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ON WEIGHTED NORM INEQUALITIES FOR
FRACTIONAL AND SINGULAR INTEGRALS

T. WALSH

0. Introduction. In a recent paper [12] Muckenhoupt and Wheeden have
established necessary and sufficient conditions for the validity of norm in-
equalities of the form || |x|*Tf ||, £ Cl| |x|*f ||,, where Tf denotes a Calder6n
and Zygmund singular integral of f or a fractional integral with variable
kernel. The purpose of the present paper is to prove, by somewhat different
methods, similar inequalities for more general weight functions.

In what follows, for p = 1, p’ is the exponent conjugate to p, given by
1/p 4+ 1/p’ = 1. @ will always denote a locally integrable function on R"
which is homogeneous of degree 0, @~ will denote a measurable function on
R* X R”" such that for each x € R”?, Q7 (x, .) is locally integrable and homo-
geneous of degree 0. ||Q||, is the L* norm of ©, restricted to the unit sphere
S1 = {x € R" |x| = 1}, with respect to Euclidean surface measure o on
Sl Ifu =1

[19]1* = 1 + [|]|[L log™® L(S" )] + ||,

where Qg, ;1 denote the even and odd parts of ©, respectively (see [3, Theorem 1]).
| 1197l will denote ess sup{ ||~ (x, .)|l.: * € R"}. wy, wi and wq, w1 denote non-
negative measurable functions on R” and R, = (0, ), respectively. For
x € R? w(x), for instance, has the same meaning as wo(|x]).

Let x denote the characteristic function of the interval (%,2). Z will
denote the set of integers. For any integer 2, the quantities M, (wo, w1, Q, 2),
M*, ,(w, i, 2), N, (wo, @7, 2), N*, ,(w,, 2) are defined as follows:

(1) M, (wo, w1, Q,2) = esssup wo(ac)_1
22 -1 g| <27

* T1/r
-[wpa%J/ x(lv = 91/ [xDwrt — 2)dy |
lyl<lQ@)Ir/np .

p>0
(2) M*, ,(wo, wy,2) = esssup wo(x)
25 -1 |z|<22
Ti/v

P v/r
S Gopo [ x4 w1t + we-tar) “aoeny |
o/ gn—1 >0 0 .

(3) N,(wo, Q,2) = esssup sup«a

22— 1g|<22 a>0

) 1/r
’ <J x(Jx — y|/]x)wo(x — y)dy> .
wo(e-<I127 (@) |yl =7/ ra~1
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(4) N*, ,(wo, z) = esssup [f <supa'f
22 -1z <22 s7=1 \a>0 wo(z+ty') <t~/ Ta~1
1 v/1 1/v
< x(x ']/l wo (e + ty")E" dt) da(y’)] .

If @ = 1 or @~ = 1, the notation will be abbreviated to M, (w,, w1, 2), N, (wy, 2),
respectively. For any real numbers 71, 75, let 71 V 7o = max(ry, 72), 71 A 72 =
min(ry, re), and 717 = 7, V 0. C denotes a positive constant, not necessarily the
same at each occurrence.

The following results will be proved.

ProvrositioN 1. For u,, u1 > 0, define

1/uo 1/u1
(5) B (w,, w1) = sup < f Wo (x)”“dx) (f ‘wl(x)"ldx> .
$>0 lz]<s lz|>s

Suppose that 1 < r £ 0,1 < p <7,1/qg=1/p — 1/r, and set

Tf () = [ l& = 3 (3)dy.
Then

(6)  [lwnZf [|o/[lwf [|p = {C[B"'”(wo‘l, [ 7" "w1) + B (s, | - [ "w¢™)]

+ Cpq sup Mr(wop,wlq,Zl)”qu(wopy%)T/pl}'

lz1—221=1

On the other hand,
(M) B"'(wo ", |+ [ w1) + B (wy, | - [ we ) < Csup ([l TS {|o/ [ [of [1,)-

PROPOSITION 2. For uq, uy, vo, v1 > 0, and any real a, define

z 1/ug
(8) Bauoulvovl (wo’ wl) — sup < Z (2—nk f W (.’)C) vodx>uo/1;02akuo>
2€Z 2k-1< || <2k

k=—co

Y u1 /01 1/w1
) ( f < f wl (tg) vlda’ (E)) t_—aul-ldt) ’
92z sn=1

Suppose that 1 <r <o0,1 < p <+, 1/q=1/p — 1/r, and set

9) Tf () = [ @ — y)lx — 37f ()dy.
Then

10) [Ty I1o/ Nl < ClIRIL] B ™, wn) + B ™)

+ Cp,q sup M*r,v(w0p’ w1, ZI)T/QN*r.v('wOpr 32)T/p :' ’

lz1—z21 =1
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provided that
1/u+1/v=1/r,1/a0+ 1/ar = 1/bo+ 1/b1=1/v,1/q £ 1/u+ 1/a1 £ 1/r,
1/p" = 1/u+1/by = 1/7,
ar=n/p + (n—1)(1/a0 — 1/p')",
ao=mn/g+ (n—1)(1/bs — 1/q)*.
COROLLARY 1. Suppose that 1 = r < oo, 1 <p <7¢, 1/g=1/p — 1/7,

u = r. If r = 1, suppose further that Q has mean value 0 on S**. Let T be defined
by (9) or by

Tf (x) = pa. f Q@ — 9w — 377 ()dy =1lim fl 5 QOIS & = )y,
€ v €
according as r > 1 or not. Finally, suppose that

(11) w;(s)/w;(t) = B, for 1/2 < s/t < 2, =01
and that for any s > 0,

(12) ( fo | wo(t)*p'tp’“‘“ldt>l/p’< fs w1 ()% dt) <4
(13) ( fo ' wl(t)qt”“"“dt)l/q( fs wo(t) 77 dt>

< A4
where
ar=n/p' — (n — 1)(1/u — 1/g)*,
@ =n/qg— (n—1)(1/u—1/p)".
Then
(14) [|o1Tf ||, £ CA(L + G, B)|2][ul] wef |15,

where ||Q||, on the right-hand side must be replaced by ||Q||* if u = 1.

(13), (12) are, in particular, satisfied for some 4 < oo if (11) holds and as
s — Qor 400,

(15) (S axtrrm=tar)” = otuntsrs™,

(16) (S werema)” = oo,
a7) (S wntrem=iar)” = otenters),
(s) (S wor=a)" = o,
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Conditions (15), (18) are of a weaker form than those of [4; 5] for the case
Wy = Wi.

Remark 1. Forr < u £ p" A g, ||9|]. in (14) can be replaced by ||Q||,, where
vl = (! — u 1) (g/p" V p'/q). (For the definition of Lorentz norms see,
e.g., [2;7].)

ProrosrtioN 3. For »(>1), p, ¢ as above, set
75 () = [ (e x — )l — y17"F G)dy.

Suppose that p' < u < o, 1/a =1/p" — 1/u, B =un/p — n— 1)/u,
r/v < 1 — p'Ju. Then

9)  [[wrTf o/ |wof [l» = CHIWIHu[BZ'W(wo“I, wi) + By (w, wi )

. , .
+ Cyms _sup M,<wo”,w1“,zl>f“N*,,Awo”,z»”’]

lz1—22|=1

COROLLARY 2. Suppose that 1 S r <o, 1 <p <7, 1/g=1/p — 1/,
u = p'. If r = 1, suppose further that U~ (x, .) has mean value 0 on S for any
x € R" Define

T/ (&) = (p0) [ @, — 3l — 5[ ().

Suppose that (11) is satisfied and that for any s > 0,

* ’ ’ e ' 1 1/q
(20) <J wo(t)™” t"”‘ldt) < j w1 ()P dt) < 4,
0 S
/ s 1/q o0 , , 1/p’
(21) ( f w;(t)"t”*%lt) < j wo (1) 71" ’“—‘d;>
/0 s

where 8 = n/p’ — (n — 1)/u. Then

I\

4,

(22) o1 Tf [l, = CAQ + B2G, )N [lullwof [l

As always, the proof of these results starts with the decomposition
T =17y+ Ty + 13, where

Tif@) = [ 06— )k — 3™ )y,

lyl=lzl/2

1@ = |

with a similar decomposition T4 + T3 + T, in the case of 7. The major part
of the present paper is concerned with proving that 7y and 7(Ty, T) satisfy

RIS ¥ (y)dy,

lylz2lz
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(6) or, equivalently (for positive Q,27), that S;, S, defined by

(23) SO w0 w) () = w@R™ [ 07w — b))y,

lyl=lzl /2

(24)  S:2(Q7, wo, w1) (f) (%) = wi(x) fmzzm @ (%, 2 — )|y wo () f(9)dy,

are bounded from L? to L2

The proof is by interpolation between two cases. In the first case, the condi-
tions on w,, w; are as weak as possible compared to those satisfied by Q. In the
second case, no additional condition beyond those required for the boundedness
of 7" between unweighted L? and L? spaces is imposed on @, and it is found that
the conditions obtained in the first case for the dimension # equal to 1 are
nearly sufficient.

In Propositions 1, 2, 3, the required inequality for 7' is obtained by simpli-
fication of the conditions for 7' to be of restricted weak type at the end points
p = 1and p =7 with respect to the measures w,-%" and w;,.¥", where £*
denotes Lebesgue measure on R” and application of the Marcinkiewicz
Interpolation Theorem.

In Corollaries 1 and 2, the required norm inequalities for T, T follow from
well known results except possibly for the case » > 1 in Corollary 2. Corollary 2
also provides an answer to a question left open in [12].

1. An extension of Hardy’s inequality. If 7" is an operator from L? of

some measure space I to the space of measurable functions on some measure
space X, define the (L?, L?) norm of 1" by

UTNlp.e = suptlITF 1[o/I1 f Ilp: f € LP(Y)}.

LemmMa 1. Suppose that (X, u), (Y, ») are o-finile measure spaces, that F , G
are classes of measurable subsets of X and Y, respectively, which are linearly
ordered by inclusion, and that R is a relation with domain ¥ and range G which
15 order-reversing n the sense that if F.RG, i+ =1, 2, then Fy C Fy tmplies
G122 Gy and Gi C Gy implies Fi1 D Fo. (Unless otherwise indicated, the
containment is strict.) Define an initial segment F ' of ¥ as a subset such that for
every element Fy of ' and every element Fy of ¥ ~F "', it is true that Fy C F,.
Suppose that F contains a dense countable subset F , in the sense that for every
initial segment F' of ¥ and F' = F ~ F'

25) w(UFF € F'y ~ U{F:F € F' NF o)) = u(NF:FeF" NFy
~ N{F:FeF)

and that this property is shared by 9.
For u#,v > 0 set

(26) B*’(R) = sup{u(F)»(G)V*: FRG}
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(where 09 = 0,0 - c0 = 0). Define the operator H on non-negative measurable
functions on Y by

Hf (x) = sup{ J;f (¥)dv(y):x € F, FRG}.

Thenforl £ p <g=o00,1/p +1/g=1/r
(27) 1 < ||H||p.o/B"*(R) £ (p') V' qtay—1ir,

This can be considered as a (self-dual) generalization of Hardy’s inequality
(X =Y =R,,dulx) = xdx,dv(x) = xFdxfore,3 > 0,p = q,a/p" = B/P,
F = {[x,0):x >0}, 9 = {(0,x]: x > 0}). The inequality (27) for the real
line, intervals, and p = ¢ has been established by several authors (see [10]).
The present proof although similar to that of Muckenhoupt makes the result
appear as a natural consequence of the semi-trivial end point results (for p = 1
or ¢ = c0) and the following simple inequality.

LEMMA 2. Suppose that (X, u) s a totally finite measure space and that ® is a
function from X to the set of measurable subsets of X such that for each x,x € ®(x),
the range of ® is linearly ordered by inclusion, the union of any subset ¥ of the
range of ® differs from the union of a countable subset of F' by a set of measure 0,
and u(®) is measurable. Then for any a > 0,

(28) Jou@e) e = ),

Equality holds if and only if the range of u(®) is dense in the interval (0, u(X)).

Proof. The point is that u(®)~! is in weak L' (L!*(X, x)) and hence in
Li—=(X, u), since u(X) < 0. More precisely, let X denote the distribution func-
tion of p(®)71; i.e., for t > 0, A(¢) = u(E,), where E; = {x: u(®)~! > #}. Let
F,= U{®(x): x € E}; then E, C F,, and the hypotheses further imply that

p(Fy) = sup{u(®(x)): x € EJ.
Hence, \(¢) = u(E,) =< . Clearly, \(¢) = u(X) for 0 < ¢t < u(X)~1. More-
over (see, e.g., [20, p. 117]),
- f 72N ()
0

RETRE) + A —a) [ Ao
n(x)-1

|

fX u(B6))" " du ()

<u@ 4+ Q- |

px)~1
= o u(X)"

Since \ is monotonic, strict inequality holds in (28) if and only if N\ () < ¢!
for some ¢t € (u(X)™1, 00). It is easy to see that this occurs if and only if u(®)
does not assume any value in some subinterval (e, 8) (@ < 8) of (0, u(X)).
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For 0 < #,v £ o and any measurable function K on X X Y, define the
double norm X*Y°K by
X V'K = ||V°K]||,, where V'K (x) = ||K (¢, .)||s
It is well known that for .S defined by Sf (x) = f K@, v)f (y)dv(y),
(29) IS, £ XV"K if1<p £ 00,q>0,
(30) 1S/l  Y”"XK if1<p,qg=<o0,

with equality holding in (29) if ¢ = o and in (30) if p = 1 (see, e.g., [18,
Lemma 2]). Furthermore, if K = K ~'K;?, where Ky, K; = 0,0 < ¢t £ 1, then
by interpolation (or Hélder’s inequality),

(31) [[Sll5,e £ (X@Y?Ko) = (Y X 1K),
provided that 1/p = (1 — 1)/po+ t/p1, 1/qg = (1 — )/q0 + t/q1(Po, P1, ¢1 =
]-y qo > O).

Note that the kernel K of H is the characteristic function xz of the set
E = U{F X G:FRG}. Hence,

(32) X*YV'K = ess sup sup{»(G)"'":x €F, FRG},
(33) Y=X'K = esssup sup{u(F)'": v €G, FRG}.
v

Itis easy tosee that X"Y'K = B*"(R). Thus, by (29) and (30), the right-hand
inequality of (27) holdsif p = 7" or p = 1.
In general, the idea is to write

(34) K = KyWEK,™",

and to determine K,, K; in such a way that X*V"K, and Y*X'K; agree with
each other as closely as possible. For this purpose, define two functions ® and ¥
on X and Y, respectively, by

3(x) = N[F:x € FEF}, T() = NGy € GeE ).

The hypotheses on %, & imply that ® and ¥ have the propertiesstipulated in
Lemma 2. Next, let

Ko(x,y) = xz(x, y)p(®)) Ve (¥ (y))1»=1,
Kl(x, y) = XE(x, y)ﬂ(‘I’(x))l/q*l/'y(\I/(y))llﬂ',

so that (34) is satisfied. Moreover,

X*Y'K,

Il

1/7
ess sup w(@)( J o))

y:Y€GQ,FRG,2€F)

()

Y*X'K; = ess supy(\lz(y))‘”"( J ,L(q>(x))”“-1dﬂ(x)> ".

{z:2€F,FRG,y€G}
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Hence, by Lemma 2,

X*Y'Ko £ (q/r)"" ess sup p(® ()" sup{»(G)'”: FRG,x € F},

< (¢/n)" sup w(F)"(G)'".
FRG
Analogously, /
YX'Ky < (g/r)"" sup w(F)7'5(G)"".
FRG

Thus, the right-hand inequality in (27) now f{ollows from (31) and (34).

The left-hand inequality in (27) follows by evaluation of the ratio
[|Hf ||o/1| f|l5 for f = x#, the characteristic function of any F € %, in which case
Hf = p(F)xe for any G such that FRG.

2. Inequalities for T, T..
LeMMA 3. Suppose that 1 < r < 0 and that S1(wo, 1) s defined by

G5 Se)(NE = w@E [ feume) o).
Then,forl = p =7, 1/g=1/p — 1/7,

(36) 1 = [[S1(wo, wi)|lp.o/ B”“(wo™?, | |7 1) = (p/)V7 gV o107,
By duality, if

(37 Sa(wo, w1) () (x) = wi(x) J|y|>|r| Iy w0 (v) 7' () dy,

then o

(38) L = [[So(wo, wi)llp,o/ BY (w1, |- [T7w5™) = (p')17'q /0107,

Proof. Inequalities (36) follow from Lemma 1, if X = ¥V = R?, du(x) =
w; (x) x|~ dx, and dv(y) = we(y)?'dy. F consists of all closed balls with
centre at the origin, & of their complements, and FRG if G = ~F. Ience,
Sif = wi|-|™"H (we”~Yf ), and the L? and L? norms of £, .S; f with respect to.£*
are equal to the norms of w*'~'f, H (w” ~f ) with respect to », u, respectively.

Inequalities (38) follow similarly, or because Ss(wo, w1) is the adjoint of
S1(wi 1, wel).

LemMa 4. Define

4,00 = ([ wterae©)” >0

was 1/u 115e) 1/v
Bt (o, 1) = sup( J woa)"t““—’dz) ( J m(t)”r”-‘dt) ,
>0 0 s
and fora,b > 0

St1,0,6(Q, wo, w1) (f) () = i) e[ J 2 — »)we() Y (¥)dy.

lylZalzl,ly—zlZblx]
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(39) HSLa,b(Qy Wy, W1) ] lz)-q = Ca,bl IQI [u Z//;IJ’ .a(Ap' (wO—l)v Ay (wl))
If
S2,0,5(27, wo, w1) (f) (x) =

Then, for 1 = p =7v',1/g=1/p — 1/r', g =u <00, 1/o;+ 1/u = 1/g,

w1 (x) Q(x, x — 3) |y wo(y) T f () dy,

ly—z|zolzl, 1yl 21zl /a

then for the same p, g and p' < u < o0, 1/vs + 1/u = 1/p’,
(40) HS2.a,b(Q~r Wo, wl)”p.a = Cavbl l 'Q~,}fubz7;;,a (Aq(w1)9 Aﬂ’(wo_l))-

Proof. Consider (40) first. Define the isomorphism 7, from the space of
functions on R* ~ {0} onto that of functions on R, with values in the space of
functions on S* !, by 7 (f) () (¢') = f{#y'), ¢t > 0,3’ € S*™1. Note that

S2,0,0 (@7, wo, w1) (f) (sx") =

w(sv') f,m, . R R S O R OV oY oY)

where ¢ is the characteristic function of the interval [0, 1].

The diffeomorphism ¢,,;, defined by ¢, .(v') = |y — 7 x|"1(y' — ), of
the subset of S*1,D, , = {3": |y’ — x| = b|x|t~!}, into S*1, has the property
that ¢, *o, the image of the measure ¢ under the mapping ¥, , satisfies
Cl¢ £ ¢, *¢ < Coon D, for any ¢ = a~1|x|. It follows that

(A1) [7S2,4,(Q, wo, w1) (f) (5)]]4

= Qb @)©) | Au@ )OO~
Also, (40) is equivalent to

[ 117S2.0.0(27, wo, wa) (DL (SR, S*ds)]
= COLgr |17l | 1AL (S" DL Ry, £7 )],
But this follows from (41) and Lemma 1 applied to the case X = ¥ = R,,
dp(s) = A (w1) (s)s" s, dv (t) = A, (we™)i*1dt, R = { ((0, as] X [s,0)): s >0}.
To prove (39), observe that if @~ = Q is independent of the first variable and
Q = 0, then Sy 4,5 is bounded by the adjoint of Ss 4,5/, (R, w1™!, we™!) (on the

set of positive measurable functions), where @"(x) = Q(—x), because |y| =< alx|
and |x — y| = b|x| imply that |x — y| = b|y|/a.

LeMMA 5. Suppose that X1, Xo, Y1, Yy are measurable spaces, that pi, v1 are
(totally o-finite) measures on X1, Yi, that &, B denote the o-algebras of
measurable subsets of X, YV, respectively, and that M (N) 1is ¢ non-negative real
valued function on X1 X S o(Y1 X HBy) such that for any x1 € X1(y, € Vi),
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M(xy, ) (N(yy, .)) 1s a (totally o-finite) measure on Xq(Y2) and for any set
Ay € A y(By € Bs), M(., 42)(N(., By)) is a measurable function on X,(Y1)
(see, e.g., [14, p. 73]). Denote by u the measure on X = X1 X X, determined by

1) pi X 49) = [ Ml A, 4, €.

The measure v on ¥ = Y1 X Vs is defined analogously.
Let K(= K (x1, x2; ¥1, ¥2)) be a locally integrable function on X X YV and let
I|K|IILP Y, LU(X)] denote the norm of the integral operator S defined by

Sf(x1, x2) = f K (x1, %2; y1, ¥2) f (y1, ¥2)dv (91, ¥2),

Y1XY2

between L?(Y) and L4(X) (with respect to the measures u, v). Then
[|K||[L7 (V), L(X)] = || [|K[|[L7(Ys), LY (X )]||[L7 (Y1), LY (X1)](p > 0,¢ = 1),

where ||K||[L?(V3), L1(X2)] (%1, 1) denotes the norm (quasi-norm if p < 1) of the
integral operator with kermel K(xy,.;y1,.) from LP(Ys N(y1,.)) tlo
Lq(Xg, M(xl, ))

Proof. By Minkowski’s inequality for integrals, since ¢ = 1,

156, e = XS5 = | [ [ Ko, 190,92 00,3200 s 32 0)

q

dvi(y1)
q

=< f” fK(xl,.;yl,yz)f(yh ¥2)dN (31, ¥2)

< [ IKIIZ G2, L) G ) 1111, ) doa o),

where || f||,(y1) denotes the norm of f(yy, .) with respect to the measure N (yy, .)
on Y, Hence,

1SF [l = X122 X20Sf < || |[K[|[L7 (Y2), LX) L2 (Y1), LA S ],

Remark 2. More generally, if u < p,v = ¢, it follows similarly, by use of the
obvious generalization of [19, Lemma 3 and Corollary] from the case of
product measures to the more general types of measure defined in (41), that

|K|IL7™(y), Lo (X)] = C|| [|K|[[L7(Y2), Lo (X )] [L7 (y1), L4(X1)].
LEMMA 6. Define

z 2k u/w 1/u o 1/v
o (wo, w1) = sup< > (2"‘ f wo(t)“’dt> 2"’“‘> ( f wl(t)”t_”_ldt> .
2€Z \k=—co 2k—1 2z

Suppose that 1 < r < 0, 1/qg = 1/p — 1/7. Then for Sy defined by (23),

(42) HSl(Q’ Wo, wl)[lp»q é CHQHTmbI{’/gﬁO(wONI: wl)r fOl' 1 < p < 7.
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For p = 1orq = o, this is still valid provided that the left-hand side is replaced
by |1S1(Qu, wo, @1)||p1,000 07 2f, instead, the righi-hand side 1s replaced by ||Q||,.
Dually,

(43) HS2(Qr o, wl)”p,q = CHQHTOO ;{p/;oo(wh "-’0_1)’
with analogous results if p = 1 or ¢ = 0.

Proof. This is by application of the preceding lemma. By duality, it suffices
to consider Ss. Let X1 = Z, provided with the measure »; such that»;({z}) = 22
for any z € Z. X, is the subset of R?, {x:1/2 < |x| £ 1}, which together with
the o-algebra .97 of Lebesgue measurable subsets becomes a measure space.
For 2 € Z and A, € s, let M(z, Ay) = 20-D2¥"(4,). Next, let V7 = Ry,
Vo = S1, &, ¥, be the s-algebras of measurable subsets with respect to.Z’?
or g, respectively, and let N (¢, By) = "o (B;) for By € &,.

Note that if the measures u, von X = Z X X,, ¥ = R, X S*1, are as in
Lemma 5, then there are isomorphisms Fi, F: between the measure spaces
(X, u), (V,»)and (R*,.Z") defined by Fi (3, x) = 2%, F2(t,y) = ty, respectively.
Therefore, (43) is equivalent to the boundedness between L7 (Y) and L?(X) of
the integral operator whose kernel is

Kz, x; 8 v) = @ x|t 1)Q 2% — ty)t™ w1 (2%|x] Yo (£)~.
To deduce the latter, it will be shown that if
ko(z, t) = [|K[|[L71(S"1), L®(X2)], ka(z, £) = |[K||[L1(S"1), L™ (X2)],
then forz = 0, 1,

(44) ki(z1) £ ClIQ e @) wo(t) " ess sup wi(27%u).
1/2<u<l
Now

ko(z,t) = esssup |[K (2, x; .y <) |]re(£)
z€X2

(see, e.g., [19, Lemma 1]). It is easy to see that the L™ norm with respect to
the measure N(¢,.) = "¢ is ™ D/" times the L™ norm with respect to o.
Thus, for 2:*+1x| < ¢,

(45) ko(z, ) £ CtVwo(t) Vess sup w1(2°|x])]|Q(2% — t.)[|[L'°°(S”_1)].
TEX2
But for 2% x| < £,
|22 — t)||[L™=(S* )] = [[@@2% % — )[|[L™ES* ] = (2] re

and (44), for 7 = 0, follows by substituting this in (45). To establish (44) for
1 = 1, note that

ki(z,t) < Cesssup ||[K(., ;¢ 9)||re(2)
yesn—1

= Cr™m® D o (1) ess sup wi(2%u) sup ||Q( — 2 %) ||[L™(X1)].
1/2<u<1 yesn—1
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But the last norm is at most equal to
QL= (fw:272 — 1 < o] <272 + 1] = Cj2]] ey
for ¢ = 2%+1, Hence,

ki(z,8) < C)|Q|rt™ " wo(t) " ess sup wi(2%).
1/2<u<l

Inequality (44) and the Marcinkiewicz Interpolation Theorem for Lorentz
spaces imply that
KL (S"™), LY X212, £) £ Cpuol|9|re (27 ) 0 (£) ™" 55 sup w1(27).
1/2<u<1
Hence, by Lemma 5, the proof of (43) will be finished if it can be shown that
for

Bz, 1) = (2% ) wo(t) " ess sup w1(2%),
1/2<u<1

||| [[L7 Ry, £7), L (Zy u1)] £ CHY)™(e1, w07 ).

This is a consequence of Lemma 1. For, replace X, Y by Z, R,, respectively, u
by the measure assigning mass 2% ess supis<u<1 w1(2%) to the one-point set {z},
dv by V7w (t)"1dt, and ¥, & by the collection of intervals of the form
®(3) = {21:21 € Z,21 = 2} and ¥() = [t,0) for 5 € Z,t > 0, respectively.
The relation R is defined by R = {(®(z), ¥(¢)):2* =t < 2*¥, 3 € Z,t > 0}.

The restricted weak type results for S: mentioned in Lemma 4 follow similarly
if use is made of Remark 2. It follows, similarly, that

KL (S™™), L®(X2)](z, t) £ Cl|Q||,0 @) wo(t) ™" ess sup w1(2°).
/12<u<
Hence, by Lemma 1,

[152(2, wo, @1)|]r,e = ClIQ[,68: (w1, wo™).

The same inequality for ||Se||1,, is proved similarly.

Remark 3. The essentially new result, going beyond Lemma 4, is (44) for
2 = 1. The preceding argument is just a possible way of interpolating between
this result and Lemma 4 in case @ € L™. It was obtained in an attempt to
apply Lemma 5 with X; = V; = Ry, uy =»; =%, X, = ¥V, = 51, and
M, E) = N, E) = t*'¢(E). This, however, presents the difficulty that
the L™ norm of Q(s — ty) on S"1(y € §*!) for s < ¢ need no longer be finite,
due to the contribution from a neighbourhood of the (z — 2) dimensional
sphere on S* 1 defined by {&:£ € S™1, £ (s§ — ty) = 0}. If w; is not essentially
bounded locally, then &, (z, .), for suitable @ € L™, z ¢ Z, will be infinite for ¢
in a set of positive measure. It is in applying Lemma 5 that accuracy is lost
even at the end points p = 1, p = #/; for f € L™ (X1 X X,) does not require
that X,"X,"°f < o0.
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Interpolation between Lemma 4 and Lemma 6 for fixed p, ¢ yields:
LEMMA 7. Supposethat1 < p <v',1/q=1/p —1/r",1/u+ 1/vs+ 1/v1 = 1/r,
(46) Vg=lu+1/m21/r,1/s =1/u— 1 —p'/v0)(1/r).
Then (see [8])
(47) 1151(2, wo, w1) ||y, S ClIQ[usBY 5" %1y 0 (w6, 1).
If instead of (46),
(48) p' = Yu+ 1/vn = 1/r,1/s = 1/u — (1 = g/vo) (1/7),
then
(49) |1S2(2, wo, w1) [0 = Cl|Q}usBY R 01 oo (w01, w5 ).

Proof. It suffices to consider S,. Since |y| = 2|x| implies that [y — x| = |x],
by Lemma 4, for 1/u + 1/v; = 1/p’,

(50) 11S2(2, wo, 1) ||, < Cl|Q| BT (w1, wo ™).
By Lemma 6,
(51) |1:52(2, wo, w1)| |5 £ ClIQ|70BYe> (w1, wo ).

Inequality (49) follows from (50), (51), by interpolation.
In fact, let A = 1 — g/vo and 1/uy = (vo/q) (1/u) — (vo/q — 1)(1/7). Then
Lus = (L*o)1=M(L™ ), Further, w; = wil w2 = 0, 1; for
Woo (¥) = wo(y) %o (y)1=°0/y]o,
wor(y) = [4y, (wo?) ('y.)]—llyly"

vo = (1 — q/v)7,
1= —(q/v0)7,
y=(m— 11/ —1/r),

and for 2¥1 < x| £ 2%,

Wi (x) = w, (x) 20/0qy,, (x) 1—00/427550’

2—Imj w ng )1/01 2k51
( 2k—1<|y| <2k 1(3’) 4

s = —(n — 1)(1/q — 1/29),
01 (n - 1)/7}0!

wu(x)

and
¢(v001/0) —1 ap’ -1 ap’v001 —1
Bih Y (wao, woo ), B (Wi, wor ) £ CBY 100 (W1, Wo ).

LeMMA 8. Suppose that 1/v' = 1/p £ 1,1/q = 1/p — 1/r'. Then

—1

(562) [1S1(2~, wo, w1)|]p.e £ CIIQ| 0457 (w0, A4(01)).
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Proof. The proof is similar to that of Lemma 6. Let Z, X, M, N be as there,
and let

Kt y;2,%) = o2 x|t1)i w0 (ty) 0 (ty, ty — 22x)wo(2°]x])72
Then, by the proof of Lemma 6, it suffices to show that for
ko(t,2) = ||K|[[L7(X2), LS )], 1sps7,
(53)  k2) S e A ) () ess sup wo(2) ™

o~

In fact, for 22 < ¢,
E1(t,2) = ||K||[L'(X2), L'(S" )] 2)

< Ot ™" ess sup wo(2%u) A, (wy) (£)e 2/
1/2<u<l
< O |||t A (wi) () ess sup wo(2%)
1/2<u<l
On the other hand, for p = #" and 2% < ¢, similarly, as in the proof of Lemma 4,

A () (t)“‘[ess sup wo<22u>-‘]—1

1/2<u<1

= 2O sup |0y, ty — 20)|1) = CllleT|l47
yesn=

Thus, (53) holds for p = 1 and 7. The general case then follows by inter-
polation.

LeMMA 9. Supposethatl < p = v',1/q=1/p — 1/7,0 = 1/u < 1/p'. Then
(54) [151(27, wo, w1 lp.e S ClQ || LBL o Y1 (a1,
where 1/vy = 1/p" — 1/u.

Proof. This is by interpolation between Lemmas 4 and 8. In fact, as a
consequence of Lemma 4 (or Lemma 3),

115127, wo, w1) |l < ClI127|[|Bhfr “(wo ", wa).
By Lemma 8§,
||Sl(ﬂ~y Wo, wl) I |p741 é Cl { IQ~i I lP'BI{'/(II)O’oq(wO—I: wl)'

Inequality (54) then follows by interpolation between the preceding two
inequalities, similarly, as in the proof of Lemma 7.

3. Inequalities for T;.

LemmA 10. If w is a non-negative measurable function on R?, let ||.||us.0 denote
the L*° norm with respect to the measure wL" on R*. Suppose that r > 1. Then for
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T's, defined in the Introduction,

(55) Cnl = Sup(l1T3fllrw.w1/llw0fl|1)/Sup M,(‘ZJU(), wy, Q, Z) = C,
7 2€Z

(56) s SL}p(l‘T3fHoo/Her’1.wo)/Szlég N.(wo, @7, 2) = C,
andfor 1< p <?,1/qg=1/p — 1/7,
BN [wiTsflle = Gooo ;,ﬁggglM’(w"p’ wi’, @, 21) "N, @, 2, 22)""| [wof |,
Proof. Observe that (since r > 1)
SUp (|| T f [l mn/ [0 []1) = VXK,

where X = ¥ = R* and X, Y are provided with the measures w. %", %",
respectively, and

K(x,y) = x(=l/ly)@ (@, x — y)|x — 9|7 wo(y) %
But for @~ = Q,

Y°X™K = eSSfUP”X(I-I/IyI)Q(~ - - yrn/rw0—1HTm.w1r

which is equivalent to (see [7])

1/r
mmmw(f xwmmwww).
v >0 12@z—p) | lz—y | =7/ Two () ~1>e

Hence, (65) follows if, for w, (y) % 0, we(y)~1p™/" is substituted for «. Similarly,
X°V™K = ess sup||x(|.|/]c)2~ @&, x — )] — 706 | reortmo-

The latter is equivalent to

1/r
esssupsup{ [ o1/ sye)iy) | -
z a 12 (@z—p) | lz—y| ="/ Two(y) ~1>a

1/7
ess sup sup( f ~ x(Jx — y|/]x)wolx — y)dy) .
wo(x—u)§|9 @ lyl=r/1a"1

z a>0

Inequality (57) can be proved by means of Lemma 5. For, let X, = V; = Z,
p1 = vy and such that u;({z}) = 1forany z € Z. Further,let X, = ¥V, =S =
{x:1/2 < |x| = 1}. Then for u, » defined by
uw({z} X E) =M@, E) = J; wi (x)dx, v({z} X E)
’E
= N(, E)

= wo(x)dx,
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(Z X S, u), (ZXS,») are isomorphic to (R*, wi.?"), (R*wy L"), respectively,
and T is equivalent to an integral operator with kernel

(58) K(z1,x; 25, v) = x(251722xcy| /2o )2~ (2711, 27107 — 2%2x,)
- |27 — 2720, 7w (27205) !
on (Z X S)2.
By the preceding estimates for |21 — 22| < 1,
KIIL(S), L (S)] (21, 22)
[[K[[[L71(S), L= (S)] (21, 22)

Mr(wm Wi, Q, Zg),

<
é Nr<w0, Q~y 21),

while, if |z; — 2] > 1, these norms are 0. Hence, by the Marcinkiewicz
Interpolation Theorem for Lorentz spaces,

(539) KL (S), L1(S)] (21, 22) = Cpap(lz1 — z2]) M1 (w0, w1, Q, 22) "
X Nr(w(h Q, Zl)r/pl'

(To obtain the bound G, M (wo, w1)™*N(wo)™, replace wy, w1 by
wy = N (wo)"wo, w1’ = M (wo, w1)""N (wo) ' w1. Then M (wy,wi') = N(wy) =1
and, e.g., || f llpwor = N (@0)™|| f ||p.wo» 50, by the form of the Marcinkiewicz
Theorem in [7], ||K||[[L7(S), L1(S)] (21, 22) = Cp,e0 (|21 — 22|) M, 7/ON, " Ip=77" 12,
i.e., (59) is satisfied.)

To complete the proof of (57), it remains to observe that for k(zy, 22) =
(|21 — =a|), [|RI|[L?(Z), L*(Z)] £ 3, and to replace wy, w1 by w¢?, w9, respec-
tively.

LeMMa 11, Suppose that 1 < p < ¢, 1/g=1/p — 1/, r S u < 0 and
1/u + 1/v = 1/r. Then

bTuflle = Gl sup_ e, i, 240G 2 ) el

z1—22| =1
where M*, ,, N*, , are defined by (2), (4).

Proof. M,(w,, w1, 2, 2) is defined as the essential supremum in {x:2%71 <
[x] < 2%} of

p>0

1/r
wo(x)_1<sup o f X(Ix — y]/]x,)wl(x — y)d_’y) <
ly1=Ie@) Im/np

p 1/r
wo(x)“l( Ln_l 20N sup o™ fo x(le = 151/ (6 — ty’)t"“ldtda(y’)> -

By Holder’s inequality, M, (wo, w1, @, 2) = ||Q|].M*, ., (w0, w1, 2).
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Moreover,

1/r
€8S sup sup a(f Z(’Jo(x — y)dy>
227121 <27 a>0 wolz—) S12@) 1y ~n/ra=1

=< esssup (Lﬂ_lsuparlﬂ(y)lr

22 -1 2| <22

1/7
X . x(Jx — ']/ |%])wo(x — ty')t”_ldtda(y’)>

wo(x—ty’)§t‘"/fa-
= ||9]]uN%,, (w0, 2).
To complete the proof of Proposition 2, it is necessary to consider T'; again.
LemMA 12, Suppose that 0 < 1/u < 1/p', 1/v < (1/r)A — p'/u), 1/¥' <
1/p < 1,1/qg=1/p — 1/¥. Then
leTi‘If”q = Cp.a,u,v”lsrl” | sup L (M, (wd, i, ZI)T/qu*(wopy 22)”?,)HWOpr.

21—221=
Proof. By the proof of Lemma 10, it suffices to show that for K as in (58),
(60) [IKI[|[L7(S), L4(S)] (21, 22) = Cp,quol |27 |up (|22 — 22]) M, (w0, 1, 25) /%
X N*, ,(we, z1)™7".
By (55) of Lemma 10,
EILL(S), L7 (S)] (21, 22) = ClO7]|] M 1 (w0, w1, 22),
and by (56) and the proof of Lemma 11,
(61) [IKII[L"2(S), L= ()] (21, 22) = Cl|Q[[[ruimer N*+ o (w0, 51),
where p'/(ru) + 1/v = 1/r. Hence, by interpolation (see [2]),
(62) [|K[[L7e1(S), Le(S)] = CH|[[[M s (wo, w1, 02)"9ON*; , (w0, 21) 7%

1/qo = 1/po — 1/7"). Since r < po/, |||27|||susmer can be replaced by [||27]|], in
(61). Inequality (60) then follows from (61), (62) by the Marcinkiewicz
Interpolation Theorem.

4. Proof of Propositions 1, 2, 3 and Corollaries 1, 2. Inequality (6) of
Proposition 1 follows from (36), (38) of Lemma 3 and (57) of Lemma 10, for
Q = 1. For the proof of (7), notice that S; (w,, w1) (f ) and Sz (wo, w1) (f ) defined
by (35), (36), are both at most equal to Cw;7T (w,~Yf ). Hence, (7) follows from
the left-hand inequalities of (36), (38). Proposition 2 follows from Lemmas
4,7, 11, and Proposition 3 from Lemmas 8 and 12,

Remark 4. Conversely, there is a constant C, .,, depending only on the
indicated variables, such that for any @ = 0 and if

IT]] = sup{|lwiTf ||o/llwof ||p:wef € L7},
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then, for » > 1,
(63) Qw1 £ G rallT|wo ae.

For, suppose that ¢ > 0 and that the set of x where w;(x)/wo(x) > a has
positive measure. Then there are «, 8 > 0 for which g/a > ¢ and wo < «,
w; = Bon aset Eug of positive measure. Suppose that xg is a point of density 1
of E.s. For p > 0, let B (x, p) denote the open ball of radius p about x,. For
any e > 0, there exists p such that £"(B(xq, p) ~ Eaus) < €(w,/n)p", where
wy/n is the volume of the unit ball. Also, for f the characteristic function of
B(xo, p) N Ea,s, and ]x - xo[ < p/2

1w 2 [ )iy — greste),
lyl<p/2

where g(x) = Q(x)|x|™/" and xas is the characteristic function of B (xg, p) ~ Eqg.
Note that the first term on the right-hand side of the preceding inequality
equals G,||Q]|1p"™. Suppose first that ||Q||, < . Then ||g||,. = G.||Q]]; (see,
e.g.,[13]). Thus, the non-increasing rearrangement of g on R, satisfies
g*(t) £ C,||Q|[,#1". Hence,

‘g*Xaﬁl = C”HQH, ft_l/’dt < CnHQerl/T’p”/"’

where the limits of integration are 0 to £ (Eqg).
It follows that for |x — xo| < p/2,

If (x) =2 G ([|Q]]r — &/
Thus, if € < 271, then

Ql

r)

[ [|g 2 CuBpm MO ([[Qf[ — [[Q],),
and, also, |[wofll, = «f|fll, £ C.p™?. Hence,

llerZf |lo/llwof Il 2 Cu(B/e) (l[Qlln — e/"[2]]),

and so

@/a)(lells — [l = GIIT].

Since ¢ > 0 may be arbitrarily small, it follows that (8/a)||Q]l: = G.||T|-
Hence, a||Q|[: = G,||T]| and (wi/wo)||@|: = G||T]] a.e. If ||Q]|, = oo, this holds
for @, = @ A k. Hence, by Fatou’s Lemma, for Q likewise.

In the case of fractional integration (r > 1), Corollary 1 is a consequence of
Proposition 1; for, if ay =06 =9, a1 = by = o0, then 1l/ay — 1/p’ = 1/r
— 1/u — 1/p’ = 1/q — 1/u; hence, a1 = n/p’ + n — 1)(1/¢ — 1/u)* and,
similarly, ay = n/q + (w — 1)(1/p" — 1/u)*. Thus, B """ (we™?, wi1),
By " (w1, wo!) are at most equal to constant multiples of the left-hand sides
of (12) and (13).
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Also, (11) and (12), (13) imply that
(64) sup  wo(s) rwi(t) < CAB’,

1/2<s/1<2
for s > 0.
It follows easily that M*, ,(we?, wi?)™IN*, ,(w?)™” < CAB* An examination
of the proof of Lemma 10 leads to the conclusion that

(65) |1 Tsll; = CAB||wof [,

This can be deduced directly from (64). For, the kernel K of w7 5w™!
satisfies

Il

K (5, 9)] = x(3l/[eDer @26 — 3)] v — 317w0(3)
< CABYQ G — 3)| [x — o

= CAB*%(x — v),

where [|g||r. = C[[2]]; and [|g*f [[; = Cllg|lsl| f [|» (see, e.g., [7;13]).

Ifr = 1, (65) isa consequence of well known results of Calderén and Zygmund
[3, Theorem 1] and, e.g., [19, Lemma 4]. The required inequalities for 7, T,
are, of course, contained in Lemmas 4 and 7. Remark 1 follows from Lemma 7.
For if, e.g., in (46), 1/v = 1/ay = 1/r — 1/u, then 1/s = p'/q(1/r — 1/u).
The fact that, e.g., (15), (16) imply (18) follows from the logarithmic
convexity of the function 1/p — || f|l, (Hélder’'s inequality); hence of
1/p = |l £ llollglle for f () = o(t/s)wr(t)tee, g(t) = @ (s/t)wo(t) 1t

Corollary 2 follows similarly from Lemma 8 with a¢; = 0, [3, Theorem 2]
and, e.g., [19, Lemma 4] for the middle part T5if » = 1. If » > 1, the proof that
llnTsflle S GBI Lullwof I]

is completed by the following.

LEMMA 13. Suppose that 1 < r < 0,1 < p <7, 1/q=1/p — 1/¢', and T
s as defined in Proposition 3. Then

(66) IT11le = CHIlll /1l (€ = Gy

Proof. This is very similar to the argument for [9, Theorem 9] in the case
that Q~ (x, y) does not depend on x. In fact, for 0 £ Re 2z < 1 and f in the class
C,! of continuously differentiable functions of compact support, define

T.5) = o(2) [ san @ ()l )"y — ),

wherec(z) = (z — 1)(z — 2)~%,sgn @~ = @7/|Q|. Foranyx € R*, T, f (x) isa
holomorphic function in {z: 0 < Re 2z < 1}, continuous in {2:0 = Re z < 1},
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and has a continuous extension to the closed strip {z: 0 < Re z < 1}, which is
uniformly bounded for x € R",
For,if e > 0, 7',f (x) can be written

1) = o) | o 0l - )dy
— 07 = 27w [ e o)

o) | om0 - ) - )y,

where @, (x, y) = sgn @ (x, ¥)|Q (x, ¥)|"* The last term on the right-hand side
approaches 0 uniformly in z as e goes to 0 due to the integrability of [2(x, .)|
and since [f (x — ) — f (x)| = Cly|, while, for any fixed ¢ > 0, the first and
second terms are bounded continuous functions of z in the closed strip and
these statements hold uniformly for x € R”.

If T1y4yf(x) denotes the value of the continuous extension of 7', f(x) at
144y, —0 <y < 0, clearly

Tipnf () = linol[ca + i) f, Tl DTS e = 3)dy

i = D7) [ (e 5000 |.
By the results of [9] and [3],

(67) Tuval @) = | 00 ) e y)ds 0,
where for |y/| = 1,9 # 0,

e ) = et imytim( [ 05 — 37t = Gy )

(ifn = 0, folx,y’) = —n~'f (x)). From [9, Theorem 6], it follows that

(68) 1Dl = Cllflls, 1 <s <oo.

By precisely the same argument as in the proof of [3, Theorem 2], (67), (68)

imply

(69) [T sranf s = ClIQ walllo £ s = CHILTI L]
Furthermore,

(70) TS lle = leGm] [l = ¢/ A+ [aD]|f]]s

Let now s = ¢/r; then 1/p = (1/r)(1/s) + (1 — 1/r), 1/q = (1/7)(1/s),
1/s" = r/p’, and (69) becomes

(71) WTveanflls = CHI 1 s
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Since 7', is an analytic family of operators of admissible growth on C,! satis-
fying (70), (71), a theorem of Stein (see [15, Theorem 2; 20, p. 110]) implies
that T = ¢(1/7)~1Ty,, satisfies

(72) ”Tqu = CrHlWHlp'Hme f € Ccl-

It clearly suffices to prove (72), in general, for non-negative f, 2~. Since any
non-negative function f in L? is the limit a.e. of a sequence { f,} in C,!, which is
bounded in L? by || f||,, the general validity of (72) follows from Fatou’s
Lemma.

Remark 5. It does not seem unlikely that the preceding result on positive
kernels can be proved without the use of singular integrals. The weaker result

(73) ”Tf”q = Gl f 1y, for u > 7,

whichis[12, Lemma 7], follows from the Marcinkiewicz Interpolation Theorem,
and the restricted weak type result

(74) ITf llew = CHI N I1F 11

If p = 1, this is nothing but a well known result about the fractional integral
[l — 9|77 (dy. 1 p =7, |Tf )| = Cll0 (x, )]|.|| £ |1, as a result of the
duality between L™ and L™! (see [6; 7;13]). It follows by the complex method
of interpolation, that (74) is generally valid (see (2, § 13]). Suppose now
u > p’,and let po = »' < p and p; = ' > p; then (73) follows from (74) for
po, p1 and the Marcinkiewicz Interpolation Theorem.
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