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Linear instability of viscous parallel shear flows:
revisiting the perturbation no-slip condition
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Linear stability analysis currently fails to predict turbulence transition in canonical viscous
flows. We show that two alternative models of the boundary condition for incipient
perturbations at solid walls produce linear instabilities that could be sufficient to explain
turbulence transition. In many cases, the near-wall behaviour of the discovered instabilities
is empirically indistinguishable from the classical no-slip condition. The ability of these
alternative boundary conditions to predict linear instabilities that are consistent with
turbulence transition suggests that the no-slip condition may be an overly simplified model
of fluid–solid interface physics, particularly as a description of the flow perturbations that
lead to turbulence transition in wall-bounded flows.
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1. Introduction

A predictive model of the transition from laminar flow to turbulence in viscous parallel
shear flows has remained elusive since seminal empirical observations of turbulence
transition in the late 19th century (Reynolds 1883). One of the earliest and most
thoroughly explored approaches to this problem examines the linear stability of the
Navier–Stokes equations when subjected to small velocity perturbations (Drazin & Reid
2004). Evaluation of the temporal growth of the perturbations typically proceeds by
solution of the Orr–Sommerfeld eigenvalue equation (see Appendix A), which depends on
the Reynolds number of the flow, Re = U0L0/ν0, where U0 and L0 are characteristic flow
speed and length scales, respectively, and ν0 is the kinematic viscosity of the fluid. Velocity
perturbations are constrained to satisfy a no-slip condition at the fluid–solid interfaces. The
eigenvalue problem conventionally incorporates this requirement into the homogeneous
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boundary condition:

ũ(xwall, t) = 0, (1.1)

where ũ is the perturbation velocity vector amplitude, and xwall is the location of the
fluid–solid interfaces.

The aforementioned analysis predicts that plane Couette flow is stable to all
two-dimensional linear perturbations at all Reynolds numbers (Davey 1973). This
prediction is contradicted by empirical observations of transition to turbulence at
channel Reynolds numbers as low as Re ≈ 360 (Drazin & Reid 2004). The analysis
method similarly finds no linear instability to account for the observed transition of
Hagen–Poiseuille pipe flow to turbulence at a Reynolds number Re ≈ 2000. For plane
Poiseuille flow, linear stability analysis does identify a single unstable eigenmode, which
first appears at a Reynolds number Re ≈ 5772 (Orszag 1971). In practice, however,
transition to turbulence is observed to occur at significantly lower Reynolds numbers
Re ≈ 1000. Moreover, the growth rate associated with the unstable eigenvalue ω̂ at
Re ≈ 5772 is relatively weak, e.g. its imaginary part is I[ω̂] ≈ 0.0037 for wavenumber
α ≈ 1.02. The associated unstable eigenmode may therefore be insufficient to trigger
turbulence.

This apparent inability of linear stability theory to accurately predict turbulence
transition in a variety of viscous parallel shear flows has motivated the exploration of
alternative frameworks to explain and possibly predict turbulence transition. These include
consideration of finite-sized velocity perturbations (Orszag & Kells 1980), nonlinear
transition processes (Schmid & Henningson 2001), and transient growth mechanisms
such as those associated with non-normality of the Orr–Sommerfeld eigenvalue equation
(Trefethen et al. 1993). While it is beyond the scope of this paper to comprehensively
review the rich literature on the theory of turbulence transition, the reader is referred to an
excellent recent review article (Avila, Barkley & Hof 2023).

The aforementioned body of work suggests that linear instability may not be a necessary
condition for turbulence transition. Nonetheless, in this paper we show that linear stability
analysis is sufficient to quantitatively predict the occurrence of flow instabilities in each
of three canonical viscous parallel shear flows: plane Couette flow, plane Poiseuille
flow and Hagen–Poiseuille pipe flow. We proceed by considering two alternative models
for incipient flow perturbations in these canonical flows. In the first case, we use a
more general ansatz for the perturbation boundary condition in the Orr–Sommerfeld
equation, of which the no-slip condition is a limiting case. In the second case, we
model the perturbation behaviour at the wall using a variation of Stokes’ second problem
(Landau & Lifschitz 1987). While the latter model represents a more significant departure
from the conventional perturbation no-slip condition, it leads to physically realistic,
quantitative predictions of a Reynolds-number-dependent transition to linear instability
that is consistent with empirical observations, i.e. Recrit ∼ O(102–104).

Both of the alternative models for incipient perturbations exhibit near-wall behaviour
that is, in many cases, empirically indistinguishable from the classical no-slip condition.
The superior predictive capability of these new models – without the need to appeal
to nonlinear or transient growth processes – suggests a re-examination of the no-slip
condition as a sufficiently accurate model of the fluid–solid interface physics. More
generally, these results hint at the possibility that more detailed study of flow physics at
fluid–solid interfaces could lead to a better understanding of turbulence transition.

Section 2 explores the first alternative model for incipient perturbations. This model
includes the conventional no-slip condition as a limiting case, enabling more direct
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Linear instability of viscous parallel shear flows

comparison with prior results in the literature. While this feature is pedagogically useful,
this perturbation model exhibits an associated trade-off, namely, that the predicted linear
instability does not exhibit an explicit Reynolds number dependence. Section 3 examines
the second alternative model, which represents a more significant departure from the
form of no-slip condition conventionally applied to velocity perturbations in linear
stability analysis. This model does successfully predict a Reynolds-number-dependent
linear instability that is consistent with empirical observations of turbulence. Section 4
concludes the paper by discussing the implications of these findings for our understanding
of the role of fluid–solid interface physics in prediction of turbulence transition.

2. Perturbation model I

2.1. Generalized boundary condition
Let us replace the streamwise component of the no-slip condition in (1.1) with a more
general, homogeneous boundary condition that depends on the shear rate of the velocity
perturbation at the wall:

ũ(xwall, t) ∓ S ũ′(xwall, t) = 0, (2.1)

where ũ is the streamwise component of the velocity perturbation amplitude, with ũ′ =
∂ ũ/∂y for the plane Couette and Poiseuille flows, and ũ′ = ∂ ũ/∂r for the Hagen–Poiseuille
pipe flow. Here, S is a characteristic slip length constant (normalized by the channel
half-width or pipe radius), and the sign ∓ applies to the wall at y (or r) = 1 and y = −1,
respectively.

Physically, the boundary condition in (2.1) requires that any non-zero perturbation
velocity at the wall is in the same direction as the corresponding shear exerted on the
fluid by the wall. While it is similar in form to the Navier slip boundary condition (Lauga,
Brenner & Stone 2007), there are two key differences between this model and prior studies
of the effect of wall slip on linear stability (e.g. Lauga & Cossu 2005; Chai & Song 2019;
Ceccacci et al. 2022). First, in the present analysis, the boundary condition (2.1) applies
only to velocity perturbations; the base flow is assumed to exhibit the conventional no-slip
condition. Physically, this assumption is consistent with the ansatz that the distribution of
velocity perturbations exhibits a zero mean, and therefore the velocity perturbations do not
change the base flow. By contrast, in the aforementioned studies, the base flow is assumed
to exhibit wall slip even in the absence of velocity perturbations. While the assumption of
non-zero base flow slip is appropriate in the context of those prior studies (e.g. where the
walls were assumed to exhibit hydrophobicity or other surface treatment), the goal of the
present study is to examine wall-bounded flows more generally.

The second key distinction between the present perturbation model and prior studies
is that the perturbation velocity at the wall is applied here in the same direction as the
corresponding shear exerted on the fluid by the wall. In contrast, the previous studies
apply perturbation wall slip in the opposite direction of the wall shear exerted on the
fluid. Physically, the present model of wall slip assumes that the velocity perturbations are
caused by wall shear perturbations on the adjacent fluid. This distinction is significant,
and we confirmed that the stability predictions that follow do indeed depend on relative
directions of the velocity perturbation and the wall shear on the fluid (see Appendix E).

This generalized boundary condition (2.1) reduces to the no-slip condition (1.1) when
the slip parameter is S = 0. The no-slip condition is also satisfied by velocity perturbations
with non-zero values of the slip parameter S if the corresponding wall-normal gradient of
streamwise flow speed is zero at the wall, i.e. ũ′(xwall, t) = 0. While we presently focus on
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Figure 1. Contour maps of the maximum Orr–Sommerfeld eigenvalue imaginary part I[ω̂] versus slip
parameter S and Reynolds number Re for (a) plane Couette flow, (b) plane Poiseuille flow, and
(c) Hagen–Poiseuille pipe flow. Blue contours indicate regions of linear stability, and red contours indicate
regions of linear instability. Black contours indicate neutral stability boundaries. The Reynolds number
Re ≈ 5772 of the single unstable eigenmode in plane Poiseuille flow for S = 0 is indicated on the ordinate
axis in (b). Vertical grey lines correspond to a discontinuous change in predicted hydrodynamic stability,
reflecting the inability of the Chebyshev expansion (N = 400) to resolve unstable eigenmodes for values of
slip parameter S below the grey line. Wavenumbers are (α, β) = (1, 0) for the planar flows, and (α, n) = (1, 1)

for Hagen–Poiseuille pipe flow. See Appendices A and B for details of each calculation.

the case of real-valued slip parameter S, we have observed similar results for complex S.
In the latter case, a phase difference exists between the perturbation wall slip and the
perturbation wall shear.

2.2. Linear stability maps
The Orr–Sommerfeld eigenvalue equation was solved for plane Couette flow, plane
Poiseuille flow and Hagen–Poiseuille pipe flow using Chebyshev collocation (Schmid
& Henningson 2001; Malik & Skote 2019); see Appendix A for governing equations
and data repository for Matlab implementations. The boundary condition in (2.1) was
evaluated for values of the slip parameter S = 0 and ranging from S = 10−7 to S = 1 in ten
equally-spaced increments per decade. The Reynolds number was varied from Re = 50 to
Re = 10 000 in increments of 10.

For combinations of slip parameter S and Reynolds number Re spanning this range,
figure 1 plots contours of the maximum eigenvalue imaginary part, i.e. I[ω̂], for
Orr–Sommerfeld solutions corresponding to plane Couette flow, plane Poiseuille flow
and Hagen–Poiseuille pipe flow, respectively. (Similar contour maps of the second-largest
eigenvalue are provided in Appendix C for reference.)

For values of slip parameter S approaching zero, the linear stability maps are each
consistent with the results of conventional linear stability analyses using (1.1) as the
boundary condition for velocity perturbations. Specifically, both the plane Couette flow
and the Hagen–Poiseuille pipe flow indicate linear stability of the flow (i.e. I[ω̂] < 0)
for all Reynolds numbers investigated. The plane Poiseuille flow is also in agreement
with previous studies for S approaching zero, with a single unstable eigenmode appearing
between Re = 5770 and Re = 5780 (Orszag 1971).

However, a striking discontinuity is observed in each of the linear stability maps as
the slip parameter S is increased above a critical threshold (i.e. vertical grey lines). For
values of the slip parameter greater than this threshold Scrit, we observe a region of linear
instability spanning up to four decades in S. These strongly unstable eigenmodes – with
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Figure 2. Contour maps of the maximum Orr–Sommerfeld eigenvalue imaginary part I[ω̂] versus slip
parameter S and (a) number of Chebyshev modes N for plane Couette flow at Re = 360 and wavenumbers
(α, β) = (1, 0), (b) Reynolds number Re computed using N = 50 Chebyshev modes. Blue contours indicate
regions of linear stability, and red contours indicate regions of linear instability. The neutral stability boundary
is indicated by a black line. Discontinuity in stability is indicated by a grey curve. The location of the
stability discontinuity shifts to lower values of the slip parameter S as N increases, reflecting the ability to
resolve unstable eigenmodes with decreasing slip length scale S for increasing numbers of modes N used
in the Chebyshev expansion. The minimum number of Chebyshev modes Nmin required to resolve unstable
eigenmodes for a given slip parameter S is well approximated by Nmin ≈ 2.3S−1/2 (green dotted line). The
stability discontinuity (grey dotted line) from figure 1(a), computed using N = 400 Chebyshev modes, is
reproduced to illustrate the rightward shift in the threshold value of the slip parameter Scrit corresponding
to the stability discontinuity when fewer Chebyshev modes are used.

growth rates I[ω̂] exceeding O(107) in some cases – appear at all Reynolds numbers
investigated, making them potentially relevant to the process of turbulence transition.

The apparent lack of unstable eigenmodes for values of slip parameter S < Scrit is an
artefact of the limited spatial resolution of the Chebyshev expansion using a finite number
of modes. To illustrate this, figure 2(a) plots contours of the maximum Orr–Sommerfeld
eigenvalue imaginary part I[ω̂] versus slip parameter S and number of Chebyshev modes
N, for the case of plane Couette flow at Re = 360 and wavenumbers (α, β) = (1, 0).
Eigenvalue contours to the right of the grey curve are oriented vertically, indicating
that the corresponding eigenvalues are insensitive to the number of Chebyshev modes
used to solve the Orr–Sommerfeld equation. This suggests that the computed eigenmodes
are not spurious artefacts of the numerical method (cf. Dawkins, Dunbar & Douglass
1998). By contrast, the location of the grey stability discontinuity shifts to lower values
of the slip parameter S as the number of Chebyshev modes used to compute the
eigenmodes increases. This boundary reflects the finite spatial resolution of the Chebyshev
representation of unstable eigenmodes for finite mode numbers N. As the number of
Chebyshev modes is increased, unstable eigenmodes with smaller slip length scale S
are successfully resolved. The minimum number of Chebyshev modes, Nmin, required
to resolve unstable eigenmodes for a given slip parameter S is well approximated by
Nmin ≈ 2.3S−1/2 (i.e. the green dotted line).

Figure 2(b) provides a complementary illustration of this trend, showing the linear
stability map computed using N = 50 Chebyshev modes. For comparison with the stability
map computed using N = 400 Chebyshev modes in figure 1(a), the stability discontinuity
(i.e. the grey dotted line) from that plot is reproduced here. The results highlight the
need to implement Chebyshev collocation with a sufficient number of collocation points
to resolve the distinct shape of unstable eigenmode profiles in close proximity to the
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wall. Calculations using an insufficient number of Chebyshev modes erroneously predict
the absence of any unstable modes. In light of the trend Nmin ∼ S−1/2, the number of
Chebyshev modes required to resolve unstable eigenmodes becomes prohibitive as the
conventional no-slip condition is approached (i.e. S → 0). To be sure, a similar resolution
challenge will be faced by other numerical methods.

2.3. Asymptotic analysis of Couette flow
To further analyse the discovered unstable eigenmodes while circumventing the
aforementioned numerical resolution challenges, we conducted an asymptotic analysis
of plane Couette flow in the limit of strongly unstable eigenmodes, i.e. I[ω̂] � 1 (see
Appendix D). This analysis predicts that the unstable eigenmode growth rate scales with
slip parameter S and Reynolds number Re as I[ω̂] ∼ S−2 Re−1. Moreover, the unstable
plane Couette eigenmode amplitude components have the predicted asymptotic form

ũ( y) ≈ (i/α)

[
(1/S) e( y−1)/S + (1/S) e−( y+1)/S

− α cosh α( y + 1)

sinh 2α
− α cosh α( y − 1)

sinh 2α

]
+ O(S), (2.2)

ṽ( y) ≈ e( y−1)/S − e−( y+1)/S − sinh α( y + 1)

sinh 2α

− sinh α( y − 1)

sinh 2α
+ O(S). (2.3)

Figure 3 compares the predictions of the asymptotic analysis with the calculations of
plane Couette flow using Chebyshev collocation with N = 400. The agreement is excellent
for both the maximum unstable eigenvalues (figure 3a) and the shape of each component
of the unstable eigenmode (figure 3b). These results further support the conclusion that
the discovered unstable eigenmodes are not spurious numerical artefacts.

Nonetheless, the predicted scaling of the eigenmode growth rate I[ω̂] ∼ S−2 Re−1 is
counterintuitive, as it suggests stronger instability at lower Reynolds numbers. Moreover,
the analysis does not exhibit a critical Reynolds number below which instability is
not predicted to occur. This prediction is contradicted by the known stability of
viscous parallel shear flows at sufficiently low Reynolds number. We speculate that
the apparent inconsistency can be resolved by consideration of the predicted shape of
the unstable eigenmodes. For example, from (2.2), we see that the magnitude of the
streamwise component of the unstable eigenmode velocity gradient at the wall goes as
‖∂ ũ/∂y‖ ∼ I[ω̂] Re � 1. In a fluid with finite dynamic viscosity μ, the corresponding
wall shear required to create this unstable perturbation is therefore τ̃wall = μ(∂ ũ/∂y) � 1,
which may not be physically realizable. Hence although the analysis predicts that the flow
is linearly unstable to eigenmodes of the shape given in (2.2) and (2.3), that prediction
of eigenmode growth is relevant only if those eigenmodes are actually present in the
flow. In practice, the viscosity of real fluids may prevent the appearance of these unstable
eigenmodes at low Reynolds numbers due to the large wall shear required to produce
them. To be sure, a nonlinear analysis would be necessary to resolve this inconsistency
conclusively.

In addition, not all values of slip parameter S will be physically realizable at all Reynolds
numbers. Reynolds-number-dependent slip is commonly observed in flow over complex
interfaces, e.g. porous media (Beavers & Joseph 1967; Wu & Mirbod 2018; Guo et al.
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Figure 3. (a) Maximum unstable eigenvalues of plane Couette flow plotted versus slip parameter S.
Thick coloured curves are computed using Chebyshev collocation (N = 400) for Re = 50 (green),
Re = 360 (blue) and Re = 3000 (magenta). Thin grey lines are corresponding analytical model prediction
I[ω̂] ∼ S−2 Re−1. (b) Streamwise (ũ, cyan) and wall-normal (ṽ, magenta) components of unstable
eigenmode amplitude profiles computed using Chebyshev collocation (N = 400, Re = 360, S = 1 × 10−2 and
(α, β) = (1, 0)). Corresponding eigenmode profiles predicted by asymptotic analyses in (2.2) and (2.3) are
shown in superimposed thin grey curves.

2020). If a similar phenomenon is associated with flow perturbations over solid walls (i.e.
as opposed to the base flow), then the Reynolds number dependence of the present stability
predictions may be implicit in the slip parameter S.

3. Perturbation model II

3.1. Further departure from the no-slip condition
Perturbation model I was formulated with the intent of parametrizing modest departures
from the no-slip condition, such that the conventional no-slip condition (1.1) is a limiting
case. Here, we consider the implications of more significant departures from the classical
no-slip condition as applied to velocity perturbations in linear stability analyses of viscous
parallel shear flows. In the analysis that follows, we maintain the assumption that the base
flow satisfies the no-slip condition.

Following Schmid & Henningson (2001), we consider velocity perturbations of the
general Cartesian form

u(x, y, z, t) = R[ũ( y) ei(αx+βz−ωt)], (3.1)

where the Cartesian components of the perturbation velocity vector are u = uî + vĵ + wk̂
in the streamwise (i.e. î), wall-normal (i.e. ĵ) and transverse (i.e. k̂) directions. The
temporal evolution of the perturbations is examined by treating the spatial wavenumbers
as α, β ∈ R and the frequency as ω = αc, where c ∈ C is the complex phase speed of the
perturbation. We will consider the case β = 0 below without loss of generality.

If we permit non-zero values of the streamwise perturbation velocity magnitude at the
wall, then the corresponding fluid particle trajectories X(t) along the wall are given by

∂X
∂t

= ‖ũwall‖ cos(αx − ωRt) eωI t, (3.2)
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where ωR = R[ω], ωI = I[ω], and the phase of ũwall is omitted without loss of generality.
Inspection of (3.2) shows that fluid particles at the wall are stationary relative to the wall
– and therefore satisfy the no-slip condition – where

αx − ωRt = π

2
+ πj, (3.3)

or equivalently,

x = R[c] t +
π

2
+ πj

α
, (3.4)

where j is an integer. For single eigenmodes, the discrete locations where the no-slip
condition is satisfied are not fixed, but instead propagate with the phase speed R[c] of
the associated eigenmode. Consequently, all fluid particles on the wall will eventually
experience non-zero slip. By contrast, for paired eigenmodes with real part ±ωR, the
velocity of fluid particles at the wall is given by

∂X
∂t

= ‖ũwall‖ [cos(αx − ωRt) + cos(αx + ωRt)] eωI t. (3.5)

The term in brackets in (3.5) can be rewritten as

cos(αx − ωRt) + cos(αx + ωRt) = 2 cos(αx) cos(ωRt). (3.6)

Hence the no-slip condition is satisfied at all times at the discrete, fixed locations x =
(π/2 + πj)/α. Once fluid particles are advected to these locations along the wall, they
asymptotically satisfy the no-slip condition thereafter. During any initial transient wall
slip to reach these locations, the maximum fluid particle displacement along the wall is
O(π/α), i.e. the distance between adjacent locations where ∂X/∂t = 0. The duration of
the initial wall slip transient is O(π/‖ũwall‖α).

For stable eigenmodes, i.e. ωI < 0, the wall slip decays exponentially per (3.5),
rendering any perturbation-induced motion of fluid particles along the wall likely
imperceptible in practice. For unstable eigenmodes, the exponentially increasing wall slip
speed associated with ωI > 0 will advect particles to the stationary nodes on the wall
more rapidly, thereby hastening their asymptotic approach to the no-slip condition in those
cases. To be sure, there will always remain fluid particles in motion along some portion
of the wall in order to satisfy continuity. However, the linearity of the eigensolutions
implies that this motion can theoretically be arbitrarily small at the incipient stage of an
instability. More specifically, if ũ is an eigenmode of the Orr–Sommerfeld equations, then
any constant multiple γ of the eigenmode (i.e. γ ũ) is also an eigenmode, including those
for which γ 
 1. Together, these considerations lead to the interesting possibility that the
wall slip associated with both stable and unstable velocity perturbations will be empirically
indistinguishable from the conventional no-slip condition, even if the perturbations do not
formally satisfy the no-slip boundary condition.

If the no-slip condition is not the only plausible model for the physics of velocity
perturbations in viscous parallel shear flows, then exploration of other physically realistic
boundary conditions for linear stability analysis is warranted. Perturbation model I was one
such alternative. In the following subsections, we explore another boundary condition that
not only produces linearly unstable eigenmodes, but also leads to quantitative predictions
of an explicit critical Reynolds number range associated with linear instability.
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3.2. Womersley model of velocity perturbations
The Orr–Sommerfeld equation is a fourth-order system, therefore we must specify four
boundary conditions on the two walls of the plane Couette or Poiseuille flow. The first two
boundary conditions prohibit flow through the walls:

ṽ( y = 1, t) = 0, (3.7)

ṽ( y = −1, t) = 0. (3.8)

In lieu of the conventional no-slip condition, we instead hypothesize that the
fundamentally oscillatory nature of the streamwise velocity perturbations (cf. (3.1)) can
be modelled with a boundary condition based on Stokes’ second problem (Landau &
Lifschitz 1987) as

∂ ũ
∂t

− 1
Re

∂2ũ
∂y2 = 0. (3.9)

Equation (3.9) provides the remaining two required boundary conditions at y = ±1.
Note that (3.9) and (2.1) are only two of many physically motivated ansatzes that could be
explored in general. Indeed, a goal of this paper is to demonstrate that there exist boundary
conditions in addition to the no-slip condition that may also accurately represent incipient
perturbations, and that these alternative boundary conditions may be associated with linear
stability that is more consistent with empirical observations of turbulence transition.

Substituting the form of velocity perturbation in (3.1) into (3.9), and using ũ = (i/α)Dṽ

from the continuity equation (see Appendix A), the boundary condition can be expressed
as

ω
∂ṽ

∂y
− i

Re
∂3ṽ

∂y3 = 0. (3.10)

We introduce the perturbation Womersley number W̃o as a measure of the transient
inertial force associated with the velocity perturbation u relative to its associated viscous
force (cf. Womersley 1955):

W̃o = 1
α

√
ω

ν0
, (3.11)

where ν0 is the kinematic viscosity of the fluid. The frequency ω is complex in general;
however, we make the simplifying assumption ‖I[ω]‖ 
 1, from which it follows that
W̃o ∈ R. This approximation holds identically for neutral stability, i.e. I[ω̂] = 0. We will
see in the next subsection that this approximation also captures large regions of parameter
space away from the neutral stability boundaries.

Since the planar flows under present consideration are defined with U0 = 1 and L0 = 1,
the boundary condition (3.10) can be written as

W̃o2
α2

Re
∂ṽ

∂y
− i

Re
∂3ṽ

∂y3 = 0. (3.12)

Linear stability analysis proceeds by solving the Orr–Sommerfeld equation using the
boundary conditions (3.7), (3.8) and (3.12) at y = ±1. Here, we use Chebyshev collocation
to solve the Orr–Sommerfeld eigenvalue equation following Schmid & Henningson
(2001) for plane Couette and Poiseuille flow, and following Malik & Skote (2019) for
Hagen–Poiseuille pipe flow (see Appendices A and B).
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Figure 4. Contour map of the maximum Orr–Sommerfeld eigenvalue imaginary part I[ω̂] versus the number
of Chebyshev modes N and and Reynolds number Re for plane Couette flow with W̃o = 10 and (α, β) = (1, 0).

3.3. Linear stability maps
Figure 4 plots contours of the maximum eigenvalue imaginary part, i.e. I[ω̂], for
Orr–Sommerfeld solutions corresponding to plane Couette flow with W̃o = 10 and
(α, β) = (1, 0). For relatively low numbers of Chebyshev modes N used to solve
the Orr–Sommerfeld equation, we observe spurious unstable eigenmodes at increasing
Reynolds numbers (i.e. the upper left corner of the contour plot). The spurious nature
of these eigenvalues is evidenced by the dependence of their value on the number
of Chebyshev modes used to solve the Orr–Sommerfeld equation (Dawkins et al.
1998). However, as the number of Chebyshev modes is increased, spurious eigenmodes
disappear and the eigenvalues converge. This convergence is indicated by the horizontal
alignment of the eigenvalue contours for large N. Note that the present achievement of a
resolution-independent stability map is distinct from the behaviour observed in the case
of perturbation model I, wherein the required minimum number of Chebyshev modes
increased monotonically as Nmin ≈ 2.3S−1/2 (e.g. figure 2). For subsequent analyses, we
use N = 160 to ensure that the eigenvalues are converged and not numerically spurious.
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Figure 5. Contour map of the maximum Orr–Sommerfeld eigenvalue imaginary part I[ω̂] versus perturbation
Womersley number W̃o and Reynolds number Re for plane Couette flow with (α, β) = (1, 0). The region of
linear instability (red contours) is well described by W̃o2

< Re < W̃o3, as indicated by the green and yellow
dashed lines, respectively.

Intriguingly, a robust band of linear instability is observed in the range 100 < Re <

1000. To explore this in greater detail, figure 5 plots a stability map of plane Couette flow
versus the perturbation Womersley number W̃o and Reynolds number Re for (α, β) =
(1, 0). Several interesting features emerge. At Reynolds numbers below Re ≈ 30, the flow
is stable for all values of perturbation Womersley number W̃o. Similarly, if the perturbation
Womersley number is below W̃o ≈ 5, then the flow is stable for all values of Reynolds
number. Both of these effects may be attributable to the dampening effect of the fluid
viscosity on the base flow and on the incipient perturbations, respectively. The latter
dependence of the flow stability on the nature of the incipient perturbations, as measured
by perturbation Womersley number W̃o, may explain empirical observations of a range of
different Reynolds numbers corresponding to turbulence transition in plane Couette flow
experiments (Drazin & Reid 2004). Specifically, the present analysis predicts that plane
Couette flow becomes linearly unstable for Re > W̃o2, as indicated by the green dashed
boundary in figure 5.
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Figure 6. Contour map of the maximum Orr–Sommerfeld eigenvalue imaginary part I[ω̂] versus perturbation
Womersley number W̃o and Reynolds number Re for (a) plane Poiseuille flow with (α, β) = (1, 0), and
(b) Hagen–Poiseuille pipe flow with (α, n) = (1, 1). The region of linear instability (red contours) is well
described by W̃o2

< Re < W̃o3, as indicated by the green and yellow dashed lines, respectively. See the main
text for discussion of scaling prefactors.

Interestingly, this analysis also predicts that linear instability can be avoided at
sufficiently high Reynolds numbers if the flow satisfies Re > W̃o3, i.e. the region above the
yellow dashed boundary in figure 5. This condition may be difficult to achieve in practice
for three reasons. First, an arbitrary incipient perturbation may comprise a spectrum of
Womersley numbers W̃o that spans a broad range of the abscissa in figure 5. Satisfying
Re > W̃o3 across that full spectrum may be difficult in the absence of a means to control
the frequency spectrum of incipient perturbations a priori. Second, a flow generated from
rest increases in Reynolds number from zero, therefore is likely to cross the region of

linear instability from below. Third, the condition Re > W̃o3 can be recast in terms of the
governing physical parameters as

U0L0

ν0
>

ω3/2

ν
3/2
0 α3

. (3.13)

Hence any attempt to increase the Reynolds number by reducing the viscosity will lead
to a concomitant and larger increase in the perturbation Womersley number, making it
more difficult to satisfy the stability criterion in (3.13).

These challenges notwithstanding, the stability map in figure 5 is a testable prediction
of this model that can be examined in experiments. Confirmation of the model predictions
would suggest that this alternative to the no-slip condition may improve the fidelity
of linear stability analysis as a predictive tool. Furthermore, if the regime Re > W̃o3

is empirically accessible, then it may be possible to achieve stable, laminar flow and
associated fluid dynamic performance gains at arbitrarily high Reynolds numbers.

Similar results were observed in analysis of plane Poiseuille flow as well as for
Hagen–Poiseuille pipe flow (see Appendix A for pipe flow governing equations). As
shown in figure 6, the region of linear instability has a similar shape for both Poiseuille
flows as in the plane Couette flow. The neutral stability boundaries have a similar
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scaling but distinct prefactors, i.e. 0.5 W̃o2
< Re < 0.5 W̃o3 and 4 W̃o2

< Re < 2.5 W̃o3,
respectively. The numerical discrepancy in prefactors of the two planar flows can be
resolved by defining the Couette flow Reynolds number based on the maximum flow speed
contrast in the domain (i.e. U0 = 2) instead of the maximum flow speed, or by using the
full-width distance between the walls as the characteristic length instead of the half-width.

A potential conceptual inelegance of the model described herein is its characterization
of incipient perturbations using an independent parameter W̃o. The frequency ω used to
define the perturbation Womersley number is not necessarily identical to the eigenvalue
ω̂ of the Orr–Sommerfeld system. Indeed, the frequency ω is an input to the boundary
condition (3.12), whereas the eigenvalue ω̂ is a solution output. It is unclear whether this
distinction is significant, but it is noted here for the sake of completeness.

4. Conclusions

The present analyses are motivated by the premise that incipient velocity perturbations in
viscous parallel shear flows may not satisfy the no-slip condition exactly. Two alternative
models of the fluid–solid interface physics demonstrated that even small departures from
the exact no-slip condition – at levels that may be empirically indistinguishable from
the the classical no-slip condition – can significantly affect the predictions of linear
stability analysis. Intriguingly, perturbation model II predicts a minimum critical Reynolds
number for linear instability that is quantitatively consistent with empirical observations
of turbulence transition, e.g. transition Reynolds numbers of O(103–104) in pipe flow
(Avila et al. 2023). Moreover, the model predicts an unexpected, second regime of
high-Reynolds-number flow stability. Experimental validation of that prediction would
not only provide compelling support for perturbation model II as a realistic model of
the perturbation flow physics, it would also potentially have important implications in
engineering applications.

More generally, the discovered linearly unstable eigenmodes in both perturbation
models imply the presence of distinct, near-wall flow kinematics that may also be
observable in experiments that confirm their existence. The transient nature of these
near-wall fluid particle motions and their appearance as perturbations to the base flow
may require development of more sensitive measurement techniques than are available
currently. Nonetheless, the present theoretical framework can guide experimental efforts
to test these concepts further.
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Appendix A. Orr–Sommerfeld equations

A.1. Plane Couette and plane Poiseuille flow
Following Schmid & Henningson (2001), we consider velocity perturbations of the general
Cartesian form

u(x, y, z, t) = R[ũ( y) ei(αx+βz−ωt)], (A1)
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where the Cartesian components of the velocity vector are u = uî + vĵ + wk̂ in the
streamwise (i.e. î), wall-normal (i.e. ĵ) and transverse (i.e. k̂) directions. The temporal
evolution of the perturbations is examined by treating the spatial wavenumbers as α, β ∈ R

and the frequency as ω = αc, where c ∈ C is the complex phase speed of the perturbation.
The stability of perturbations of a given spatial wavenumber is evaluated by solving the
Orr–Sommerfeld equation[

(−iω + iαU)(D2 − k2) − iαU′′ − 1
Re

(D2 − k2)2
]

ṽ = 0, (A2)

where k2 = α2 + β2, and Re = U0L0/ν0 is the Reynolds number. Here, U0 is taken as the
maximum velocity of the base flow in the domain, and L0 is the half-width of the distance
between the solid walls of the Couette or Poiseuille flow. The operator D and the prime
both denote a derivative with respect to the wall-normal y-coordinate direction.

For plane Couette flow, the base flow is given by U( y) = y on the domain −1 ≤ y ≤ 1.
For plane Poiseuille flow, the base flow is given by U( y) = 1 − y2 on the domain
−1 ≤ y ≤ 1. In perturbation model I, (A2) is solved using the boundary condition ṽ = 0
at y = ±1 (i.e. no flow penetration at the solid walls), along with the generalized boundary
condition for the streamwise perturbation component ũ in (2.1) to replace the conventional
no-slip condition. Given the form of velocity perturbation in (A1), and using ũ = (i/α)Dṽ

from the continuity equation, the generalized boundary condition for ũ can be written in
terms of the normal velocity ṽ as

i
α
Dṽ ∓ i

α
SD2ṽ = 0 for y = ±1. (A3)

In perturbation model II, (A2) is solved using boundary conditions (3.7), (3.8), and
(3.12) at y = ±1.

A.2. Hagen–Poiseuille pipe flow
Following Malik & Skote (2019), we consider velocity perturbations in cylindrical
coordinates of the form

u(x, r, θ, t) = R[ũ(r) ei(αx+nθ−ωt)], (A4)

where (x, r, θ) are the axial, radial and azimuthal directions, respectively, and n is the
azimuthal wavenumber. The Orr–Sommerfeld equations can be expressed as

i(αU − ω)(Dũ − iαṽ) = −iαU′ũ − (U′′ + U′ D)ṽ + 1
Re

(Δ(Dũ − iαṽ) − 2inr−2η̃),

i(αU − ω)[D(rw̃) − inṽ] = −iαrU′w̃ + 1
Re

(Δ̄[D(rw̃) − inṽ]),

i(αU − ω)η̃ = −inU′r−1ṽ + 1
Re

(Δη + 2nr−2(αṽ + iDũ)),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(A5)

where Δ = [D2 + r−1 D − r−2(d + 1)], Δ̄ = [D2 − r−1 D − r−2(d − 1)], η̃ = i(nr−1ũ
− αw̃), d = n2 + α2r2, and the operator D and the prime both denote a derivative with
respect to the radial direction. The base flow for Hagen–Poiseuille pipe flow is given by
U(r) = 1 − r2 on the domain 0 ≤ r ≤ 1.

The Orr–Sommerfeld equations are solved following Malik & Skote (2019) by using
surrogate analytic functions (φ, Ω) that facilitate more straightforward implementation of
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the perturbation models (see below) and regularity conditions on the axis of symmetry
r = 0. The wall-normal velocity and vorticity are expressed in terms of these functions as

(ṽ, η̃) =
{

(rlφ, rlΩ), n /= 0,

(rφ, rΩ), n = 0,
(A6)

where l = |n| − 1. The no-penetration boundary condition is therefore given by φ = 0 at
r = 1.

Using continuity and the normal vorticity definition, the streamwise (i.e. ũ) velocity
perturbation component is given by

ũ =

⎧⎪⎪⎨⎪⎪⎩
irl+1

d
[α(l + 1)φ + αrDφ − nΩ], n /= 0,

i
α

(2φ + rDφ), n = 0.

(A7)

A.2.1. Perturbation model I
From (2.1) and (A7), the generalized boundary condition for the streamwise velocity
component at the wall (r = 1) is

[(a1 + a3 + a6)D + a4 D2]φ + [(a2 + a7) + a5 D]Ω = 0, n /= 0,

[(a0
1 + a0

2)D + a0
3 D2]φ = 0, n = 0,

}
, (A8)

where

a1 = iα
d

,

a2 = − in
d

,

a3 = −S iα(l + 2)

d
,

a4 = −S iα
d

,

a5 = S in
d

,

a6 = −Sα

[
i(l + 1)d − 2 iα2

d2

]
,

a7 = Sn
[

i(l + 1)d − 2 iα2

d2

]
,

a0
1 = i

α
,

a0
2 = −3S

i
α

,

a0
3 = −S

i
α

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A9)
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A.2.2. Perturbation model II
From (3.9) and (A7), the boundary condition for the streamwise velocity component at the
wall (r = 1) is

[
a1 D − 1

Re
(b1α + b2α(l + 2) + b3α(l + 2))D − 1

Re
(b2α + b3α + b4α(l + 3))D2

− 1
Re

(b4α)D3
]

φ +
[

a2 + 1
Re

(b1n) + 1
Re

(b2 + b3)nD + 1
Re

(b4n)D2
]

Ω = 0, n /= 0,

[(a0
1 + a0

2)D + a0
3 D2 + a0

4 D3]φ = 0, n = 0,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(A10)

where

a1 = (α W̃o)2

Re

(
α

n2 + α2

)
,

a2 = −(α W̃o)2

Re

(
n

n2 + α2

)
,

b1 = i(l + 1)(2α2) + i(l + 1)2(n2 + α2) − 2i(l + 3)α2

(n2 + α2)2 − 4α2(i(l + 1)(n2 + α2) − 2 iα2)

(n2 + α2)3 ,

b2 = i(l + 1)(n2 + α2) − 2iα2

(n2 + α2)2 ,

b3 = i(l + 2)(n2 + α2) − 2iα2

(n2 + α2)2 ,

b4 = i
n2 + α2 ,

a0
1 = (α W̃o)2

Re
,

a0
2 = −3i

Re
,

a0
3 = −5i

Re
,

a0
4 = −i

Re
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A11)

Appendix B. Numerical solution

The Orr–Sommerfeld eigenvalue equations were solved using Chebyshev collocation as
formulated in plane Cartesian coordinates (Schmid & Henningson 2001) and cylindrical
coordinates (Malik & Skote 2019). Matlab implementations of the algorithm for each flow
are provided in the Caltech Data Repository.

The Matlab codes were verified by comparing the computed eigenvalues for the case S =
0 (i.e. no-slip condition) to the tabulated eigenvalues for plane Couette and Poiseuille flows
in Schmid & Henningson (2001), as well as the tabulated eigenvalues for Hagen–Poiseuille
pipe flow in Malik & Skote (2019).
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Figure 7. Contour maps of the second-largest Orr–Sommerfeld eigenvalue imaginary part I[ω̂] versus
slip parameter S and Reynolds number Re for (a) plane Couette flow, (b) plane Poiseuille flow, and
(c) Hagen–Poiseuille pipe flow. Blue contours indicate regions of linear stability, and red contours indicate
regions of linear instability. Black contours indicate neutral stability boundaries. Vertical grey lines correspond
to a discontinuous change in predicted hydrodynamic stability, reflecting the inability of the Chebyshev
expansion (N = 400) to resolve unstable eigenmodes for values of slip parameter S below the grey line.

B.1. Perturbation model I
For each of the three flows (i.e. plane Couette flow, plane Poiseuille flow and
Hagen–Poiseuille pipe flow), 400 collocation points were used to compute each of the
996 Re × 66 S = 65 736 total cases in the S–Re parameter space of figure 1. Wavenumbers
were fixed at α = 1 and β = 0 for plane Couette flow and plane Poiseuille flow, and α = 1
and n = 1 for Hagen–Poiseuille pipe flow. These wavenumbers typically corresponded to
the most unstable eigenmodes, but qualitatively similar results were observed for other
wavenumbers. The eigenvalue with maximum imaginary part was recorded for each
parameter set (S, Re) studied. If the eigenvalue with second-largest imaginary part was
within 10−3 of the eigenvalue with largest imaginary part, then the eigenvalues were
treated as a combined pair for the purposes of subsequent analysis.

B.2. Perturbation model II
For each of the three flows (i.e. plane Couette flow, plane Poiseuille flow and
Hagen–Poiseuille pipe flow), 160 collocation points were used to compute each of the
64 Re × 100 W̃o = 6400 total cases in the W̃o–Re parameter space of figures 5 and 6.
Wavenumbers were fixed at α = 1 and β = 0 for plane Couette flow and plane Poiseuille
flow, and α = 1 and n = 1 for Hagen–Poiseuille pipe flow. These wavenumbers typically
corresponded to the most unstable eigenmodes, but qualitatively similar results were
observed for other wavenumbers. The eigenvalue with maximum imaginary part was
recorded for each parameter set (W̃o, Re) studied. If the eigenvalue with second-largest
imaginary part was within 10−3 of the eigenvalue with largest imaginary part, then the
eigenvalues were treated as a combined pair for the purposes of subsequent analysis.

Appendix C. Second-largest Orr–Sommerfeld eigenvalue imaginary part for
perturbation model I

Figure 7 plots contours of the second-largest eigenvalue imaginary part for perturbation
model I. These results demonstrate that the predicted linear instability is not necessarily
limited to a single eigenvalue with positive imaginary part.
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Appendix D. Asymptotic analysis of unstable Couette eigenmodes for perturbation
model I

The Orr–Sommerfeld equation for plane Couette flow can be written as

∂

∂t
∇2ṽ − 1

Re
∇2∇2ṽ + iα ∇2ṽ = 0, (D1)

where α is the axial wavenumber. The temporal behaviour of linear velocity perturbations
is given by ṽ ∼ e−iωt, where the complex frequency is ω = R[ω] + i I[ω].

We consider the limiting case of large, unstable eigenvalues, i.e. I[ω̂] � 1. To leading
order, (D1) can therefore be written as(

I[ω̂] Re + α2 − ∂2

∂y2

)
∇2ṽ = 0. (D2)

Equation (D2) has leading-order solutions of the form ṽ ∼ e±κ1y, e±αy, where
κ1 =

√
I[ω̂] Re + α2 � 1. The solutions must satisfy a no-penetration condition at the

walls, i.e. ṽ( y = ±1) = 0. This boundary condition is satisfied for

ṽ( y) = eκ1( y−1) − sinh α( y + 1)

sinh 2α
+ κ2

(
e−κ1( y+1) + sinh α( y − 1)

sinh 2α

)
, (D3)

since ṽ( y = ±1) ∼ O(e−2κ1) ≈ 0. The free parameter κ2 can be constrained by applying
the boundary condition in (2.1) as formulated for plane Couette flow in (A3). Specifically,
at y = 1,

κ1 − α
cosh 2α

sinh 2α
+ ακ2

sinh 2α

κ2
1 − α2

= S, (D4)

where terms of O(e−2κ1) or smaller have been neglected. Similarly, at y = −1,

− α

sinh α
− κ1κ2 + ακ2

cosh 2α

sinh 2α

κ2(κ
2
1 − α2)

= −S. (D5)

Combining (D4) and (D5) gives κ2 = ±1. The negative solution κ2 = −1 gives
antisymmetric eigenmodes consistent with the opposite direction of travel of the walls
at y = ±1. Substituting this solution for κ2 into the system of equations gives the
approximation κ1 ≈ S−1, or equivalently,

I[ω̂] ∼ S−2 Re−1. (D6)

This predicted scaling is consistent with the unstable eigenvalues computed using
Chebyshev collocation with N = 400 in figure 3(a) for Re = 50, 360 and 3000. The
preceding asymptotic analysis also predicts that eigenmode profiles corresponding to large,
unstable eigenvalues have the approximate shape given in (2.2) and (2.3). This prediction is
in excellent agreement with the profiles computed using Chebyshev collocation, as shown
in figure 3(b).
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Figure 8. Streamwise (i.e. R[ũ]) eigenmode components for eigenvalues with maximum imaginary part in
plane Couette flow (Re = 360, S = 1 × 10−1) with generalized boundary condition in (2.1) (i.e. (c)) and
alternative boundary conditions in (E1) (i.e. (a,b,d)). Directional alignment of perturbation wall slip and
associated wall shear is enforced on (a) top wall, (b) bottom wall, (c) both walls, (d) neither wall. Eigenmodes
in (a–c) are unstable; eigenmode in (d) is stable.

Appendix E. Alternative boundary conditions for perturbation model I

To explore the dependence of the discovered unstable eigenmodes in perturbation model
I on the form of the boundary condition ansatz in (2.1), figure 8 plots the streamwise
component of the eigenmode with maximum imaginary part for Re = 360 and S = 1 ×
10−1, using the following alternative boundary conditions:

(a) ũ(xwall, t) − Sũ′(xwall, t) = 0, y = ±1,

(b) ũ(xwall, t) + Sũ′(xwall, t) = 0, y = ±1,

(c) ũ(xwall, t) ∓ Sũ′(xwall, t) = 0, y = ±1,

(d) ũ(xwall, t) ± Sũ′(xwall, t) = 0, y = ±1.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (E1)

The boundary condition in figure 8(a) constrains the streamwise component ũ of any
velocity perturbation at the top wall (y = 1) to be oriented in the same direction as the
associated shear exerted by the wall on the fluid due to the perturbation. Conversely,
on the bottom wall (y = −1), the boundary condition sets the direction of any velocity
perturbation to be opposite to the direction of the associated shear exerted by the wall
on the fluid. The boundary condition in figure 8(b) is the inverse of that in figure 8(a),
constraining the streamwise component ũ of any velocity perturbation at the bottom wall
(y = −1) to be oriented in the same direction as the associated shear exerted by the wall on
the fluid due to the perturbation. The boundary condition on the top wall in figure 8(b) is
identical to the boundary condition on the bottom wall in figure 8(a). Figure 8(c) illustrates
a boundary condition that is symmetric with respect to its treatment of the top and bottom
walls, as in (2.1). In this case, the streamwise component of velocity perturbations at both
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R[ṽ] R[ṽ]

Figure 9. Wall-normal (i.e. R[ṽ]) eigenmode components for eigenvalues with maximum imaginary part
in plane Couette flow (Re = 360, S = 1 × 10−1) with generalized boundary condition in (2.1) (i.e. (c)) and
alternative boundary conditions in (E1) (i.e. (a,b,d)). Large near-wall ṽ-component perturbations arise near
walls with boundary condition enforcing directional alignment of perturbation wall slip and associated wall
shear. Specifically, directional alignment of perturbation wall slip and associated wall shear is enforced on
(a) top wall, (b) bottom wall, (c) both walls, (d) neither wall. Eigenmodes in (a–c) are unstable; eigenmode in
(d) is stable.

walls is constrained to be oriented in the same direction as the associated shear exerted
by the wall on the fluid due to the perturbation. In figure 8(d), the boundary condition is
also symmetric with respect to its treatment of the top and bottom walls. However, the
streamwise component of velocity perturbations at both walls is constrained to be oriented
in the direction opposite to the associated wall shear. This boundary condition is similar to
that used in prior studies of the effect of wall slip on linear instability (e.g. Lauga & Cossu
2005; Chai & Song 2019; Ceccacci et al. 2022).

Figure 9 shows that the corresponding wall-normal component of velocity perturbations,
while satisfying the no-penetration condition at the walls (i.e. ṽ = 0), is biased towards
walls for which the wall slip of the perturbation is aligned with the wall shear exerted on
the fluid due to the velocity perturbations.

Notably, each boundary condition for which the velocity perturbation and wall shear are
aligned on at least one wall (i.e. figures 9a–c) corresponds to an unstable eigenmode. In
each of the present cases, the growth rate of the perturbation is I[ω̂] ≈ 0.199. By contrast,
for the boundary condition in figure 9(d), all eigenmodes are stable, in agreement with
previous studies (e.g. Lauga & Cossu 2005; Chai & Song 2019; Ceccacci et al. 2022). The
least stable eigenmode has growth rate I[ω̂] ≈ −0.175.
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