2
3

@H

1@L []
[

2
3

@H
]

Call 0 0

Machine 1 continues. . .

2@H [] [R(2, 0)@L] Halt

Machine 2 continues. . .

3@H [] [R(2, 0)@L] Return

2@L [] [] Halt

Figure A 3. A counterexample justifying the change to EENIInit,Halted∩Low,≈mem in Section 5.2.

i =
[
Return,Halt

]
pc m s i(pc)

0@L []
[
0@L,

0@H
R(0,0)@H

, 0@L,R(1, 1)@L
]

Return

Machine 1 continues. . .

1@L [] [0@L] Halt

Machine 2 continues. . .

0@H [] [0@L,R(1, 1)@L] Return

1@L [] [0@H] Halt

Figure A 4. A counterexample that motivates the indistinguishability of stack elements for

the machine with calls and returns.

A.4 Counterexamples justifying indistinguishability for SSNI

The indistinguishability relation high states used for SSNI needs to be strong enough

to ensure that when both machines return to low states, those low states are also

indistinguishable. Since ≈low is too weak, QuickCheck can find counterexamples to

condition 3 in Definition 6.3 (see Figure A 5).

On the other hand, treating high states exactly like low states in the indistin-

guishability relation is too strong, since that would prevent the stacks to change

between successive high states. In this case, QuickCheck finds counterexamples to

condition 2 in Definition 6.3 (see Figure A 6). This motivates comparing stacks for

high state only below the first low return, while allowing the tops of the stacks

to vary arbitrarily, as done in the definition of ≈full (Definition 6.4). These two

counterexamples guide our search for the correct indistinguishability relation—i.e.,

one that correctly captures the invariant that the machine can only alter stack frames

below the current one by using the Return instruction.

A.5 Wrong alternatives for indistinguishability of register machine states

The definition of indistinguishability for the register machine (Definition 8.4) might

seem natural in retrospect, but it took us a while to reach it. Here, we presents two

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

58 C. Hriţcu et al.

i =
[
Return

]
pc m s i(pc)

0@H []
[
R(

0
1
, 0)@L

]
Return

Machine 1 continues. . .

0@L [] [] Return

Machine 2 continues. . .

1@L [] [] −
Figure A 5. A counterexample showing that ≈low is too weak for SSNI. Since the pc is

initially high, ≈low does not require the initial stacks to be related in any way, which means

the two machines can jump to two different addresses while still both lowering the pc. The

two resulting states are, however, distinguishable, since they have different pcs.

i =
[
Pop

]
pc m s i(pc)

0@H [] [0@L] Pop

1@H [] [] −
Figure A 6. A counterexample that shows that treating high states exactly like low states in

the indistinguishability relation over machine states is too strong and breaks condition 2 in

Definition 6.3. When a machine steps from a high state to another high state the contents of

the stack can change.

wrong alternatives with which we started. The handing of call stacks differs from

Definition 8.4.

In the first wrong alternative, we required a very strong matching between stack

frames:

(n1@�pc1
, rf1, r1, �res1

) ≈� (n2@�pc2
, rf2, r2, �res2

) =

n1 = n2 ∧ �pc1
= �pc2

∧ rf1 ≈� rf2 ∧ r1 = r2 ∧ �res1
= �res2

. (A 1)

However, the above indistinguishability relation assumes that the stacks are

“monotonic”, in the sense that the program counters stored in the stack are only

decreasing with respect to the label flows-to relation. While this was true for the stack

machines with the two-label lattice, this is the case for the register machine with the

more complex diamond lattice, as can be seen in Figure A 7. In this counterexample

even after cropping the top high part of the stack, a high stack element frame remains

on the stack, which varies in the return label, causing our indistinguishability relation

to fail when it shouldn’t. Since the return pcs are high, this difference in labels is

not observable, and therefore does not break noninterference.

In the second wrong alternative, we tried to deal with this observation by filtering

out all high elements of the stack, leaving only low stack elements to compare

pairwise. This required us to change Definition 8.4 as follows:

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 59

i = [Call 0 1 0,Call 0 2 0]

pc m r s i(pc)

0@M1 []
(

1@L,
M1

M2
@M2, L@L

)
[] Call 0 1 0

1@M1 []
(

1@L,
M1

M2
@M2, L@L

) [
{R 1@H,

M1

M2
, . . .}

]
Call 0 2 0

1@M1 []
(

1@L,
M1

M2
@M2, L@L

) [
{R 2@M1, L, . . .}, {R 1@H,

M1

M2
, . . .}

]
Call 0 2 0

Figure A 7. An example of an execution trace that produces a non-monotonic stack.

i = [Return]

pc m r s i(pc)

Machine 1’s trace. . .

0@L [] ()
[
{R 0@H, . . .}, {R 0@L, . . .}

]
Return

0@H [] ()
[
{R 0@L, . . .}

]
Return

Machine 2’s trace. . .

0@L [] ()
[
{R 0@L, . . .}

]
Return

0@L [] () [] Return

Figure A 8. Counterexample for the filtering stack-indistinguishability relation.

A.2 Definition: Machine states S1 = pc1 rf1 cs1 m1 i1 and S2 =

pc2 rf2 cs2 m2 i2 are indistinguishable at level � with respect to whole machine

states, written S1 ≈�
full S2, if m1 ≈� m2, i1 ≈� i2, cs1 ≈� cs2, and additionally

• if �pc1
� � or �pc2

� � then pc1 = pc2 and rf1 ≈� rf2.

We then defined indistinguishability of stacks as follows:

cs1 ≈� cs2 = filter (stack-frame-below �) cs1 ≈� filter (stack-frame-below �) cs2

stack-frame-below � (n@�pc , rf, r, �res) = �pc � �.

Unfortunately, this is now too weak and leads to an execution trace that breaks

noninterference (Figure A 8). After taking a step in the first machine, we get an

distinguishable pair of machines where one has an observable pc while the other

one does not.

Appendix B. Theorems for strengthening IFC properties

We have proved in Coq5 that, under some reasonable assumptions, MSNI implies

SSNI, SSNI implies LLNI, and LLNI implies EENI. All these are generic properties

of information-flow abstract machines; a machine M is composed of:

• an arbitrary type of machine states,

• a partial step function on states written ⇒ (reduction is deterministic), and

• a set of observation levels o (e.g., labels).

5 https://github.com/QuickChick/IFC/blob/master/NotionsOfNI.v

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

60 C. Hriţcu et al.

As in Section 2, we write ⇒∗ for the reflexive, transitive closure of ⇒. When

S ⇒∗ S ′ and S ′ is stuck (� ∃S ′′. S ′ ⇒ S ′′), we write S ⇓ S ′. We write S ⇒∗
t when an

execution (⇒∗) from S produces trace t (a list of states).

B.1 Definition: A machine M has EENI with respect to

• a predicate on states Start (initial states), and

• a predicate on states End (successful ending states),

• an observation-level-indexed indistinguishability relation on states ≈,

written EENIStart,End,≈ M, when

• for all states S1, S2 ∈ Init, if S1 ≈o S2, S1 ⇓ S ′
1, S2 ⇓ S ′

2, and S ′
1, S

′
2 ∈ End then

S ′
1 ≈o S

′
2.

B.2 Definition: A machine M has low-lockstep noninterference (LLNI) with respect

to

• a predicate on states Start,

• an indistinguishability relation ≈, and

• an observation-level-indexed predicate on states Low (e.g., in which only data

labeled below a certain label has influenced control flow),

written LLNIStart,Low,≈ M, when for all S1, S2 ∈ Start with S1 ≈o S2, S1 ⇒∗
t1

, and

S2 ⇒∗
t2

, we have t1 ≈∗
o t2, where indistinguishability on traces ≈∗

o is defined inductively

by the following rules:

S1, S2 ∈ Lowo S1 ≈o S2 t1 ≈∗
o t2

(S1 : t1) ≈∗
o (S2 : t2)

(Low Lockstep)

S1 �∈ Lowo t1 ≈∗
o t2

(S1 : t1) ≈∗
o t2

(High Filter)

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

Testing noninterference, quickly 61

t ≈∗
o []

(End)

t1 ≈∗
o t2

t2 ≈∗
o t1

(Symmetry)

B.3 Theorem: LLNIStart,Low,≈ M implies EENIStart,End,≈ M provided that

• ≈ is symmetric,

• End ⊂ Low,

• S ∈ End implies that S is stuck (� ∃S ′. S ⇒ S ′),

• S1 ≈ S2 implies S1 ∈ End ⇔ S2 ∈ End.

B.4 Definition: A machine M has SSNI with respect to

• an indistinguishability relation ≈, and

• an observation-level-indexed predicate on states Low,

written SSNILow,≈ M, when the following conditions are satisfied:

1. For all o and S1, S2 ∈ Lowo, if S1 ≈o S2, S1 ⇒ S ′
1, and S2 ⇒ S ′

2, then S ′
1 ≈o S

′
2;

2. For all o and S �∈ Lowo if S ⇒ S ′ and S ′ �∈ Lowo, then S ≈o S
′;

3. For all o and S1, S2 �∈ Lowo, if S1 ≈o S2, S1 ⇒ S ′
1, S2 ⇒ S ′

2, and S ′
1, S

′
2 ∈ Lowo,

then S ′
1 ≈o S

′
2.

B.5 Theorem: SSNILow,≈ M implies LLNIStart,Low,≈ M under the following assump-

tions:

• ≈ is a partial equivalence relation (symmetric and transitive),

• S1 ≈ S2 implies S1 ∈ Low ⇔ S2 ∈ Low.

B.6 Definition: A machine M has MSNI with respect to

• an indistinguishability relation ≈, and

• an observation-level-indexed predicate on states Low,

written MSNILow,≈ M, when S1 and S2 with S1 ≈o S2, S1 ⇒∗
t1

, S2 ⇒∗
t2

we have t1 ≈∗
o t2,

where indistinguishability on traces ≈∗
o is defined inductively by the following rules:

S1, S2 ∈ Lowo S ′
1 ≈o S

′
2 (S ′

1 : t1) ≈∗
o (S ′

2 : t2)

(S1 : S ′
1 : t1) ≈∗

o (S2 : S ′
2 : t2)

(Low Steps)

S1, S2 �∈ Lowo S ′
1, S

′
2 ∈ Lowo S ′

1 ≈o S
′
2 (S ′

1 : t1) ≈∗
o (S ′

2 : t2)

(S1 : S ′
1 : t1) ≈∗

o (S2 : S ′
2 : t2)

(High to Low Steps)

S1, S
′
1 �∈ Lowo S1 ≈o S

′
1 (S ′

1 : t1) ≈∗
o (S2 : t2)

(S1 : S ′
1 : t1) ≈∗

o (S2 : t2)
(High to High Step)

(S1 ∈ Lowo ∨ S ′
1 ∈ Lowo) (S ′

1 : t1) ≈∗
o (S2 : [])

(S1 : S ′
1 : t1) ≈∗

o (S2 : [])
(Low Step End)

(S1 : []) ≈∗
o (S2 : [])

(Both End)

t1 ≈∗
o t2

t2 ≈∗
o t1

(Symmetry)

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

62 C. Hriţcu et al.

B.7 Theorem: MSNILow,≈ M implies SSNILow,≈ M under the following assumptions:

• ≈ is reflexive and symmetric,

• S1 ≈ S2 implies S1 ∈ Low ⇔ S2 ∈ Low.

https://doi.org/10.1017/S0956796816000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000058

