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SOME NOTES ON THE MODULI OF STABLE SHEAVES

ON ELLIPTIC SURFACES

KŌTA YOSHIOKA

Abstract. In this paper, we shall consider the birational structure of moduli
of stable sheaves on elliptic surfaces, which is a generalization of Friedman’s
results to higher rank cases. As applications, we show that some moduli spaces
of stable sheaves on P

2
are rational. We also compute the Picard groups of

those on Abelian surfaces.

§0. Introduction

Let X be a smooth projective surface over C and H an ample di-

visor on X. Let MH(r, c1,∆) be the moduli of stable sheaves E of rank

r on X with c1(E) = c1 ∈ NS(X) and ∆(E) = ∆, where ∆(E) :=

c2(E) − {(rk(E) − 1)/2 rk(E)}(c1(E)2). In this note, we shall consider the

moduli spaces on elliptic surfaces. Let π : X → B be an elliptic sur-

face such that every singular fibre is irreducible. We denote the algebraic

equivalence class of fibres by f . We assume that X is regular, the intersec-

tion number (c1, f) is odd and H is sufficiently close to f . Then Friedman

[F] showed that MH(2, c1,∆) is birationally equivalent to Sn(JdX), where

n = dimMH(2, c1,∆)/2, 2d+1 = (c1, f) and JdX is an elliptic surface over

B whose generic fibre is the set of line bundles of degree d. In this note, we

shall generalize it to the case where r and (c1, f) are relatively prime.

As an application, we shall show that MH(r, kH,∆) is a rational va-

riety if (X,H) = (P2,OP2(1)) and (r, 3k) = 1. We also consider moduli

spaces on Abelian surfaces. In particular, we shall find a set of genera-

tors of H2(MH(r, c1,∆),Z). For general surfaces, Li [Li1], [Li2] considered

the structure of H i(MH(2, c1,∆),Q), i ≤ 2 and Pic(MH(2, c1,∆)) ⊗ Q for

∆ � 0. For the integral cohomologies, Mukai [Mu3], [Mu5] and O’Grady

[O] investigated the structure of H2(MH(r, c1,∆),Z) and the Picard group,

if X is a K3 surface. By the same method as in [Y2], we get a set of genera-

tors of H2(MH(r, c1,∆),Z), if X is a ruled surface. Our results for Abelian
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surfaces are similar to these results.

In section 1, we shall consider the birational structure of MH(r, c1,∆).

Our method is the same as that in Friedman [F] and Maruyama [Ma2].

That is, we shall use elementary transformations. For simplicity, we assume

that X is regular. Let E be a member of MH(r, c1,∆). Since H is suffi-

ciently close to the fibre, E|π−1(η) is a stable vector bundle on the generic

fibre π−1(η). Then there is a stable vector bundle E1 on X such that E1|l
is semi-stable in the sense of Simpson [S] for all fibres l, and E is ob-

tained from E1 by successive elementary transformations along coherent

sheaves of pure dimension 1 on fibres. Let E2 be a stable vector bundle

such that E2|π−1(η)
∼= E1|π−1(η), E2|l is semi-stable in the sense of Simp-

son and detE2|l ∼= detE1|l for all fibres l. By using the irreducibility of

l, we shall show that E2
∼= E1 ⊗ π∗L, where L ∈ Pic(B). Then we can

easily show that Sn(JdX) is birationally equivalent to an irreducible com-

ponent of MH(r, c1,∆), where n = dimMH(r, c1,∆)/2 and d is an integer.

By the dimension counting of non-locally free part (cf. [Y1, Thm. 0.4]), we

see that every irreducible component contains vector bundles (In fact, the

non-locally free part is of codimension r − 1). Let E be a vector bundle of

MH(r, c1,∆). We note that Ext2(E,E(−l))0 ∼= Hom(E,E(KX + l))∨0 = 0

for all fibres l, where Exti(E,E(D))0 is the trace free part of Exti(E,E(D)).

Then Ext1(E,E)0 → Ext1(E|l, E|l)0 is surjective. Considering the deforma-

tion space of E|l, we shall show that MH(r, c1,∆) is birationally equivalent

to Sn(JdX).

In section 2, we shall treat the moduli spaces on P2. Let V ⊂H0(P2,K∨
P2)

be a linear pencil which contains an elliptic curve C. Since (KP2 ,H) < 0,

we can deform E ∈ MH(r, c1,∆) to a sheaf E′ ∈ MH(r, c1,∆) such that

E′|C is semi-stable. If (c1,H) and r are relatively prime, then E′|C is a

stable vector bundle. Let P2 → P1 be the rational map defined by V and

Y → P2 the blow-ups of P2 which defines the morphism Y → P1. Then

MH(r, c1,∆) is birationally equivalent to a component of a moduli space

MH′(r, c1,∆), where H ′ is an ample divisor on Y which is sufficiently close

to the fibre in NS(Y ). Since MH′(r, c1,∆) is birationally equivalent to a

symmetric product of Y , we get that MH(r, c1,∆) is rational. We also prove

that the moduli of simple torsion free sheaves on Del Pezzo surfaces are

irreducible.

In section 3, we shall consider the moduli spaces on an Abelian surface.

We assume that c1 modNS(X) is a primitive element of NS(X)/rNS(X).

Mukai [Mu1] gave a complete description of MH(r, c1,∆) in the case where
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dimMH(r, c1,∆) = 2. Hence we assume that dimMH(r, c1,∆) ≥ 4. By us-

ing a quasi-universal family [Mu3], we shall construct a set of generators of

H i(MH(r, c1,∆),Z) for i = 1, 2, where H is a general polarization (Theo-

rem 3.1). Our method is the same as in Göttsche and Huybrechts [G-H],

that is, we shall deform X to a product of elliptic curves. Then MH(r, c1, 0)

is isomorphic toX andMH(r, c1,∆) is birationally equivalent toX×Hilbr∆
X .

Since both spaces have trivial canonical bundles, there are closed sub-

sets Z1 ⊂ MH(r, c1,∆) and Z2 ⊂ X × Hilbr∆
X such that codim(Z1) ≥ 2,

codim(Z2) ≥ 2 and MH(r, c1,∆) \Z1
∼= (X ×Hilbr∆

X ) \Z2. Hence we get an

isomorphism H i(MH(r, c1,∆),Z) ∼= H i(X×Hilbr∆
X ,Z), i = 1, 2. Construct-

ing a family of stable sheaves parametrized by X ×Hilbr∆
X \Z2 directly, we

shall construct a set of generators of H i(MH(r, c1,∆),Z), i = 1, 2. By us-

ing deformation of X and the result in [Y4], we shall also show that the

Betti numbers of MH(2, c1,∆) are the same as those of MH(1, 0, 2∆) (The-

orem 3.5). We next show that the morphism MH(r, c1,∆) → Pic0(X) ×X

defined in [Y2, Sect. 5] is an Albanese map, if dimMH(r, c1,∆) ≥ 4. Com-

bining all together, we also describe the Picard group of MH(r, c1,∆) (The-

orem 3.6).

I would like to thank Professors A. Ishii and M. Maruyama for valuable

discussions.

Notation. Let X be a smooth projective surface over C and H an

ample divisor on X. For a scheme S, we denote the projection S ×X → S

by pS . We denote the Néron-Severi group of X by NS(X). For an x ∈
NS(X) ⊗ Q, we set P (x) := (x, x−KX)/2 + χ(OX).

For a torsion free sheaf E on X, we set

∆(E) := c2(E) −
rk(E) − 1

2 rk(E)
(c1(E)2).

We denote the traceless part of Exti(E,E(D)) by Exti(E,E(D))0.

In this note, we use the notion of (semi-)stability of Mumford. Let

MH(r, c1,∆) be the moduli of stable sheaves E of rank r on X with c1(E) =

c1 ∈ NS(X) and ∆(E) = ∆. We denote the open subscheme of MH(r, c1,∆)

consisting of stable vector bundles by MH(r, c1,∆)0.

§1. Moduli spaces on elliptic surfaces

1.1. Preliminaries

Let π : X → B be an elliptic surface. We assume that every fibre is

irreducible throughout this setion. We denote a fibre by f . Let η be the
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generic point of the base curve B. Let JdX → B be the elliptic surface over

B whose generic fibre is the set of line bundles of degree d on X|π−1(η). For

a coherent sheaf E on a fibre l, we set

rk(E) := lengthOηl
(E ⊗Oηl

),

deg(E) := χ(E),

where ηl is the generic point of l.

A coherent sheaf E of pure dimension 1 on a fibre l is semi-stable if

χ(F )

rk(F )
≤

χ(E)

rk(E)

for all subsheaves F 6= 0 of E.

Lemma 1.1. Let L be a relatively ample divisor on X. Let D be a

divisor on X such that (D, f) 6= 0 and (D,L + kf) = 0 for some positive

number k. Then,

(D2) ≤
−1

(L, f)2
((L2) + 2k(L, f)).(1.1)

Proof. We set D = aL + bf + D′, where a, b ∈ Q and (D′, L) =

(D′, f) = 0. By the Hodge index theorem, (D′2) ≤ 0. Hence (D2) = ((aL+

bf)2) + (D′2) ≤ ((aL + bf)2) = a2(L2) + 2ab(L, f). Thus we may assume

that D = aL + bf . (D,L + kf) = 0 implies that b(L, f) = −a(L,L + kf).

Hence ((aL + bf)2) = −a2((L2) + 2k(L, f)). Since (L, f) 6= 0, we get that

|a| ≥ 1/|(L, f)|. Hence (1.1) holds.

Lemma 1.2. Let r be a positive integer and c1 an algebraically equiv-

alence class on X such that (c1, f) and r are relatively prime. Let L be an

ample divisor on X. Then

ML+nf (r, c1,∆) =

{
E

∣∣∣∣
E is torsion free of rank r with (c1(E),∆(E))

= (c1,∆) and E|π−1(η) is stable.

}

for n > (r3(L, f)2∆−2(L2))/4(L, f)2. We denote this space by M(r, c1,∆).

Proof. The proof is similar to that in [Y3, Prop. 6.2] (in [Y3], we used

slightly different definition of ∆).
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Since Ext2(E,E)0 ∼= Hom(E,E)∨0 = 0, E ∈ M(r, c1,∆), M(r, c1,∆) is

smooth of dimension 2r∆−(r2−1)χ(OX)+dimPic0(X). For a stable sheaf

E ∈ M(r, c1,∆), χ(E|f ) = (c1, f) and χ(E ⊗ kx) = r are relatively prime,

where E is locally free at x ∈ X and kx is the structure sheaf of x. Hence

there is a universal family (cf. [Ma1, Thm. 6.11]).

Lemma 1.3. Let E be a vector bundle of rank r on X such that

(c1(E), f) = d, and let F be a coherent sheaf of pure dimension 1 on a

fibre l with rk(F ) = r1 and deg(F ) = d1. Let E → F be a surjective homo-

morphism and E′ the kernel. Then

∆(E′) = ∆(E) +
rd1 − r1d

r
.(1.2)

Proof. For a coherent sheaf G on X, χ(G) = rk(G)P (c1(G)/ rkG) −

∆(G). Since χ(E) = χ(E′) + χ(F ),

∆(E′) − ∆(E) = d1 − r(P (c1(E)/ rkE) − P (c1(E
′)/ rkE′))

= d1 −
r1d

r
.

The following is a special case of Maruyama [Ma2].

Proposition 1.4. Let E be a vector bundle on X such that E|π−1(η) is

a semi-stable vector bundle. Then there is a vector bundle E′ on X such that

E′|l is semi-stable for every fibre l and E is obtained from E′ by successive

elementary transformations along coherent sheaves of pure dimension 1 on

fibres.

Proof. We note that ∆(E) ≥ 0. We shall prove our claim by induction

on ∆(E). We assume that there is a fibre l such that E|l is not semi-

stable. Then there is a surjective homomorphism E|l → F such that F is of

pure dimension 1 and χ(E|l)/ rk(E|l) > χ(F )/ rkF . We shall consider the

following elementary transformation along F :

0 −→ E1 −→ E −→ F −→ 0.

Since depthOx
F = 1, x ∈ l and X is smooth, we see that proj-dimOx

F =

dimX − depthOx
F = 1. Hence E1 is also locally free. By Lemma 1.3, we

get that ∆(E1) < ∆(E). Hence we obtain our corollary.
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1.2. General element of M(r, c1,∆)

If we fix the rank r and the equivalence class c1 modπ∗H1(B,Z), then

we may denote M(r, c1,∆) by M(∆). In fact, c1 mod rπ∗H2(B,Z) is deter-

mined by r∆ and the isomorphic class of MH(r, c1,∆) is determined by r,

c1 mod rπ∗H2(B,Z) and ∆.

Let E be a general element of M(∆). We shall consider the Harder-

Narasimhan filtration of the restriction E|l of E to fibres l. In particular,

we shall show that E|l is semi-stable for all singular fibres l.

Lemma 1.5. Let C be a projective curve and OC(1) an ample di-

visor on C. Let L be a line bundle on C. Let Q be the subscheme of

QuotOC(−n)⊕N /C parametrizing quotients OC(−n)⊕N → F such that (i)

F is a locally free sheaf of rank r with detF = L and (ii) H1(C,F (n)) = 0.

Then Q is smooth and irreducible.

Proof. Let λ : OC(−n)⊕N → F be a quotient which belongs to Q.

Then we see that Ext1(ker λ, F ) = 0. Since Hom(kerλ, F ) → Ext1(F,F )
tr
→

H1(C,OC) is surjective, Q is smooth. For k ≥ n, there is an exact sequence

0 → O
⊕(r−1)
C → F (k) → L(rk) → 0. We set P := P(Ext1(L(rk),O

⊕(r−1)
C )∨).

We shall consider the universal extension:

0 −→ O
⊕(r−1)
P×C −→ F −→ L(rk) ⊗OP(−1) −→ 0.

Let P′ be the open subscheme of P of points y such that H1(C,Fy) = 0.

Then pP′∗(F) is a locally free sheaf on P′. Let φ : A → P′ be the vector

bundle associated to the locally free sheaf Hom(O⊕N
P′ , pP′∗(F)). Then there

is a homomorphism Λ : O⊕N
A×C → (φ× 1)∗F . Let A′ be the open subscheme

of A such that Λ is surjective. Then there is a surjective morphism A′ → Q,

and hence Q is irreducible.

Proposition 1.6. Let M(∆)0 be the open subscheme of M(∆) of ele-

ments E such that E|l is semi-stable for every singular fibre l. Then M(∆)0

is a dense subscheme of M(∆).

Proof. We note that M(∆)0 := M(r, c1,∆)0 is an open dense sub-

scheme of M(∆) (cf. [Y1, Thm. 0.4]). Hence it is sufficient to prove that

M(∆)0 ∩M(∆)0 is an open dense subscheme of M(∆)0. Let E be a locally

free stable sheaf ofM(∆). Since E|π−1(η) is stable, we see that Ext2(E,E(−l))0 ∼=
Hom(E,E(l+KX ))∨0 = 0. Hence we get that Ext1(E,E)0 → Ext1(E|l, E|l)0
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is surjective. Let m be the multiplicity of l and set l = ml′. By Proposi-

tion 1.4, there is a vector bundle E1 on X such that E1|l is semi-stable

and det(E1|l) = det(E|l) ⊗ Ol(kl
′). Since (c1, f) = m(c1, l

′), our assump-

tion on r and c1 implies that (r,m) = 1. Replacing E1 by E1 ⊗ OX(jl′),

we may assume that det(E1|l) = det(E|l). Let Def(E|l) be the local de-

formation space of E|l of fixed determinant line bundle. We shall show

that Def(E|l)
u := {F ∈ Def(E|l) | F is not semi-stable} is a proper closed

subset of Def(E|l). In the notation of Lemma 1.5, we assume that L =

det(E1|l) and n is a sufficiently large integer such that there are quotients

Ol(−n)⊕N → E|l, Ol(−n)⊕N → E1|l which belong to Q. We also assume

that H0(l,O⊕N
l ) → H0(l, E|l(n)) and H0(l,O⊕N

l ) → H0(l, E1|l(n)) are iso-

morphisms. Let OQ×l(−n)⊕N → Q be the universal quotient. Since E1|l is

semi-stable, Lemma 1.5 implies that Qu := {y ∈ Q | Qy is not semi-stable}
is a proper closed subset of Q. Since Def(E|l) is a transversal slice of the

Aut(O⊕N
l )-orbit and Qu is Aut(O⊕N

l )-invariant, Def(E|l)
u is also a proper

closed subset of Def(E|l). Combining the surjectivity of the homomorphism:

Ext1(E,E)0 → Ext1(E|l, E|l)0, we get that M(∆)0 is an open dense sub-

scheme of M(∆).

Lemma 1.7. Let l be a smooth fibre. Let h := {(r1, d1), . . . , (rs, ds)}
be a sequence of pairs of integers such that ri > 0, 1 ≤ i ≤ s and d1/r1 >

d2/r2 > · · · > ds/rs. Let Dh be the subset of M(r, c1, c2) of elements E such

that the Harder-Narasimhan filtration of E|l : 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs = E|l
satisfies that rk(Fi/Fi−1) = ri and deg(Fi/Fi−1) = di, 1 ≤ i ≤ s. Then

codim(Dh) ≥
∑

i<j rjdi − ridj . In particular, if codim(Dh) = 1, then s = 2

and r2d1 − r1d2 = 1.

Proof. Let Def(E|l)h be the subset of Def(E|l) of elements G such

that the Harder-Narasimhan filtration of G : 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs = G

satisfies that rk(Fi/Fi−1) = ri and deg(Fi/Fi−1) = di, 1 ≤ i ≤ s. We assume

that Def(E|l)h is not empty. We note that Ext1(E,E)0 → Ext1(E|l, E|l)0 is

surjective. It is known that codim(Def(E|l)h) =
∑

i<j rjdi − ridj (cf. [A-B,

Thm. 7.14]). Hence we get our lemma.

Let (r1, d1) be the pair of integers such that 0<r1<r and rd1−r1d = 1.

Let M(∆)1 be the open subscheme of M(∆)0 of elements E such that E|l
is stable, or the Harder-Narasimhan filtration of E|l is 0 ⊂ F ⊂ E|l for

every smooth fibre l, where F is a stable vector bundle of rank r1 on l with

deg(F ) = d1. Then M(∆)1 is an open dense subscheme of M(∆)0.
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1.3. Vector bundles on elliptic curves

The following is due to Atiyah [A].

Lemma 1.8. Let C be a smooth elliptic curve. Let r be a positive

integer and d an integer such that (r, d) = 1. Then,

(1) There is a stable vector bundle of rank r and degree d.

(2) Let (r1, d1) be the pair of integers such that r1d−rd1 = 1 and 0 < r1 < r.

Let E1 be a stable vector bundle of rank r1 and degree d1. Then every stable

vector bundle E of rank r and degree d is defined by an exact sequence

0 −→ E1 −→ E −→ E2 −→ 0,(1.3)

where E2 is a stable vector bundle of rank r2 := r−r1 and degree d2 := d−d1.

(3) Let 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs = E be the Harder-Narasimhan filtration

of a vector bundle E. Then E ∼=
⊕s

i=1Ei, where Ei := Fi/Fi−1.

Proof. (1) We shall prove our claim by induction on r. If r = 1, then

our claim obviously holds. Let (r1, d1) be the pair of integers such that

r1d − rd1 = 1 and 0 < r1 < r. We set r2 := r − r1 and d2 := d − d1.

By induction hypothesis, there are stable vector bundles Ei of rank ri and

degree di, i = 1, 2. Since d1/r1 < d2/r2, Hom(E2, E1) = 0. By using the

Riemann-Roch theorem, we get that Ext1(E2, E1) ∼= C. Let 0 → E1 →

E → E2 → 0 be a non-trivial extension. We shall show that E is stable.

If E is not stable, then there is a semi-stable subsheaf G of E such that

degG/ rkG > d/r. Since G and E2 are semi-stable and G → E → E2 is

not zero, degG/ rkG ≤ d2/r2. We assume that degG/ rkG < d2/r2. Then

we see that 1/rr2 = d2/r2 − d/r > d2/r2 − degG/ rkG ≥ 1/r2 rkG, which

is a contradiction. Hence degG/ rkG = d2/r2. Then we get that rkG = r2
and degG = d2. Hence G ∼= E2, which is a contradiction.

(2) Let E be a stable vector bundle of rank r and degree d. Then

Ext1(E1, E) ∼= Hom(E,E1)
∨ = 0. By the Riemann-Roch theorem, there is a

non-zero homomorphism ϕ : E1 → E. We shall show that ϕ is injective and

cokerϕ is stable. Since E1 and E are stable, d1/r1 ≤ degϕ(E1)/ rkϕ(E1) <

d/r. In the same way as in the proof of (1), we see that rkϕ(E1) = r1 and

degϕ(E1) = d1. Hence we get that E1
∼= ϕ(E1). We set E2 := cokerϕ.

We assume that there is a quotient G of E2 such that G is semi-stable

and d2/r2 > degG/ rkG. Since G is a quotient of E, we get that d/r <

degG/ rkG. Hence we get that d/r < degG/ rkG < d2/r2. Then 1/rr2 =

https://doi.org/10.1017/S0027763000025319 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025319


STABLE SHEAVES ON ELLIPTIC SURFACES 81

d2/r2 − d/r > d2/r2 − degG/ rkG ≥ 1/r2 rkG, which is a contradiction.

Hence E2 is a stable vector bundle.

(3) Since degEi/ rkEi > degEj/ rkEj, i < j, the Serre duality implies

that Ext1(Ej , Ei) = 0, i < j. By the induction on s, we see that E ∼=
⊕

iEi.

Lemma 1.9. Let (r,d) (resp. (r1,d1), (r2,d2)) be the pair in Lemma 1.8.

Let E be a vector bundle of rank r on an elliptic curve C with degree d and

E2 a stable vector bundle of rank r2 on C with degree d2.

(1) If E is stable, then Hom(E,E2) ∼= C and a non-zero homomorphism is

surjective.

(2) Let F1 (resp. F2) be a stable vector bundle of rank r1 and degree d1

(resp. rank r2 and degree d2). We assume that E ∼= F1 ⊕ F2 and there is a

surjective homomorphism ϕ : E → E2 such that kerϕ is also stable. Then

E2
∼= F2 and Hom(E,E2) ∼= C⊕2.

Proof. (1) Since E is stable, Ext1(E,E2) ∼= Hom(E2, E)∨ = 0. By

the Riemann-Roch theorem, we see that dimHom(E,E2) = 1. In the same

way as in the proof of Lemma 1.8, we see that a non-zero homomorphism

E → E2 is surjective.

(2) If E2 6∼= F2, then kerϕ ∼= ker(ϕ|F1) ⊕ F2. Since ϕ|F1 : F1 → E2 is

surjective, ker(ϕ|F1) 6= 0. Hence E2
∼= F2. By the Riemann-Roch theorem,

Hom(F1, E2) ∼= C. Therefore Hom(E,E2) ∼= C⊕2.

1.4.

Let B0 be the open subscheme of B such that π : X0 := X ×B B0 →
B0 is smooth. We assume that π has a section σ. We denote the rela-

tive moduli space of stable vector bundles of rank r on fibres with de-

gree d by MX0/B0
(r, d) → B0. We assume that (r, d) = 1. We shall con-

struct a family of stable vector bundles Er,d on X0 ×B0 X0 and show that

MX0/B0
(r, d) ∼= X0 as a B0-scheme, by using induction on r. If r = 1, then

E1,d := OX0×B0
X0((d+1)σ−∆) is a universal family, where ∆ is the diagonal

of X0×B0X0. Let (r1, d1) be the pair of integers such that r1d−rd1 = 1 and

0 < r1 < r. We set r2 = r− r1 and d2 = d−d1. Let E be a vector bundle on

X0 such that E|l is a stable vector bundle of rank r2 and detE|l ∼= Ol(d2σ)

for every fibre l. By using Lemma 1.8, we see that L := Ext1pX0
(E, Er1,d1) is

a line bundle on X0. Then there is the universal extension

0 −→ Er1,d1 −→ Er,d −→ E ⊗ p∗X0
(L) −→ 0,(1.4)
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which parametrizes stable vector bundles of rank r on fibres with degree d.

Hence there is a morphism X0 → MX0/B0
(r, d). By our construction, this

morphism is injective. By ZMT, it is an isomorphism.

Lemma 1.10. Let E and E′ be semi-stable vector bundles on a multiple

fibre l = ml′ such that rkE = rkE′, detE ∼= detE′, and χ(E) = χ(E′) = d.

Then,

Hom(E,E′) =

{
C, if E ∼= E′,

0, otherwise.
(1.5)

Proof. We set L := OX(−l′)|l′ . We note that rk(E ⊗ L⊗k) = r and

χ(E⊗L⊗k) = d/m for 0 ≤ k ≤ m−1. Since (r, d) = 1 and E is semi-stable,

E⊗L⊗k is a stable sheaf on ml′. Thus 0 ⊂ E(−(m−1)l′) ⊂ E(−(m−2)l′) ⊂

· · · ⊂ E(−l′) ⊂ E is a Jordan-Hölder filtration of E. Since the order of

L ∈ Pic0(l′) is m and (m, r) = 1, detE ∼= detE′ and the stabilities of

E|l′ and E|l′ imply that Hom(E|l, E
′ ⊗ L⊗k) = 0 for 1 ≤ k ≤ m − 1. Let

ϕ : E → E′ be a non-zero homomorphism. We shall show that ϕ is an

isomorphism. Since Hom(E|l, E
′ ⊗L⊗k) = 0 for 1 ≤ k ≤ m− 1, we see that

ϕ|l′ : E|l′ → E′|l′ is not zero, which implies that E|l′ ∼= E′|l′ . By Nakayama’s

lemma, ϕ is an isomorphism. Then it is easy to see that Hom(E,E′) ∼= C.

Lemma 1.11. Let E,E′ be vector bundles of rank r on X such that

E|l and E′|l are semi-stable for all fibres l and detE ∼= detE′. Then there

is a line bundle L on B such that E ∼= E′ ⊗ π∗(L).

Proof. We note that E|π−1(η)
∼=E′|π−1(η). By the upper semi-continuity

of h0(l, E
′∨ ⊗E|l), there is a non-zero homomorphism E′|l → E|l for every

fibre l. Since E|l and E′|l are semi-stable, Lemma 1.10 implies that E|l ∼=
E′|l and H0(l, E

′∨ ⊗ E|l) ∼= C. By the base change theorem, we get that

L := π∗(E
′∨⊗E) is a line on B and π∗(L)⊗E′ → E is an isomorphism.

Corollary 1.12. M(∆) is not empty if and only if ∆ ≥ ∆0 :=
(r2−1)

2r χ(OX).

Proof. We set ∆′ := min{∆ | M(∆) 6= ∅}. Lemma 1.11 implies that

dim Pic0(X) = dimM(∆′) = 2r∆′ − (r2 − 1)χ(OX) + dim Pic0(X). Hence

we get our claim.
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Remark 1.1. Let E be an element of M(∆0). By Lemma 1.11, there is

a surjective morphism Pic0(X) → M(∆0) sending L ∈ Pic0(X) to E ⊗ L.

Hence we get that M(∆0) = Pic0(X)/Φ(E), where Φ(E) := {L ∈ Pic0(X) |

E ⊗ L ∼= E}. In particular, if Pic0(X) = Pic0(B), then M(∆0) = Pic0(X).

1.5. Construction of a family

We assume that π : X → B has a section and show that M(∆) is

birational to M(∆0) × SnX, where n := r(∆ − ∆0). Let E be a universal

family on M(∆0) ×X. Let (r1, d1) be the pair of integers such that r1d−
rd1 = −1 and 0 < r1 < r, and let Er1,d1 be the vector bundle on X0×B0 X0.

Let j : X0 ×B0 X0 → X0 ×X be the immersion. We denote the projection

M(∆0)×X0 →M(∆0) by q1 and M(∆0)×X0 → X0 by q2. By Lemma 1.9,

L := HompM(∆0)×X0
((q1 × 1X)∗E , (q2 × 1X)∗j∗Er1,d1) is a line bundle on

M(∆0) × X0, and there is a surjective homomorphism: (q1 × 1X)∗E →

(q2×1X)∗j∗Er1,d1⊗p
∗
M(∆0)×X0

(L)∨. Let pi : Xn
0 := X0×X0×· · ·×X0 → X0

be the i-th projection, 1 ≤ i ≤ n. Then there is a homomorphism

Λ : Ẽ −→
n⊕

i=1

(q2 ◦ (1M(∆0) × pi) × 1X)∗j∗Er1,d1 ⊗ Li,(1.6)

where Ẽ is the pull-back of E to M(∆0) × Xn
0 × X and Li = (1M(∆0) ×

pi × 1X)∗p∗M(∆0)×X0
(L)∨. We set Γ := {(x1, x1, . . . , xn) ∈ Xn

0 | π(xi) =

π(xj) for some i 6= j}. Then Λ1 := Λ|M(∆0)×(Xn
0 \Γ)×X is a surjective homo-

morphism. We set F := ker Λ1. By Lemma 1.3, F is a family of stable vec-

tor bundles on X. Hence there is a morphism M(∆0)× (Xn
0 \ Γ) →M(∆).

By our construction, this morphism is Sn-invariant, and hence we get a

morphism ν : M(∆0) × (Xn
0 /Sn) → M(∆). By our construction, it is

injective. Since dimSnX = 2n = dimM(∆) − dimM(∆0), ZMT implies

that M(∆0) × (Xn
0 /Sn) → M(∆) is an immersion. We set M(∆)2 :=

ν(M(∆0) × (Xn
0 /Sn)). We shall show that M(∆)2 is dense. For this pur-

pose, we shall estimate the dimension of M(∆)1 \M(∆)2.

Lemma 1.13. dim(M(∆)1 \M(∆)2) = 2n− 1 + dimM(∆0).

Proof. Assume that the restriction E|l of E ∈ M(∆)1 to a smooth

fibre l is not stable. By the definition of M(∆)1, we see that E|l ∼= E1 ⊕E2,

where E1 (resp. E2) is a stable vector bundle of rank r1 and degree d1 (resp.

rank r2 and degree d2). We set E′ := ker(E → E1). Then there is an exact

sequence

0 −→ E1 −→ E′|l −→ E2 −→ 0.(1.7)
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Then E is obtained by the inverse transform from E′:

0 −→ E −→ E′(l) −→ E2 −→ 0.(1.8)

By (1.7), E′|l is stable or E′|l ∼= E1 ⊕ E2. By Lemma 1.3, ∆(E′) =

∆(E) − 1/r. Conversely, for E′ ∈ M(∆ − 1/r)1, we shall consider a sur-

jective homomorphism ψ : E′ → F2 such that the kernel of E′|l → F2 is

stable, where F2 is a stable vector bundle of rank r2 on a smooth fibre l

with degree d2. If kerψ⊗OX(l) belongs to M(∆)1 \M(∆)2, then (i) E′|l is

stable and E′ belongs toM(∆−1/r)1\M(∆−1/r)2, or (ii) E′|l is not stable

and F2 is a direct summand of E′|l. Since #{l | E′|l is not stable} ≤ n− 1,

by using Lemma 1.9, we see that

dim(M(∆)1 \M(∆)2)

= max{dim(M(∆ − 1/r)1 \M(∆ − 1/r)2) + 2,dimM(∆ − 1/r)1 + 1}

= 2n− 1 + dimM(∆0).

Theorem 1.14. M(∆) is irreducible and birational to M(∆0) ×
Sn(Jd1X), where n := r(∆ − ∆0).

Proof. If π : X → B has a section, we have proved our theorem. For

general cases, we shall consider a Galois covering γ : B′ → B such that

π′ : X ×B B′ → B′ has a section σ′. Let B1 be an open subscheme of B0

such that γ−1(B1) → B1 is etale. We set X ′
1 := π−1(B1) ×B B′. Let E ′

r1,d1

be the vector bundle on X ′
1 ×γ−1(B1) X

′
1 and j′ : X ′

1 ×γ−1(B1) X
′
1
∼= X ′

1 ×B1

X1 ↪→ X ′
1 × X1 the inclusion. Let X ′

1 → Jd1X be the morphism induced

by E ′
r1,d1

. For a g ∈ Gal(B′/B), let g̃ : X ′
1 → X ′

1 be the automorphism of

X ′
1 sending (x, y) ∈ π−1(B1)×B B

′ to (x+ (d1 − 1)(σ′(g(y))− σ′(y)), g(y)).

Then it defines an action of Gal(B′/B) to X ′
1. By the construction of E ′

r1,d1
,

we see that det(E ′
r1,d1

)|g̃((x,y))
∼= det(E ′

r1,d1
)|(x,y). Hence (E ′

r1,d1
)|g̃((x,y))

∼=

(E ′
r1,d1

)|(x,y). Thus the morphism X ′
1 → Jd1X is Gal(B′/B)-invariant. Then

we get that X ′
1/Gal(B′/B) → Jd1X is an immersion. Replacing j∗Er1,d1 by

j′∗E
′
r1,d1

, we can construct a family of stable vector bundles F parametrized

by M(∆0) × ((X ′
1)

n \ Γ′), where Γ′ is the pull-back of Γ to (X ′
1)

n. Hence

we get a morphism M(∆0) × ((X ′
1)

n \ Γ′) → M(∆). By the construction,

Gal(B′/B)×Sn acts on ((X ′
1)

n\Γ′), and this morphism is Gal(B′/B)×Sn-

invariant. Hence we get a morphism M(∆0)× ((Jd1X1)
n \Γ)/Sn →M(∆).

Then we see that M(∆) is birationally equivalent to M(∆0) × Sn(Jd1X).
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§2. Moduli spaces on Del Pezzo surfaces

2.1.

We shall apply Theorem 1.14 to moduli spaces on Del Pezzo surfaces.

Theorem 2.1. We assume that X = P2 and set H := OP2(1). Then

MH(r, kH,∆) is a rational variety if (r, 3k) = 1.

Proof. Let V ⊂ H0(P2,OP2(3)) be a pencil such that every member

D ∈ V is irreducible and #{P | P ∈
⋂

D∈V D} = 9. Let φ : Y → P2 be

the blow-ups of P2 at base points of V . Then there is an elliptic fibration

π : Y → P1 such that every fibre is isomorphic to a member D of V . We set

N := {E ∈MH(r, kH,∆)0 | φ∗E|π−1(η) is stable},(2.1)

where η is the generic point of P1. Let E be a stable vector bundle of rank

r on P2 with c1(E) = kH. Then Ext2(E,E(−3))0 ∼= Hom(E,E)∨0 = 0. Let

D ∈ V be a smooth elliptic curve. Then we get the surjective homomor-

phism Ext1(E,E)0 → Ext1(E|D, E|D)0. Hence Def(E) → Def(E|D) is sub-

mersive. Since (r,deg(E|D)) = (r, 3k) = 1, we can deform E to a stable sheaf

F such that F |D is a stable vector bundle on D. By the openness of stabil-

ity, F |π−1(η) is a stable vector bundle. Hence N is an open dense subscheme

of MH(r, kH,∆) and there is an open immersion φ∗ : N →M(r, kφ∗H,∆).

By Theorem 1.14, N is bitarional to SnY , where n = r∆− (r2−1)/2. Since

SnY is a rational variety, we get our theorem.

Definition 2.1. Spl(r, c1,∆) is the moduli space of simple torsion free

sheaves E of rank r with c1(E) = c1 and ∆(E) = ∆.

We shall next consider the irreducibility of Spl(r, c1,∆) for Del Pezzo

surfaces.

Proposition 2.2. Let π : X → P1 be a rational elliptic surface with

a section σ. For a divisor class c1 ∈ NS(X) such that (c1, f) and r are

relatively prime, we shall consider the moduli space M(∆) = M(r, c1,∆).

Then M(∆) is irreducible and rational.

Proof. Since π has a section σ, the canonical bundle formula implies

that KX
∼= π∗OP1(−1). Hence σ is an exceptional curve of the first kind

by the adjunction formula (KX + σ, σ) = −2. Since R1π∗OX is locally free
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of rank 1, the exact sequence 0 → OX → OX(σ) → Oσ(−1) → 0 im-

plies that π∗Oσ(−1) ∼= R1π∗OX , and hence we get that π∗K
∨
X(σ) ∼= π∗K

∨
X .

Let φ : X → Y be the contraction of σ. Then we get that H0(Y,K∨
Y ) ∼=

H0(X,K∨
X(σ)) ∼= H0(X,K∨

X) ∼= C⊕2. By the Riemann-Roch theorem,

H1(Y,K∨
Y ) = 0. Let δ : Y → S be a smooth family of 8-points blow-ups of

P2 such that H1(Ys,K
∨
Ys

) = 0 for all s ∈ S and Ys0 = Y for some s0 ∈ S.

Let ξ be the generic point of S. By the base change theorem, δ∗(K
∨
Y/S) is

a locally free sheaf of rank 2 and δ∗(K
∨
Y/S) ⊗ k(s) → H0(K∨

Ys
), s ∈ S is

an isomorphism. We set OZ := coker(δ∗δ∗(K
∨
Y/S) → K∨

Y/S) ⊗KY/S. Then

OZ ⊗ k(s) defines a reduced one point of Ys. Thus Z defines a section of

δ. Let φS : X → Y be the blow-up of Y along Z and set ε := δ ◦ φ.

Then there is a morphism πS : X → P := P(ε∗(K
∨
Y/S)), which defines a

family of elliptic fibrations. Choosing a sufficiently general family, we may

assume that πS|ξ : Xξ → P1
k(ξ) is an elliptic surface such that every fibre

is irreducible. Let OX (1) be a relative ample line bundle on X which is

sufficiently close to the pull-back of an ample line bundle on P. For a line

bundle L on X such that c1(Ls0) = c1, we shall consider the relative moduli

space M(r,L,∆) → S of stable sheaves E of rank r on Xs, s ∈ S such that

c1(E) = Ls and ∆(E) = ∆. By Maruyama [Ma1, Cor. 5.9.1, Prop. 6.7],

M(r,L,∆) is smooth and projective over S. By Theorem 1.14, the generic

fibre is irreducible, and hence every fibre is irreducible. Thus M(∆) is irre-

ducible. Since M(∆) contain an irreducible component which is birational

to SnX for some n (see the proof of Theorem 1.14), M(∆) is a rational

variety.

Lemma 2.3. Let φ : X̃ → X be a one point blow-up of a surface X and

E a simple torsion free sheaf of rank r on X which is locally free at the center

of the blow-up. Let C1 be the exceptional divisor of φ and φ∗E → O⊕k
C1

,

0 < k < r a surjective homomorphism. We set E′ := ker(φ∗E → O⊕k
C1

).

Then E′ is also a simple torsion free sheaf.

Proof. We note that Ext1(O⊕k
C1
, E) ∼= H1(C1, E

∨ ⊗ OC1(KX̃
)⊕k) ∼=

H1(C1,OC1(−1)⊕rk) = 0. By the exact sequence 0 → E′ → E → O⊕k
C1

→ 0,

we see that Hom(E,E) ∼= Hom(E′, E). Since Hom(E′, E′) → Hom(E′, E)

is injective, we get that Hom(E′, E′) = C.

Corollary 2.4. Let E be a simple torsion free sheaf of rank r on

X with c1(E) = c1 and ∆(E) = (∆) which is locally free at the center
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of a blow-up φ : X̃ → X, and E′ the kernel of a surjective homomorphism

φ∗E → O⊕k
C1

, 0 ≤ k < r. We set ∆(E′) = ∆′. Then, if Spl(r, φ∗c1−kC1,∆
′)

is irreducible, Spl(r, c1,∆) is also irreducible.

Proof. Let Spl(r, φ∗c1,∆)0 be the open subscheme of Spl(r, φ∗c1,∆) of

elements E such that E|C1
∼= O⊕r

C1
. Then φ∗ :Spl(r, c1,∆)′→Spl(r, φ∗c1,∆)0

is an isomorphism, where Spl(r, c1,∆)′ is the open dense subspace of

Spl(r, c1,∆) consisting of E such that E is locally free at the center of

the blow-up. For an E ∈ Spl(r, φ∗c1,∆)0, the quotients φ∗E → O⊕k
C1

is

parametrized by the Grassmannian varietyG(H0(C1, E|∨C1
), k). Let Spl(r, φ∗c1−

kC1,∆
′)0 be the open subscheme of Spl(r, φ∗c1 − kC1,∆

′) of elements E′

such that E′|C1
∼= OC1(1)⊕k ⊕O

⊕(r−k)
C1

. By using Lemma 2.3, we can show

that there is an open subscheme U of Spl(r, φ∗c1−kC1,∆
′)0 and a surjective

morphism U → Spl(r, φ∗c1,∆)0 such that every fibre is a Grassmannian

variety. Hence, the irreducibility of Spl(r, φ∗c1 − kC1,∆
′) implies that of

Spl(r, c1,∆).

Proposition 2.5. Let X be a Del Pezzo surface and c1 an element of

NS(X). Then Spl(r, c1,∆) is irreducible.

Proof. Let X be a Del Pezzo surface which is an n-points blow-ups of

P2. If n < 8, then we shall take a blow-ups X ′ of X at general 8−n points.

Then |K∨
X′ | is a linear pencil with a base point. Let X ′′ be the blow-up of

X ′ at the base point. Then X ′′ is an elliptic surface with a section. By using

Corollary 2.4 and Proposition 2.2, we get our claim.

§3. Moduli spaces on Abelian surfaces

3.1.

For a manifold V and α ∈ H∗(V,Z), [α]i ∈ H i(V,Z) denotes the i-th

component of α. Let K(V ) be the Grothendieck group of V . Let p : X →

Spec(C) be an Abelian surface over C. We set

{
Hev(X,Z) := H0(X,Z) ⊕H2(X,Z) ⊕H4(X,Z)

Hodd(X,Z) := H1(X,Z) ⊕H3(X,Z).
(3.1)

Let E0 be an element of MH(r, c1,∆). We set

H(r, c1,∆) := {α ∈ Hev(X,Z) | [p∗((chE0)α)]0 = 0}.(3.2)
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Let F be a quasi-universal family of similitude ρ on MH(r, c1,∆)×X [Mu3,

Thm. A.5]. Then Mukai [Mu3], [Mu5] and Drezet [D], [D-N] defines a ho-

momorphism

κ2 : H(r, c1,∆) −→ H2(MH(r, c1,∆),Z)(3.3)

such that

κ2(α) =
1

ρ

[
pMH (r,c1,∆)∗(ch(F)α)

]
2
.(3.4)

Remark 3.1. In the notation of Mukai [Mu5, Sect. 5], κ2(α) = −θv(α
∨)

and H(r, c1,∆) = v⊥, where v := (r, c1, (c
2
1)/2r − ∆) ∈ Hev(X,Z) is the

Chern character of E0 and ∨:Hev(X,Z) → Hev(X,Z) is the automorphism

sending α = α0 + α2 + α4, αi ∈ H2i(X,Z) to α∨ = α0 − α2 + α4. Since we

used Drezet’s notation in [Y2], [Y3], we shall use Drezet’s homomorphism

in this note.

We also consider the homomorphism:

κ1 : Hodd(X,Z) −→ H1(MH(r, c1,∆),Z)(3.5)

such that

κ1(α) =
1

ρ

[
pMH (r,c1,∆)∗(ch(F)α)

]
1
.(3.6)

We note that κ1 and κ2 do not depend on the choice of F . In this section,

we shall prove the following theorem.

Theorem 3.1. Let c1 be an element of NS(X) such that c1 mod

rH2(X,Z) is a primitive element of H2(X,Z/rZ) and H a general am-

ple divisor. We assume that dimMH(r, c1,∆) = 2r∆ + 2 ≥ 6. Let a :

MH(r, c1,∆) → Alb(MH(r, c1,∆)) be an Albanese map. Then the following

holds.

(1) κ1 is an isomorphism and κ2 is injective.

(2)

H2(MH(r, c1,∆),Z)

= κ2(H(r, c1,∆)) ⊕ a∗H2(Alb(MH(r, c1,∆),Z)(3.7)

= κ2(H(r, c1,∆)) ⊕
2∧
κ1(H

odd(X,Z)).

(3)

NS(MH(r, c1,∆)) = κ2(H(r, c1,∆)alg) ⊕ a∗ NS(Alb(MH(r, c1,∆)),(3.8)

where H(r, c1,∆)alg := (H0(X,Z) ⊕ NS(X) ⊕H4(X,Z)) ∩H(r, c1,∆).
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3.2.

We first assume that X is a product of elliptic curves. Let C1 and C2

be elliptic curves and set X = C1 × C2. Since we use products such as

X × X × · · · × X and C1 × C1 × · · · × C1, for convenience sake, we shall

introduce indices of C1, C2 and X. We set Ci
k := Ck and Xi := Ci

1 × Ci
2

for i = −1, 0, 1, . . . , n (≥ 2), and k = 1, 2. We set a := −1. We shall

construct a family of stable sheaves on Xa(= X). Let ∆i,j
k be the diagonal

of Ci
k ×C

j
k = Ck ×Ck. Let pi

k be a point of Ci
k. We also denote c1(O(pi

k)) by

pi
k. For simplicity, we denote the pull-backs of pi

k and ∆i,j
k to X0 × (X1 ×

X2 × · · · × Xn) × Xa by pi
k and ∆i,j

k respectively. Let ∆i,j,k
X be the pull-

back of the diagonal of Xi × Xj × Xk to X1 × X2 × · · · × Xn and ∆i,j
X

that of Xi × Xj to X1 × X2 × · · · × Xn. We set Z :=
⋃

i<j<k ∆i,j,k
X . Let

φ : Y → (X1×X2×· · ·×Xn)\Z be the blow-up of (X1×X2×· · ·×Xn)\Z at

the subscheme
⋃

i<j ∆i,j
X \Z. We set Ei,j := φ−1(∆i,j

X \Z). For α ∈ H∗(X,Z)

and the projection$i : X0×Y ×Xa → Xi = X, i = 0, 1, . . . , n, a, we denote

the pull-back of α to X0×Y ×Xa by αi. Then H2(Hilbn
X ,Z) ∼= H2(Y,Z)Sn

and H2(Y,Z)Sn is generated by
∑n

i=1 e
i,

∑
i<j(f

i ·gj −gi ·f j) and
∑

i<j E
i,j

where e ∈ H2(X,Z) and f, g ∈ H1(X,Z). Let a : X0 ×Hilbn
X → X0 ×X be

the Albanese map such that a((x, IZ )) = (x,
∑n

i=1 xi) for reduced subscheme

Z =
⋃

i{xi}.

Lemma 3.2. (1) Let F be a vector bundle on C0
2 × Ca

2 such that

F |{t}×Ca
2
, t∈C0

2 is a stable vector bundle of rank r on Ca
2 with detF |{t}×Ca

2

∼=

O(∆0,a
2 + (d− 1)pa

2)|{t}×Ca
2
. Then,




c1(F ) = ∆0,a

2 + (d− 1)pa
2 + (r1 − 1 + kr)p0

2, k ∈ Z,

ch2(F ) =
1

2r
(c1(F )2).

(3.9)

If k = 0, then ch2(F ) = d1p
0
2 · p

a
2.

(2) Let Fi (1 ≤ i ≤ n) be a vector bundle on Ci
2×C

a
2 such that Fi|{t}×Ca

2
,

t ∈ Ci
2 is a stable vector bundle of rank r2 on Ca

2 with detFi|{t}×Ca
2

∼=

O(∆i,a
2 + (d2 − 1)pa

2)|{t}×Ca
2
. Then,





c1(Fi) = ∆i,a
2 + (d2 − 1)pa

2 + (r1 − 1 + kr2)p
i
2, k ∈ Z,

ch2(Fi) =
1

2r2
(c1(Fi)

2).
(3.10)

If k = 0, then ch2(Fi) = d1p
i
2 · p

a
2.
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Proof. We shall only prove (1). We set c1(F ) = ∆0,a
2 +(d−1)pa

2 +(r1−
1 + x)p0

2, x ∈ Z. Since F |{t}×Ca
2
, t ∈ C0

2 is a stable vector bundle, ∆(F ) =

c2(F ) − (c1(F )2)(r − 1)/2r = 0. Hence we get that ch2(F ) = −(c2(F ) −
(c1(F )2)/2) = (c1(F )2)/2r. We note that c2(F ) = (d(r1 +x)−1)(r−1)/r is

an integer. Hence d(r1 +x)−1 = rd1+dx is a multiple of r. Since (r, d) = 1,

x is a multiple of r. We also see that (c1(F )2)/2r = d1p
0
2 · p

a
2 for the case

x = 0.

Let F and Fi be vector bundles in Lemma 3.2 and assume that k = 0.

We also denote the pull-backs of F and Fi to C0
2 × Ci

2 × Ca
2 by F and Fi

respectively. Let qC0
2×Ci

2
: C0

2 × Ci
2 × Ca

2 → C0
2 × Ci

2 be the projection. We

set L := Homq
C0

2
×Ca

2

(F,Fi). Then c1(L) = −∆0,i
2 .

Proof. By using the Grothendieck-Riemann-Roch theorem and the

above lemma, we see that

c1(L) =
[
qC0

2×Ci
2∗

(ch(F∨) ch(Fi))
]
2

=
[
qC0

2×Ci
2∗

(r − c1(F ) +
1

2r
(c1(F )2))(r2 + c1(Fi) +

1

2r2
(c1(Fi)

2))
]
2

=
[
qC0

2×Ci
2∗

(rr2 +(rc1(Fi) − r2c1(F )) +
1

2rr2
((rc1(Fi)− r2c1(F ))2))

]
2

=
1

2rr2

[
qC0

2×Ci
2∗

((rc1(Fi) − r2c1(F ))2)
]
2

= −∆0,i
2 .

Let Y0 be the complement of the closed subset W :=
⋃

i<j<k(∆̃
i,j
1 ∩

∆̃j,k
1 )∪

⋃
i<j(∆̃

i,j
1 ∩Ei,j) of Y , where ∆i,j

1 = ∆̃i,j
1 ∪Ei,j . Since codimW = 2,

H2(X0 × Y0,Z) ∼= H2(X0 × Y,Z).

We shall construct a family of stable sheaves on X parametrized by

X0×Y0. For simplicity, we denote the pull-backs of F and Fi toX0×Y0×X
a

by F and Fi respectively. Then there is a homomorphism:

Λ : F ⊗O(∆0,a
1 − pa

1) −→
n⊕

i=1

(
Fi|∆i,a

1
⊗ Li

)
,(3.11)

where Li is a line bundle on X0 × Y0 × Xa such that c1(L
i) = ∆0,i

1 −
pi
1 + ∆0,i

2 . Let E be the kernel of this homomorphism and Q the cokernel.

Then Q ∼=
⊕

i<j

(
(Fi/Gj)|∆i,a

1 ∩∆̃i,j
1

⊗ Li ⊕ (Fi ⊗ Li|
∆i,a

1
⊗ OEi,j )

)
, where
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Gi := ker(F → Fi). We first assume that r1 ≤ r2. Then Gj |∆i,a
1

→ Fi|∆i,a
1

is injective and (Fi/Gj)|∆i,a
1

is flat over X0 × Y0. Hence we see that

Tor
OX0×Y0
2

(
(Fi/Gj)|∆i,a

1 ∩∆̃i,j
1

, k(x)
)

= 0, x ∈ X0 × Y0.(3.12)

Since Fi ⊗O(∆0,i
2 )|

∆i,a
1

is also flat over X0 × Y0, we get that

Tor
OX0×Y0
2

(
Fi ⊗O(∆0,i

2 )|
∆i,a

1
⊗OEi,j , k(x)

)
= 0, x ∈ X0 × Y0.(3.13)

Hence we see that Tor
O

X0×Y0
1 (im(Λ), k(x)) = 0, which implies that E is

flat over X0 × Y0 and E ⊗ k(x) is torsion free. Then E defines a family

of stable sheaves on X parametrized by X0 × Y0. It defines a morphism

X0 × Y0 → M(r, c1,∆), which is Sn-invariant. Hence we get a morphism

ν : X0 × (Y0/Sn) →M(r, c1,∆).

Let κ2 : H(r, c1,∆) → H2(X0 × Y0,Z)/a∗H2(Alb(X0 × Hilbn
X),Z) be

the homomorphism sending α ∈ H(r, c1,∆) to [pX0×Y0∗(ch(E)α)]2 mod

a∗H2(Alb(X0×Hilbn
X),Z). Since κ2 does not depend on the choice of quasi-

universal families, we shall compute the image of κ2.

ch(E) = ch(F ⊗O(∆0,a
1 − pa

1)) −
n∑

i=1

ch
(
Fi ⊗ Li|

∆i,a
1

)

+
∑

i<j

ch
(
Fi ⊗ Li|

∆i,a
1

⊗OEi,j

)
+

∑

i<j

ch
(
Fi/Gj ⊗ Li|

∆i,a
1

⊗O
∆̃i,j

1

)

= (r + c1(F ) + d1p
0
2 · p

a
2)(1 + ∆0,a

1 − pa
1 − p0

1 · p
a
1)

−
n∑

i=1

∆i,a
1 (r2 + c1(Fi) + d1p

i
2 · p

a
2)(chL

i)

+
∑

i<j

ch
(
Fi ⊗ Li|

∆i,a
1

⊗OEi,j

)
+

∑

i<j

ch
(
Fi/Gj ⊗ Li|

∆i,a
1

⊗O
∆̃i,j

1

)
.

Since [pX0×Y0∗(ch(F ⊗ O(∆0,a
1 − pa

1))α
a)]2 ≡ 0,

∑n
i=1 ∆0,i

1 − pi
1 ≡ 0mod

a∗H2(Alb(X0 × Hilbn
X),Z), we get that

κ2(α) = −
n∑

i=1

[pX0×Y0∗(∆
i,a
1 (r2 + c1(Fi) + d1p

i
2 · p

a
2)(1 + ∆0,i

2 )αa)]2

+
∑

i<j

[
pX0×Y0∗

(
ch

(
Fi ⊗O(∆0,i

2 )|
∆i,a

1
⊗OEi,j

)
αa

)]
2
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+
∑

i<j

[
pX0×Y0∗

(
ch

(
Fi/Gj ⊗O(∆0,i

2 )|
∆i,a

1
⊗O

∆̃i,j
1

)
αa

)]
2
.

Let α = x1 + x2p1 + x3p2 + x4p1 · p2 + D be an element of H(r, c1,∆),

D ∈ H1(C1,Z)⊗H1(C2,Z). Then we see that 0 = [p∗((chE0)α)]0 = [p∗((r+

dp2−r2np1−d2np1 ·p2)α)]0 = −d2nx1−r2nx3 +dx2 +rx4. Thus α satisfies

dx2 + rx4 = d2nx1 + r2nx3.(3.14)

By a simple calculation, we get that




[pX0×Y0∗(ch(Fi ⊗O(∆0,i
2 )|

∆i,a
1

))]2 = d2∆
0,i
2 + d1p

i
2

[pX0×Y0∗(ch(Fi ⊗O(∆0,i
2 )|

∆i,a
1

)pa
2)]2 = r2∆

0,i
2 + r1p

i
2

[pX0×Y0∗(ch(Fi ⊗O(∆0,i
2 )|

∆i,a
1

)pa
1)]2 = d2p

i
1

[pX0×Y0∗(ch(Fi ⊗O(∆0,i
2 )|

∆i,a
1

)Da)]2 = Di

[pX0×Y0∗(ch(Fi ⊗O(∆0,i
2 )|

∆i,a
1

)(pa
1 · p

a
2))]2 = r2p

i
1,

(3.15)





[pX0×Y0∗(ch(Fi/Gj ⊗O(∆0,i
2 )|

∆i,a
1

⊗O
∆̃i,j

1

))]2 = (2d2 − d)∆̃i,j
1

[pX0×Y0∗(ch(Fi/Gj ⊗O(∆0,i
2 )|

∆i,a
1

⊗O
∆̃i,j

1

)pa
2)]2 = (2r2 − r)∆̃i,j

1

[pX0×Y0∗(ch(Fi/Gj ⊗O(∆0,i
2 )|

∆i,a
1

⊗O
∆̃i,j

1

)pa
1)]2 = 0

[pX0×Y0∗(ch(Fi/Gj ⊗O(∆0,i
2 )|

∆i,a
1

⊗O
∆̃i,j

1

)Da)]2 = 0

[pX0×Y0∗(ch(Fi/Gj ⊗O(∆0,i
2 )|

∆i,a
1

⊗O
∆̃i,j

1

)(pa
1 · pa

2))]2 = 0,

(3.16)

and 



[pX0×Y0∗(ch(Fi ⊗O(∆0,i
2 )|

∆i,a
1

⊗OEi,j))]2 = d2E
i,j

[pX0×Y0∗(ch(Fi ⊗O(∆0,i
2 )|

∆i,a
1

⊗OEi,j)pa
2)]2 = r2E

i,j

[pX0×Y0∗(ch(Fi ⊗O(∆0,i
2 )|

∆i,a
1

⊗OEi,j)pa
1)]2 = 0

[pX0×Y0∗(ch(Fi ⊗O(∆0,i
2 )|

∆i,a
1

⊗OEi,j)Da)]2 = 0

[pX0×Y0∗(ch(Fi ⊗O(∆0,i
2 )|

∆i,a
1

⊗OEi,j)(pa
1 · pa

2))]2 = 0,

(3.17)

where D ∈ H1(C1,Z) ⊗H1(C2,Z). Hence we get that

κ2(α) = −
n∑

i=1

(d2x1 + r2x3)∆
0,i
2 −

n∑

i=1

(d2x2 + r2x4)p
i
1

−
n∑

i=1

(d1x1 + r1x3)p
i
2 −

n∑

i=1

Di

+
∑

i<j

((2d2 − d)x1 + (2r2 − r)x3)∆̃
i,j
1 +

∑

i<j

(d2x1 + r2x3)E.
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We note that





n∑

i=1

∆0,i
2 ≡

n∑

i=1

pi
2 mod a∗H2(Alb(X0 × Hilbn

X),Z)

∑

i<j

∆i,j
1 ≡ n

n∑

i=1

pi
1 mod a∗H2(Alb(X0 × Hilbn

X),Z)

∆̃i,j
1 = ∆i,j

1 − Ei,j .

(3.18)

Therefore we get that

κ2(α) = y1

( n∑

i=1

pi
2

)
+ y2

( n∑

i=1

pi
1

)
+ y3

(∑

i<j

Ei,j
)
−

n∑

i=1

Di,(3.19)

where





y1 = −(dx1 + rx3)

y2 = −{(d2x2 + r2x4) − n((2d2 − d)x1 + (2r2 − r)x3)}
y3 = (d1x1 + r1x3)

y4 = dx2 + rx4 − n(d2x1 + r2x3).

(3.20)

Since dr1 − rd1 = d2r − dr2 = 1, the homomorphism ψ : Z⊕4 → Z⊕4

sending (x1, x2, x3, x4) to (y1, y2, y3, y4) is an isomorphism. The condition

(3.14) implies that y4 = 0. Therefore,

κ2 : H(r, c1,∆) −→ H2(X0 ×Y0,Z)Sn/a∗H2(Alb(X0 ×Hilbn
X),Z)(3.21)

is an isomorphism. Since H2(X0 × Y0,Z)Sn ∼= H2(X0 × Hilbn
X ,Z), we get

that

H(r, c1,∆) −→ H2(X0 × Hilbn
X ,Z)/a∗H2(Alb(X0 × Hilbn

X),Z)(3.22)

is an isomorphism.

We next treat the case r1 > r2. Since Gj → Fi is surjective, we get that

κ2(α) = −
n∑

i=1

(d2x1 + r2x3)∆
0,i
2 −

n∑

i=1

(d2x2 + r2x4)p
i
1

−
n∑

i=1

(d1x1 + r1x3)p
i
2 −

n∑

i=1

Di +
∑

i<j

(d2x1 + r2x3)E.
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In the same way as in the case r1 ≤ r2, we see that

H(r, c1,∆) −→ H2(X0 × Hilbn
X ,Z)/a∗H2(Alb(X0 × Hilbn

X),Z)(3.23)

is an isomorphism.

Therefore κ2 is injective andH2(MH(r, c1,∆),Z) is generated by im(κ2)

and im(a). By using similar computations, we see that κ1 is an isomorphism.

Hence Theorem 3.1 (1), (2) hold for this case.

3.3.

We next treat general cases. Replacing c1 by c1+rc1(H), we may assume

that c1 belongs to the ample cone.

Proposition 3.3. Let (X,L) be a pair consisting of Abelian surface

X and an ample divisor L of type (d1, d2), where d1 and d2 are positive

integers of d1|d2 and (r, d1) = 1. Then Theorem 3.1 (1), (2) hold for

MH(r, c1(L),∆), where H is a general polarization.

Proof. Let (X,L) be a pair consisting of Abelian surface X and an

ample divisor L of type (d1, d2), where d1 and d2 are positive integers

of d1|d2 and (r, d1) = 1. We shall choose an ample line bundle H on X

which is not lie on walls. Let T be a connected smooth curve and (X ,L)

a pair of a smooth family of Abelian surface pT : X → T and a rela-

tively ample line bundle L of type (d1, d2). For points t0, t1 ∈ T , we assume

that (Xt0 ,Lt0) = (X,L) and Xt1 is an Abelian surface of NS(Xt1)
∼= Z.

Let g : PicX/T → T be the relative Picard scheme. We denote the con-

nected component of PicX/T containing the section of g which corresponds

to the family L by Picξ
X/T . Since Pic0

X/T
∼= Picξ

X/T , Picξ
X/T → T is a

smooth morphism. Let h : MX/T (r, ξ,∆) → T be the moduli scheme

parametrizing S-equivalence classes of Lt-semi-stable sheaves E on Xt with

(rk(E), c1(E),∆(E)) = (r, c1(Lt),∆) [Ma1]. Let D be the closed subset of

MX/T (r, ξ,∆) consisting of properly Lt-semi-stable sheaves on Xt. Since h

is a proper morphism, h(D) is a closed subset of T . Since h(D) does not con-

tain t1 and T is an irreducible curve, h(D) is a finite point set. Replacing T

by the open subscheme T \(h(D)\{t0}), we may assume that Lt-semi-stable

sheaves are Lt-stable for t 6= t0. Let s : SplX/T (r, ξ,∆) → T be the moduli

of simple sheaves E on Xt, t ∈ T with (rk(E), c1(E),∆(E)) = (r, c1(Lt),∆)

[A-K, Thm. 7.4]. Let U1 be the closed subset of s−1(T \ {t0}) consisting of

simple sheaves on Xt, t ∈ T \{t0} which are not stable with respect to Lt and
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U1 the closure of U1 in SplX/T (r, ξ,∆). Let U2 be the closed subset of s−1(t0)

consisting of simple sheaves which are not semi-stable with respect to H.

Then we can show that U1 ∩ s
−1(t0) is a subset of U2 (see the second para-

graph of the proof of Lemma 3.4). We set M := SplX/T (r, ξ,∆) \ (U1 ∪U2).

Then M is an open subspace of SplX/T (r, ξ,∆) which is of finite type and

contains all H-stable sheaves on Xt0 . By using valuative criterion of sepa-

ratedness and properness, we get that s : M → T is a proper morphism. In

fact, since M×T (T \{t0}) → T \{t0} is proper, it is sufficient to check these

properties near the fibre Xt0 . The separatedness follows from base change

theorem and stability with respect to H (cf. [A-K, Lem. 7.8]), and the

properness follows from the following lemma (Lemma 3.4) and the projec-

tivity of Mt0 . Since PicξX/T → T is a smooth morphism, [Mu2, Thm. 1.17]

implies that s : M → T is a smooth morphism. Let aT : M → AlbM/T be

the family of Albanese map. Let FT be a quasi-universal family of similitude

ρ on M×T X and we shall consider the homomorphism over T .

{
κ1,t : Hodd(Xt,Z) → H1(Mt,Z)

κ2,t : H(r, c1(Lt),∆) → H2(Mt,Z)
(3.24)

such that κi,t(αi,t) = 1
ρ [pMt∗((chFt)αt)]i, where α1,t ∈ Hodd(Xt,Z), α2,t ∈

H(r, c1(Lt),∆). We assume that Xt0 is a product of elliptic curves. Since

pT and s are smooth, Theorem 3.1 (1), (2) for the pair (Xt0 ,Lt0) imply

that Theorem 3.1 (1), (2) also hold for all pairs (Xt,Lt), t ∈ T . By the

connectedness of the moduli of (d1, d2)-polarized Abelian surfaces (cf. [L-B,

8]), (3.7) holds for all pairs (X,L) of (d1, d2)-polarized Abelian surfaces.

Lemma 3.4. Let R be a discrete valuation ring, K the quotient field of

R, and k the residue field of R. Let Spec(R) → T be a dominant morphism

such that Spec(k) → T defines the point t0. For a stable sheaf EK on XK ,

there is a R-flat coherent sheaf E on XR such that E ⊗R K = EK and

E ⊗R k is a H-stable sheaf.

If H = Lt0 , then Langton [L] proved our claim. If H 6= Lt0 , then we

need some modifications, which will be done in the second paragraph of our

proof.

Proof. Let E0 be an R-flat coherent sheaf on XR such that E0⊗RK =

EK and E0
k := E0 ⊗R k is torsion free. If E0

k is H-stable, then we put

E = E0. We assume that E0
k is not H-stable. Let F 0

k (⊂ E0
k) be the first
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filter of the Harder-Narasimhan filtration of E0
k with respect to H. We set

E1 := ker(E0 → E0
k/F

0
k ). Then E1 is an R-flat coherent sheaf on XR with

E1
K = EK . If E1

k is not H-stable, then we shall consider the first filter F 1
k of

the Harder-Narasimhan filtration of E1
k and set E2 := ker(E1 → E1

k/F
1
k ).

Continuing this procedure successively, we obtain a decreasing sequence of

R-flat coherent sheaves on XR: E0 ⊃ E1 ⊃ E2 ⊃ · · ·. We assume that this

sequence is infinite. Then in the same way as in [L, Lem. 2], we see that

there is an integer i such that Ei ⊗R R̂ has a subsheaf F of rank r′ with

F ⊗R k = F i
k, where R̂ is the completion of R.

We set K̂ := K⊗RR̂ and D := det(Ei⊗RR̂)⊗r′⊗det(F )⊗(−r). Let P (x)

be the Hilbert polynomial of D with respect to L
R̂
. Let V be a locally free

sheaf on X such that there is a surjective homomorphism V ⊗OT
R̂ → D,

and we shall consider the quot scheme Q := Quot
P (x)
V/X/T . Then D defines

a morphism τ : Spec(R̂) → Q such that D = (τ ×T 1X )∗D, where D
is the universal quotient. Let Q0 be the connected component of Q which

contains the image of Spec(R̂). Since Spec(R̂) → T is dominant, q : Q0 → T

is dominant, and hence surjective. Since Ei

K̂
∼= EK ⊗K K̂ is a stable sheaf

on X
K̂

, (Dq1 ,Lq1) = (D
K̂
,L

K̂
) > 0, where q1 is a point of q−1(t1). Since

NS(Xt1)
∼= Z, we get that c1(Dq1) = lc1(Lq1), l > 0. Hence we obtain

that (D2
τ(t0)) > 0 and (Dτ(t0),Lτ(t0)) > 0. By the Riemann-Roch theorem

and the Serre duality, we see that Dτ(t0) is an effective divisor. Therefore

(Dτ(t0),H) > 0, which is a contradiction. Hence there is an integer n such

that En ⊗R k is H-stable.

Proof of Theorem 3.1 (3). Let κ′2 :H(r, c1,∆)⊗C → H2(M(r, c1,∆),C)

be the homomorphism induced by κ2. We note that H2,0(X) and H0,2(X)

are subsets of H(r, c1,∆) ⊗ C. Since chi(F) is of type (i, i), we see that





κ′2(H
2,0(X)) ⊂ H2,0(MH(r, c1,∆))

κ′2(
⊕2

p=0H
p,p(X)) ⊂ H1,1(MH(r, c1,∆))

κ′2(H
0,2(X)) ⊂ H0,2(MH(r, c1,∆)).

(3.25)

Since H(r, c1,∆) ⊗ C = H2,0(X) ⊕ (
⊕2

p=0H
p,p(X)) ∩ H(r, c1,∆) ⊗ C ⊕

H0,2(X) and a∗ preserves the type, we obtain that

H1,1(MH(r, c1,∆)) = κ′2((
⊕2

p=0H
p,p(X)) ∩H(r, c1,∆) ⊗ C)

⊕a∗(H1,1(Alb(MH(r, c1,∆)))).
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Hence we get Theorem 3.1 (3).

Combining [Y4, Thm. 2.1] with the proof of Proposition 3.3, we get the

following theorem.

Theorem 3.5. Let X be an Abelian surface defined over C and c1 ∈
NS(X) a primitive element. Then

P (MH(2, c1,∆), z) = P (MH(1, 0, 2∆), z)

for a general polarization H, where P (· , z) is the Poincaré polynomial.

3.4.

We shall next consider the Albanese variety of MH(r, c1,∆), if dim

MH(r, c1,∆) ≥ 4. Let P be the Poincaré line bundle on X̂ ×X, where X̂ is

the dual of X. For an element E0 ∈MH(r, c1,∆), let αE0 : MH(r, c1,∆) →
X be the morphism sending E ∈ MH(r, c1,∆) to det p

X̂!
((E − E0) ⊗ (P −

O
X̂×X

)) ∈ Pic0(X̂) = X, and detE0 : MH(r, c1,∆) → X̂ the morphism

sending E to detE ⊗ detE∨
0 ∈ X̂ (cf. [Y3, Sect. 5]). We shall show that

aE0 := detE0 ×αE0 is the Albanese map of MH(r, c1,∆). Let B be an effec-

tive divisor on X. Then we see that

det p
X̂!

((E − E0) ⊗OB ⊗ (P −O
X̂×X

))

= det p
X̂!

((detE|B − detE0|B) ⊗ (P −O
X̂×X

))

= ζ(detE0(E)),

where ζ : X̂ → X is the morphism sending L ∈ X̂ to
⊗

i PX̂×{xi}
∈

Pic0(X̂) = X, L · B =
∑

i xi. Therefore if aE0 is the Albanese map for

MH(r,c1,∆), then aE0(B) is the Albanese map forMH(r,c1+rc1(OX(B)),∆).

Hence we may assume that c1 belongs to the ample cone. In the notation

of Proposition 3.3, we assume that there is a section σ : T → M of s. Then

we can also construct a morphism aσ : M → Pic0
X/T ×TX . In fact, it is

sufficient to construct the morphism on small neighbourhoods U (in the

sense of classical topology) of each point. By using a universal family on

U ×T X , we get the morphism. Since s : M → T and Pic0
X/T ×TX → T are

smooth over T , it is sufficient to prove that

a∗E0
: H1(X̂ ×X,Z) −→ H1(MH(r, c1,∆),Z)(3.26)
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is an isomorphism, if X is a product of elliptic curves. In order to prove

this assertion, we shall show that

a∗E0
: Pic0(X̂ ×X) −→ Pic0(M(r, c1,∆))(3.27)

is an isomorphism. Let E be a universal family onM(r, c1,∆). For simplicity,

we set M := M(r, c1,∆). Let X̂ ×X → Pic0(X × X̂) be the isomorphism

sending (x̂, x) ∈ X̂×X to P|{x̂}×X ⊗P|
X̂×{x}

. We set R := det p
X̂×M !

((E −

E0 ⊗ OM ) ⊗ (P − O
X̂×X

)). By the construction of αE0 , we get that R ∼=
(1

X̂
× αE0)

∗P ⊗ L, where L is the pull-back of a line bundle on M . Since

R|{0}×M
∼= OM , we get that L ∼= O

X̂×M
. Hence we see that

α∗
E0

(P|{x̂}×X) = det pM !((E − E0 ⊗OM ) ⊗ (P|{x̂}×X −OX))(3.28)

= det pM !(E ⊗ (P|{x̂}×X −OX)).

In the same way, we see that

det∗E0
(P|

X̂×{x}
) = (det E ⊗ detE∨

0 ⊗ det E∨|M×{0})|M×{x}(3.29)

= det pM !(E ⊗ (kx − k0)),

where 0 ∈ X is the zero of the group low. In order to prove (3.27), we shall

consider the pull-backs of α∗
E0

(P|{x̂}×X) and det∗E0
(P|

X̂×{x}
) to X0 × Y0.

We denote the zero of C1 and C2 by 01 and 02 respectively. For a point

qk of Ck, k = 1, 2, we set lk := qk − 0k. We also denote the pull-back

of lk to X = C1 × C2 by lk. In the same way as in 3.2, we denote $!
i(G),

i = 0, 1, . . . , n, a by Gi, G ∈ K(X). We also denote OX(D)i by OX0×Y0
(Di).

By simple calculations, we see that





det pX0×Y0!(E ⊗ (OX(l1) −OX)a) = OX0×Y0

(
dl01 − d2

n∑

i=1

li1

)

det pX0×Y0!(E ⊗ (OX(l2) −OX)a) = OX0×Y0

( n∑

i=1

li2

)

det pX0×Y0!(E ⊗ (k(q1,02) − k(01,02))
a) = OX0×Y0

(
rl01 − r2

n∑

i=1

li1

)

det pX0×Y0!(E ⊗ (k(01,q2) − k(01,02))
a) = OX0×Y0

(l02).

(3.30)

Since d2r−dr2 = 1 and Pic0(X0×Hilbn
X) ∼= Pic0(X0×Y0)

Sn, (3.28), (3.29)

and (3.30) implies that (3.27) holds.
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We set

K(r, c1,∆) := {α ∈ K(X) | χ(α⊗ E0) = 0, E0 ∈MH(r, c1,∆)}.(3.31)

Let {Ui} be an open covering of MH(r, c1,∆) such that there are universal

family Fi on each Ui×X and Fi|(Ui∩Uj)×X
∼= Fj |(Ui∩Uj)×X . Since the action

of O×
Ui

to det pUi!(Fi⊗α) is trivial, we get a line bundle κ̃(α) onMH(r, c1,∆).

Thus we obtain a homomorphism

κ̃ : K(r, c1,∆) −→ Pic(MH(r, c1,∆)).(3.32)

We note that there is a commutative diagram:

K(r, c1,∆)
κ̃

−−−→ Pic(MH(r, c1,∆))

ch

y
yc1

H(r, c1,∆)
κ2

−−−→ H2(MH(r, c1,∆),Z)

(3.33)

Let K2 be the subgroup of K(r, c1,∆) generated by kP − k0, P ∈ X and

N the kernel of the Albanese map K2 → X. Since ker(ch) is generated by

OX(D) − OX , OX(D) ∈ Pic0(X) and kP − k0, P ∈ X, (3.28) and (3.29)

implies that κ̃ induces an isomorphism ker(ch)/N → Pic0(MH(r, c1,∆)).

By using Theorem 3.1 (3), we get the following theorem, which is similar

to [Y2, Thm. 0.1].

Theorem 3.6. Under the same assumption as in Theorem 3.1, the

following holds.

(1) aE0 : MH(r, c1,∆) → X̂ ×X is an Albanese map.

(2) κ̃ : K(r, c1,∆)/N → Pic(MH(r, c1,∆)) is injective.

(3) Pic(MH(r, c1,∆))/a∗E0
(Pic(X̂ ×X)) is generated by κ̃(K(r, c1,∆)).

(4) a∗E0
(Pic(X̂ ×X)) ∩ κ̃(K(r, c1,∆)) ∼= X × X̂.

§4. Appendix

In this appendix, we shall show the following. We shall also show that

MH(r, c1,∆) ∼= X̂ ×X, if dimMH(r, c1,∆) = 4.

Proposition 4.1. Let L be an ample line bundle on an Abelian sur-

face X. We assume that χ(L) = (c1(L)2)/2 and r are relatively prime.

Then MH(r, c1(L),∆) ∼= MH(r, L,∆) × X̂, where MH(r, L,∆) is the mod-

uli space of sheaves of determinant L. In particular, P (MH(2, L,∆), z) =

P (Hilb2∆
X , z) for a general polarization H.
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Proof. For a stable sheaf E ∈MH(r, c1(L),∆), λ(E) denotes the point

of X̂ which correspond to the line bundle det(E)⊗L−1. Let φL : X → X̂ be

the morphism sending x ∈ X to T ∗
xL⊗L−1, and ϕ : X̂ → X the morphism

such that φL ◦ ϕ = n2

X̂
, where Tx : X → X is the translation defined by x

and n2 = χ(L)2 = deg φL. Since (r, n2) = 1, there are integers k and k′ such

that rk + n2k′ = 1. We denote the Poincaré line bundle on X × X̂ by P.

Let A : MH(r, c1(L),∆) →MH(r, L,∆) × X̂ be the morphism sending F ∈

MH(r, c1(L),∆) to (T ∗
−k′ϕ◦λ(F )(F ⊗P−kλ(F )), λ(F )) and B : MH(r, L,∆)×

X̂ → MH(r, c1(L),∆) the morphism sending (E, x) ∈ MH(r, L,∆) × X̂ to

T ∗
k′ϕ(X)E ⊗Pkx. For an element (E, x) of MH(r, L,∆) × X̂, det(T ∗

k′ϕ(x)E ⊗

Pkx) ∼= T ∗
k′ϕ(x)L⊗Prkx

∼= L⊗Pk′φL◦ϕ(x)⊗Prkx
∼= L⊗P(n2k′+rk)x = L⊗Px.

Hence λ ◦ B((E, x)) = x. Then it is easy to see that A ◦ B and B ◦ A are

identity morphisms. Hence A : MH(r, c1(L),∆) → MH(r, L,∆) × X̂ is an

isomorphism.

Let D(X) and D(X̂) be the derived categories of X and X̂ respec-

tively. Let S : D(X) → D(X̂) be the Fourier-Mukai transform [Mu4]. Then

the morphism α := αE0 defined in 3.4 satisfies that α(E) = detS(E) ⊗

(detS(E0))
−1. Thus αE0 is also defined by Fourier-Mukai transform. By

using [Mu4], we shall treat the case 2r∆ = 2 (at least, Mukai treated the

case where X is a principally polarized Abelian surface).

Proposition 4.2. Let L be an ample divisor. If 2r∆ = 2, then for

a general polarization H, the Albanese map α : MH(r, L,∆) → X is an

isomorphism.

Proof. Since rc2 − (r − 1)(L2)/2 = 1 and χ(L) = (L2)/2, r and χ(L)

are relatively prime. We shall choose an element E of MH(r, L,∆) and let

ξ : X × X̂ → M(r, c1(L),∆) be the morphism sending (x, y) ∈ X × X̂ to

T ∗
xE⊗Py. Then λ◦ξ(x, y) = φL(x)+ry. Let f : X → X×X̂ be the morphism

such that f(x) = (rx,−φL(x)). Since # kerφL = χ(L)2 and r are relatively

prime, f is injective. Let g : X̂ → X× X̂ be the morphism such that g(y) =

(k′ϕ(y), ky). Then f × g : X × X̂ → X × X̂ is an isomorphism. In fact, if

(rx+k′ϕ(y),−φL(x)+ky) = (0, 0), then φL(rx+k′ϕ(y)) = rφL(x)+n2k′y =

0. Hence y = (n2k′ + rk)y = 0. Since f is injective, x = 0, which implies

that f × g is injective. Therefore f × g is an isomorphism. Then we get a

morphism ξ◦f : X →M(r, L,∆). Replacing E by E⊗L⊗m, we may assume

that there is an exact sequence 0 → O
⊕(r−1)
X → E → IZ ⊗L→ 0, where IZ
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is the ideal sheaf of a codimension 2 subscheme Z of X. By our assumption

on Chern classes, 1/r = ∆(E) = degZ − (r − 1)/rχ(L). For simplicity, we

denote detS(·) by δ(·). Then we see that δ(T ∗
xE⊗Py) = δ(IT−x(Z) ⊗T

∗
xL⊗

Py) = δ(IZ−(deg Z)x ⊗ L ⊗ PφL(x)+y) = δ(L ⊗ PφL(x)+y) ⊗ P−Z+(deg Z)x =

detT ∗
φL(x)+y(S(L))⊗P−Z+(deg Z)x = δ(L)⊗Pφδ(L)(φL(x)+y)+(deg Z)x−Z . Hence

α ◦ ξ ◦ f(x) = α ◦ ξ ◦ f(0)+ (r− 1)φδ(L) ◦φL(x)+ r(degZ)x. By the proof of

[Mu4, Prop. 1.23], φδ(L)(φL(x)) = −χ(L)x. Since r degZ = 1+(r−1)χ(L),

we get that α◦ξ◦f(x) = α◦ξ◦f(0)+x. Thus α◦ξ◦f(x) is an isomorphism.

Therefore we get that α : MH(r, L,∆) → X is an isomorphism.

Corollary 4.3. MH(r, c1,∆) ∼= X̂ ×X, if dimMH(r, c1,∆) = 4.
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