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LIFTING PROBLEMS AND THE COHOMOLOGY 
OF C*-ALGEBRAS 

MAN-DUEN CHOI AND EDWARD G. EFFROS 

1. Introduction. Suppose that A and B are C*-algebras, / is a closed two-
sided ideal in B, and that rj : B —>B/J is the quotient map. Given a linear 
contraction <p : A —» B/J, a linear map ^ : A —> B is a lifting of <p if one has 
a commutative diagram 

r 
K~'~' A +B/J. 

In § 2 we will show that if A is separable and satisfies Grothendieck's metric 
approximation property (see § 2 for definition) then <p has a contractive lifting 
SF. This had been proved earlier by T. B. Andersen [3, Corollary 8] under the 
additional hypothesis that A = B/J (for related results see [3; 37; 6]). Since 
the authors proved in [13, Theorem 3.1] that nuclear C*-algebras have the 
metric approximation property, the result applies to C*-algebras A that are 
nuclear and separable. In a negative vein, we give an example in § 4 of a 
diagram (1.1) with A = B/J a separable non-nuclear C*-algebra, for which 
the identity map A —» A does not have a completely positive lifting ^ (this 
answers a question raised in [13]). We suspect that there does not exist any 
bounded lifting, and more generally we conjecture that for C*-algebras, 
nuclearity and the metric approximation property are in fact equivalent. 

The bounded lifting problem naturally arises in the cohomology theory of 
C*-algebras as formulated by Johnson, Kadison, and Ringrose [27; 32]. Let us 
suppose that 6 : A —> B is a *-homomorphism. Then we may regard B, J, and 
B/J as ^4-bimodules. Slightly generalizing an argument of Johnson [27, 
Proposition 1.7], we deduce from the lifting result of § 2 that if A is separable 
and satisfies the metric approximation property, then one has the expected 
exact sequence 

(1.2) . . . -> Hn(A, J) -> Hn(Ay B) -> Hn(A, B/J) -> 

A case of particular interest is that in which B = £$ (H) and / =rf(H), 
the bounded and compact operators, respectively, on a separable Hilbert space 
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LIFTING PROBLEMS 1093 

H. (Andersen's lifting theory is not applicable since Conway [16] has shown 
tha,tJ^(H) is not complemented in 3§(H), and thus 

@(H) 

S#{H)/X{H) g&(H)/X(H) 

does not have a bounded lifting.) The resulting exact sequence 

. . . -> Hn(A,Jf(H)) -> H*(A, Se(H)) -+Hn(A, Se{H)/X'(H)) - > . . . 

provides information about Hl(A, âg(H)/Jt(H)) and H2(A, S3(H)/X(H)). 
We have reason to believe that if A is nuclear and separable these groups must 
be zero, a result that would be of interest in the cohomological approach to 
perturbations of *-homomorphisms (see [33, Theorem 2; 29, Theorem 5.1]). 
This in turn seems relevant to extension theory. We note that since the lifting 
theorem of § 2 is developed in the context of Banach spaces, (1.2) is also valid 
for more general Banach algebras. It has been shown that M-ideals naturally 
arise in certain non-commutative Banach algebras (see [25]) which are ap­
parently not C*-algebras. 

We are indebted to F. Knudsen for a suggestion that considerably simplified 
§ 3. He pointed out that one can disentangle the algebraic and analytic diffi­
culties of the subject by considering short exact sequences of cochain complexes. 

We shall use the notations R and C for the real and complex numbers, and 
T for the unit circle in C. We say that a subset D of a real (resp., complex) 
vector space V is symmetric if aD Ç D for a = ± 1 (resp., a Ç T) . If 7 and 
W are normed vector spaces we let S8(V, W) (resp., S3f{V, W)) denote the 
normed vector space of bounded (resp., bounded finite rank) linear maps 
F - » W, and we denote the Banach dual of V by V*. We let &/(V*, W) be 
the weak* continuous maps in &f(V*, W). Given normed vector spaces 
Vi, . . . , Vn, W, we let S&(V\, . . . , Vn\ W) be the bounded n-linear maps 

/ : Vi X . . . X Vn -> W 

with the norm 

| | / | | = s u p { | | / ( » 1 , . . . , p , ) | | : | H | ^ l } . 

If X is a compact Hausdorff space, we let CR(X) (resp., CC(X)) denote the 
Banach space of continuous real (resp., complex) functions on X with the 
uniform norm. 

2. A lifting theorem for Banach spaces. Suppose that F is a (real or 
complex) Banach space and that K is the closed unit ball in V* with the weak 
topology. If F is real, we have a natural isometry 

V^AHo(K) 
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where Aff0(i£) is the Banach subspace of affine functions in CR(K) vanishing 
at 0 (that one obtains all such functions follows from [31, Lemma 4.3]). It 
should be noted that, in this functional representation of V, one has that 
\\a — b\\ g e if and only if — e ^ a — b ^ e. Similarly if F is a complex 
Banach space we have the isometry 

V^AttT(K) 

where AffT(i£) consists of the affine functions a in CQ{K) such that a(ap) = 
aa(p) for all a £ T. 

A subspace W of a normed vector space X is an L-summand provided it is 
the range of an idempotent linear map e : X —> X such that for all p Ç X. 

\\P\\ = \\ep\\ + \\P -ep\\ 

(see [19; 2, I§ 3]). The map e is unique and is called the L-projection onto W. 
In the following lemma we assume that F is a Banach space, IF is a weak* 
closed L-summand in F* with L-projection e, F = K P\ W, and that D is a 
weak* closed, convex, symmetric subset of K such that if p Ç D, then ep G D. 

L E M M A 2.1. Suppose thai V is real and that a Ç Aff0L, b Ç Aff0i£ and e > 0 
are such that \\a\\, \\b\\ ^ l,and 

(2.1) \\(a - b)\D n F\\ S e. 

Then a has an extension a' £ Aff0K such that \\af\\ ^ 1 and 

| | ( a ' - 6 ) | f l | | ^6e. 

If V is complex, the same implication is true for a 6 Aff? F,b € AffTK. 

Proof. We first assume that V is real. Consider the function defined on K by 

(a(p) pe F 
(2.2) f(p) = h(p) + e pt D\F 

(l + e p € K\(D U F). 

Le t t ing /be the usual lower envelope of/ (see [1, p. 4]), we claim that 

(2.3) a(p) ^f(p), pe F. 

We define a function ab on K by 

ab(p) = a(é#) + &((1 - e)p). 

From [2, I, Corollary 4.2], a o e is Borel on K and satisfies the barycentric 
calculus. Since 

b o (1 — e) = b — b o e, 

the same is true for b o (1 — e) and ab. We have that 

(2.4) ab(p) Sf(p), ptK 
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since if p € D\F, then by assumption ep d D C\ F and from (2.1) 

ab(p) = a(ep) + i ( ( l - e)p) 
Zb(ep) + « + 6((l - e ) £ ) = 6(p) + « 

and if p 6 K\(D \J F), then 

a6(/0 = a(ep) + &((1 - e)p) g | | ^ | | + ||(1 - e)/>|| = \\p\\ £ 1. 

The function / is lower semi-continuous since its supergraph 

S(f) = {(/>,«):/(/>) ^a] 

is closed in i£ X R. To see this, note that if one is given real functions gt on 
closed sets Ft C K, i = 1, 2 with gj |F l n F2 ^ g2|^i n F2, then 

g W W ) , P G Mft 

has supergraph (relative to Fx \J F2) 

5(g) = S (g i )US(g 2 ) ; 

hence if the g* are lower semi-continuous, the same is true for g. Since a(p) ^ 
b(p) -\- e,p Ç. D C\ F,f\F y D is lower semi-continuous, and since/(^>) ^ 1 + e, 
£ G F {J D, f is thus also lower semi-continuous. 

Given p Ç F, let PV{K) be the probability measures on X with resultant />. 
Then if M G PPCK), 

a(p) = ab(p) = n(ab). 

It follows from (2.4) and the lower semi-continuity of/ (see [35; 13, proof of 
Proposition 2.2]) that 

a(p) ^ min {M(/) : M Ç P,(i£)j = / (£ ) , £ G F, 

i.e., we have (2.3). 
In particular we have that 

a(p) <f(P) + e = ( / + €)~(/>), £ G F; 

hence from [2, I, Lemma 5.1], a has an extension d £ Aff0(i£) such that 

d(p) < (f+*)~(P), P£ K. 

We have that 

a(p) = d(p) S g(p), P e F 
where 

g= (d + 4e) A 1. 

On the other hand since d S f + e ^ 1 + 2e, \\d\\ ^ 1 + 2e and 

(1 + 3e)-1 (d + e) = d + (1 + 3e)"1e(l - 3d) ^ d + 4e; 
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hence 

(l + 3e)-i(d+e) £g 

and evaluating both sides at 0, 

0 < (1 + 3e)"1* ^ 1(0). 

It follows from [2, I, Theorem 5.4] that a has an extension a' G Aff^K such 
that af ^ g on K. In particular, a'(£) ^ 1 on K. or replacing £> by — p, 
\\a'\\ g 1. If ^ G D\F , 

a'(£) ^ d(p) + 4e ^ /(/>) + 5e = bip) + 6c, 

whereas iî p £ D C\ F, 

a'ip) = a(p) S bip) + e ^ &(/>) + 6e. 

Replacing p by —p we conclude that 

| | ( a ' - 6)1̂ 11 ^ 6 e . 

Now suppose that V is complex. Letting FR (resp., (F*)R) denote the real 
Banach space underlying V (resp., F*), we may regard (F*)R as the Banach 
dual of VR by using the pairing 

(» , / ) -> Re/(»). 

In particular the map 

Re : AttTK -» AffoX : « *-> Re a 

is a real linear isometric surjection. Given a G AffTjF and & G AffTi£ satisfying 
(2.1), let a,\ = Re a, &i = Re b. Then we may use the real case to find an 
extension a,\ G Aff0i£ such that \\a>\\\ = 1 and 

| | ( a i ' - 6 i ) U I ^ 6 e . 

Letting a / = Re a', a' G AffTi£, we have that 

| | ( o ' - f t ) | B | | = | | (« / - ^OUH ^ 6 e . 

The equality follows from the fact that D is assumed closed under multiplica­
tion by a G T, hence we may choose p G D with 

11(a' - b)\D\\ = («' - 6)(/>) = | | ( a i ' - M D I I . g.e.d. 

If F and IF are vector spaces, we let V ® W denote the algebraic tensor 
product of F and W. If F and W are normed we regard V (8) IF and F* ® W* 
as dual vector spaces. We define 

( F 0 W)\ = convex hull {v ® w : v (: Fi, w G Wi}, 

where the subscripts 1 on the right denote the unit balls. The greatest cross-
norm \\ | |T on F <g> Wis the norm determined by the weak closure of ( F ® W)i 
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(see [20, p. 64]). Equivalently one finds that 

IMI = inf {Zlkill IWI : u = J^vt ® wt}. 

On the other hand the least cross-norm \\ \\\ (this terminology is misleading — 
see [20, p. 65]) is determined by the polar of (V* ® W*)i, or equivalently, 

| H | = sup {p ® q(u) : p G TV, q (E Wi*}. 

We write V ®7 W and V ®x IF for F ® W with the corresponding norms, 
and V ®7 IF, F ®x IF for the completions. The map 

-S? : (F ®7 IF)* = (F ® 7 I F ) * - > ^ ( F , IF*) 

defined by 

J^(g)(v)(w) = g(v ® w) 

is an isometric surjection. On the other hand the map 

L : F ®x W-> J y ( 7 * f W) 

defined by 

L(v ® w)(g) = g(v)w 

is also an isometry. In particular, if F is finite dimensional (but not necessarily 
IF), we have the commutative diagram 

V* ®x W*-^> J 7 ( F * * , IF*) 

(V ®yW)* -^-> &(V,W*), 

i.e., we have the natural identification 

(F ®7 W)*Ç* F* ®x IF*. 

Interchanging y and X we have the following result of Grothendieck (see 
[37, Corollary 5]; we include a non-measure theoretic proof): 

LEMMA 2.2. / / F is finite dimensional, then the natural linear map F* ®7 IF* 
—•> (F ®x IF)* is aw isometric surjection. 

Proof. It suffices to prove that under the adjoint map 

(F ®x WO**-» (^* ®7 IF*)*, 

the image of the unit ball is weak* dense in that of the range space. Composing 
with the injection F ®x IF—> (F ®x IF)**, it suffices to prove that the same is 
true for the resulting map 

F ®x W-> (F* ®7 IF*)*. 

https://doi.org/10.4153/CJM-1977-108-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-108-x


1098 M.-D. CHOI AND E. G. EFFROS 

We have the commutative diagram 

7 0x W - >&(V*,W) 

Y (û Y 
(7* ®y w*)* > 3${y*, 17**) 

where the rows are isometric surjections. Thus it suffices to prove that each 
contraction T : 7* —> 17** is a point-weak* limit of contractions Tv : 7* —» 17. 
A simple proof of this result using the fact that finite-dimensional real (resp., 
complex) Banach spaces are approximate quotients of the spaces Rw (resp., Cn) 
with the supremum norm may be found in [21, § 3]. 

LEMMA 2.3. If <p : V —» 17 and SF : 7 ' —> 17' are bounded linear maps, then 
the linear map 

<P 0 V : 7 0 7 TF—> 7 ' ®yW':v®w ^ <p(v) ® V(w) 

satisfies 

\\<p ® * | | ^ | M | ||¥||. 

Proof. Given u G 7 0 17 with w = ]T ̂  0 ^ , we have 

(<p ® *)(u) = !>(* ; , ) ® ^(wt) 

where 

ElkMI ll*(«>*)|| â IMI 11*11 S I M M 
LEMMA 2.4. Suppose that V and W are Banach spaces and that Wo is an 

L-summand in W. Letting i : Wo —> 17 be the inclusion map, 

1 ® L: V ®7Wo-+ V ®yW 

is an isometry onto an L-summand. 

Proof. Letting e : 17—> 170 be the L-projection onto Wo, we have from 
Lemma 2.3 that both 1 ® e : V ®y W -> 7 ®7 Wo and 1 0 i : V ®y Wo ~+ 
V ®yW are contractive. Since (1 ® e) o (1 0 i) = 1 0 1, it follows that 
1 0 t is an isometry and 7 0 7 17o can be regarded as a subspace of 7 0 7 17. 
On the other hand, if u = Z vk 0 wk Ç 7 0 7 17, 

Z Ikll IKII = E IHI M + E IKII lid - *)«*ll 
è ||(1 ® *)(«)! I + ||u - (1 0 ^ | | ; 

hence 1 0 e is an L-projection. 

A subspace J of a Banach space B is said to be an M-ideal if its annihilator 
J1- is an L-summand in B* (see [2, I, § 5]). In particular, if J is a closed two-
sided ideal in a C*-algebra B, then it is an M-ideal (the argument given for 
[2, I, Theorem 6.12] is also valid for the complex spaces / and B). 
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LEMMA 2.5. Suppose that J is an M-ideal in a Banach space B and that 
L C TV are finite dimensional Banach spaces. Given e > 0 and a diagram of 
contractions 

L c-+N- -+B/J 

where 77 is the quotient map and 

there exists a contractive lifting y of <p such that 

| | ( * ' - * ) U | | ^6e . 

Proof. We may isometrically identify the diagram 

o i (L,B/J)^^(N,B/J) 

(2.5) 7] O Ï] O 

Ot 

where t : L —> TV is the inclusion map, with the diagram 

L* 

L* 

xB/J^ 

1 ® v 

; ®xBl 

1 
TV* hB/J 

1 ® v 

1 
TV* ®x^ . 

Taking adjoints, we have from Lemma 2.2 the diagram 

1 L ®y (B/JY ±¥L±> TV <g)7 {B/T) 

(2.6) 1 ® 77* 

L ®yB* 1 
• T V 

1 ® 77* 

yB* 

The maps i ® 1 are weak* continuous contractive injections. Thus letting 
D' and X be the closed unit balls of L ®7 B* and TV ®7 B*, respectively, 
Dr is mapped weak* homeomorphically onto a symmetric compact convex 
subset D of K. From Lemma 2.4 the maps 1 ® 77* are weak* continuous iso-
metries. Letting e : B* —> B* be the L-projection with range J1-, 

W = the image of (1 ® 77*) = (1 ® e)(N ®7 £*) 
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is a weak* closed L-summand, and we may identify the closed unit ball of 
N ®y (B/J)* with F = K C\W. Similarly we identify the closed unit ball of 
L ®y (B/J)* with D' H W where W = (1 ® e){L ® 7 5 * ) . We have 

(2.7) (t ® 1)(1 ® e) = (1 (g) «)(i ® 1); 

hence 

(i ® l ) ( ï F ) = (i ® 1)(L ® 7 £*) H W, 

and since i ® 1 is one-to-one D Q (t ® 1)(L ®7i3*), 

(2.8) (t ® 1)(£>' nW) = Dr\(i ® l)(W) = DC\W = DC\F. 

We have a diagram of inclusion maps 

D C\ F c * F 
P P 

£>c *K 

and we may identify (2.5) with the diagram of restriction maps 

(2.9) AffT(£> C\ F) <- AffT(F) 

ArTT (£>)*- AST(K) 

(for real Banach spaces, replace AffT by Aff0). Since 1 ® e : L ®7 i$* —> 
L <g>7 B* maps£>' onto £>' Pi W, it follows from (2.7) and (2.8) that it maps 
D onto D C\ F, and D satisfies the conditions of Lemma 2.1. 

Reinterpreting the hypotheses in terms of (2.9), we are given a £ AffTF and 
b e AfTTi^ such that | |« | |F ^ 1, \\b\\K S 1, and 

\\(a - b)\\D n F\\ S e. 

Thus from Lemma 2.1 there is an element a' £ AfïTi£ such that a'\F = a, 
| |a'| | = 1, and 

W -b)\D\\ g6e . 

Returning to (2.5), a' corresponds to a contraction <pf : N -+B such that 
rj o <p' = <p and |!(<£>' — ^r)z/|| = 6e. This proves the lemma. 

A Banach space V is said to have the metric approximation property pro­
vided there is a net of finite rank contractions ipv : V —» F converging to the 
identity map in the point-norm topology. The argument used to prove the 
following result was motivated by that of Andersen for [3, Proposition 5]. 

THEOREM 2.6. Suppose that A and B are Banach spaces, A is separable and has 
the metric approximation property, and that J is an M-ideal in B. Then each 
contraction <p : A —» B/J has a contractive lifting SP" : A —-> B. 
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Proof. We fix a dense sequence #i, a2, . . . in A. We inductively define a 
sequence of finite dimensional subspaces L0 £ Li C . . . with U?=o£& dense 
in 4̂ and contractions 6k : yl —» L/: as follows. We let L0 = {0} and #o = 0. 
Having defined Lk and -̂ for an integer k ^ 0, we may use the metric approxi­
mation property to find a finite rank contraction dk+i : A —> A such that 

(2.10) | | & + . - l ) U t | | ^ 2 - < * + » . 

We then define 

Lk+1 = Lk + 0A;+IC4) + FaA+i 

(where F is the underlying field R or C). 
We next inductively construct a sequence of contractions tyk : Lk —» B such 

that 7? o tyk = (p\Lk. We let ^ 0 = 0. Suppose that we have defined ^k with 
this property for an integer k ^ 0, and consider the diagram (with the con­
vention L_i = {0}) 

B 

r 

B/J. 

We have that 

| | f oo¥*o0* - ^)U,_J| - \\(<po6k - <p)\LkJ\ S 2~*. 

From Lemma 2.5 we have a contractive lifting 

¥*+i : Lk+1 -> 5 

of <£>| r , such that 

IK^+i-^o^U^JI ^6-2-*. 
If follows from (2.10) (with k rather than k + 1) that 

II(**+i- **)Ut_J| ^ 6 - 2 - * + | | * * o ( l -0 , )U t _J | ^ 7-2-*. 

Fixing &0, it follows that for all & ^ ko, 

I|(**+i - ^*)UM_1ll ^ 7 - 2 - * 

and the maps ^ converge uniformly on L*0_i. We let ^^o-1) : L/0_i —» 5 be 
the limit contraction. The maps ^(k) are compatible and thus define a contrac­
tion U Lk —> B. The latter extends uniquely to a contraction ^ : A —* B with 
77 o ^ = <p. This completes the proof of the theorem. 

We conclude this section with a few additional remarks about the greatest 
cross norm. If Vi, . . . , Vn, W are normed vector spaces, we have a natural 

** 

U-! Q Lk C Lk+1 C ^ 
t I 
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surjective isometry 

0:@(Vlt . . . , Vn)W)-^^(V! ® x . . . ®x Vn\ W) 

defined by 

0(/)(vi ® . . . ® v„) = / ( w i , • • . ,v„) 

(see [24, p . 342]). Fur thermore , we have: 

LEMMA 2.7. Suppose that A and B are Banach spaces. If A and B are separable 

or both have the metric approximation property the same is true for A ® 7 B. 

Proof. II A and B are separable, let am and bn be dense sequences in A and B, 
respectively. Then finite linear combinations X) ami ® bni will be dense in 
A ® 7 B, hence A <S>7 B is separable. 

If ipv : A —> A, tyv : B —* B are finite rank contract ions converging to the 
identi ty maps in the point norm topologies. From Lemma 2.3 the finite rank 
maps <pv ® >F„ are contractions. I t is trivial t ha t they converge on A ® 7 B 
to the identi ty map in the point-norm topology. Since they are contractions, 
they have unique extensions <p„ ® \F„ which also converge in point-norm to 
the identi ty on A ® 7 B. 

3. C o h o m o l o g y . We recall t ha t a (vector) cochain complex C is a sequence 
of vector spaces Cn, n ^ 0 and linear maps ôn, n ^ — 1 (we will often omit the 
superscripts on the <5's) 

0Xc°XcX.... 
such tha t bnbn~l = 0. (see [26, § IV. 1]). For each n ^ 0, we let 

Z n (C) = ker<5w 

Bn(C) = imô^- 1 

^ ( c ) = zn(C)/Bn(C). 

T h u s we have tha t Hn(C) = 0 if and only if C is exact a t Cn, i.e., im <5W_1 = 
ker Ôn. 

Given cochain complexes C and C, a cochain homomorphism <p : C —» C is 
a sequence of linear maps <pn : C'n —» Cn, n ^ 0 such t ha t <5<pn = ^w+1ô. A 
diagram of cochain complexes 

...^c%... 
is said to be exact a t C if ker ^ n = im <pn for each n. Given an exact sequence of 
cochain complexes 

(3.1) 0 - * C ' - £ c ^ C " - > 0 , 
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we obtain a corresponding exact cohomology sequence 

(3.2) 0 , H\C) -*d H\C) -^1 H\C") - X H\C) -*!>.... 
(see [26, IV 2]). Using brackets to indicate cohomology classes, these maps are 

defined by 

¥>*"([s,']) = Wn(zJ)} zn' € Z*(C), 

**"([z„]) = [*n{Zn)} *n £ 2*(C), 

A"([*»"]) = [cn+1'] zn" € Z»(C") , 

the element cw + / G Z ^ + ^ C ) being determined by any diagram of the form 

Let us suppose tha t A is a Banach algebra, and tha t F is a Banach vl-bi-
module, i.e., F is a Banach space and an algebraic ^4-bimodule with 

\\av\\ £ \\a\\ \\v\\, \\va\\ S \\v\\ \\a\\, a^A,v£ V. 

The corresponding bounded cohomology chain complex C(A, V) is defined by 
letting 

C°(A, V) = V 

Cn(A, V) = 38 (A, ...,A;V) ^ 38(A ® 7 . . . ®yA, V) 

and bn : Cn(A, V) -> Cn+l(A, V) is defined ior n ^ 0 by 

(8°v) (a) = av — va, 

(ônf)(au . . . , an+1) = aif(a2, . . . , an+1) + (-l)n+1f(au . . . , an)an+1 

+ Z"=i ( - l ) ! / O i , • • • , o<o i+i, . . • , an+i). 

We will not use the Banach s tructure on the vector spaces Cn(A, V). We write 
Hn(A, V) ior Hn(C(A, V)). 

If W is an A -submodule and Banach subspace of V, and rj : V —> V/W is 
the quotient map, we obtain an exact sequence 

(3.3) 0 - * C(A, W) -£ CG4, F) ^ C ( 4 , 7 / I F ) 

where 
^ : C*(i4, W)-*Cn(A, V) 

is the inclusion isometry, and 

(3.4) ¥» : C n ( A F) -+ C*(i4, F/1F) 
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is the contraction defined by 

* n ( / ) (a , , . . . , an) = 7if(au . . . , an). 

LEMMA 3.1. Suppose that A is separable and satisfies the metric approximation 
property, and that W is an M-ideal in V. Then the sequence 

0-+C(A, W) -+C(A, V)-*C(A, V/W)-*0 

is exact. 

Proof. It suffices to prove that (3.4) is surjective. For n = 0, this is trivial. 
For n > 0 this is a consequence of Lemma 2.7 and Theorem 2.6. 

Applying (3.2) we have 

COROLLARY 3.2. Under the hypotheses of Lemma 3.1, one has an exact sequence 

Q-+H°(A, W)->H°(A, V)->H°(A, V/W)-^H1(A} W) - > . . . . 

If if : A —> B is a homomorphism of Banach algebras and F is a 5-bimodule, 
then we may also regard it as an ^4-bimodule by letting a • v = <p(a)v and 
v • a = v<p(a). In particular, suppose that A C & (H) is a C*-algebra. Then we 
may regard & (H) ,Sf (H), and SS(H)/jf (H) as ,4-bimodules. A von Neumann 
algebra is said to be approximately finite-dimensional if it is generated by an 
increasing sequence of finite-dimensional subalgebras. We note that in par­
ticular, for a Calgebra A ^DJ^(H), the weak closure Â = & (H) is approxi­
mately finite-dimensional. 

COROLLARY 3.3. If A Ç â§ (H) is a separable nuclear C*-algebra and the 
weak closure Â is an approximately finite-dimensional von Neumann algebra, then 

Hn{A,&(H)/X(H)) ^ Hn+l(A,X(H)) 

for all n ^ 1. 

Proof. From [30, Theorem 6.1] or [34, Theorem 7.1; 18, Corollary 4.4 —see 
Math. Rev. for correction], we have that 

Hn(A,^(H)) = Hn(Â,&(H)) 

and the last group is zero (see [34, Theorem 4.5]). On the other hand, since A 
is nuclear it satisfies the metric approximation property (see § 1). From 
Corollary 3.2, and the above we have the exact sequence 

0 = Hn(A,&(H))^Hn(A,&(H)/X(H))->Hn+l(A,jf(H))-> 

Hn+l{A,^(H)) = 0; 

hence Hn(A, SB(H)/X\H)) ^ Hn+l(A,jf (H)) as desired. 

Remark 3.4. In the preliminary version of Connes' remarkable paper [15], 
it is stated that an injective von Neumann algebra on a separable Hilbert 
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space must be approximately finite-dimensional. We are convinced (as is the 
referee) that this must be the case, but we do not have access to the details. 
Assuming that this is true, we may delete the hypothesis of À being approxi­
mately finite dimensional from Corollary 3.3 and Proposition 3.6 below. To see 
this, note that from [12] the weak closure must be injective, hence approxi­
mately finite-dimensional from Connes' assertion. 

LEMMA 3.5. Suppose that <p : A —> B is a bounded surjective homomorphism of 
Banach algebras such that J = ker p has a bounded approximate identity and that 
V is a Banach B-bimodule. Then Hl(B, V) = Hl(A, V) and one has an iso­
morphic injection 

H2(B, V) <^H2(A, V). 

Proof. Consider the exact sequence 

0 -> C(B, V)^C(A,V)-^D->0 

where <p° = id : V —> V, D° = 0, and for each n > 0 

<Pn(f)(au • • • , an) = f((pau • • , <pan), Dn = coker <pn. 

pn is the quotient map, and the boundary maps on D are induced by those on 
C(B, V) and C(A, V). Then we have the exact sequence 

0 = H°(D) -*Hl(B, V) -^H^A, V) ->Hl(D) 

->H2(B, V)->H2(A, V) 

and it suffices to prove that Hl(D) = Z1(D) is zero. Letting / = ker <çx and 
38 e(J, V) be the maps in 38 (J, V) which extend to elements of 38 {A, V), we 
have an exact sequence 

0-*C\B, V)-^C1(A, V)-^38e{J, T0->0 

where p is the restriction map. Thus we may identify 

l 

C\A} V)?->D1 with C\A, 7 ) A ^ ( / , V). 

Given a cycle / G 38e(J, V) we may select / G Cl(A, V) with pl(f) = f. 
Since p2(df) = 0, of = <p2(g) for some g 6 C2(B, V). It follows that if ku 

k2 £ J then 

0 = g(0,0) 

= a/(*i, k2) 

= kj(k2) - / ( M 2 ) +f(k1)k2 

= - / ( * 1 * 2 ) . 

From the Cohen Factorization Theorem [14, Theorem 1], if k £ J then 
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k = &1&2, kt £ / ; hence 

f(k) = Jikih) = 0, 

i.e.,/ = 0, and the proof is complete. 

We note that for dual modules V, Sinclair has proved that Hn(B, V) = 
Hn(A, V) for all n (see [36; 17, § 4]). 

PROPOSITION 3.6. If A Q 3 (H) is a separable nuclear C*-algebra and the 
weak closure A is an approximately finite-dimensional von Neumann algebra and 
B is its image in 3 (H) ffl (H), then one has maps 

H'(B,3(H)/X(H)) ^H*(A,Jf(H)), 

H*(B,3(H)/X(H)) ^H*(A,X(H)). 

Proof. This is immediate from Lemma 3.5 and Corollary 3.3. 

We conjecture that if A C 3(H) is a separable nuclear C*-algebra, then 
Hn(A, 3f(H)) = 0, for n ^ 2. If this is the case it will follow that for a 
*-isomorphism <p from a separable nuclear C*-algebra B into 3 (H)/jf (H), we 
have Hl(B, 3(H)/X' (H)) = H2(B, 3 (H)/X (H)) = 0, since identifying B 
with its image and A with the inverse image in 3 (H), A will be separable and 
nuclear from [12, Corollary 3.3]. This in turn will imply that given a ^iso­
morphism ^ : B —> 3(H)/X(H) which is norm close to <p, then ^ will be 
equivalent to <p in the sense of [7, 8] (see [33, Theorem 2; 29, Theorem 5.1]). 
We note that B. E. Johnson has proved that Hn(X(H), X (H)) = 0 for 
n ^ 2 [28, Theorem 4.4]. 

4. Completely positive liftings. A unital C*-algebra B is said to be 
infective (resp., separably infective) if given unital C*-algebras (resp., separable 
unital C*-algebras) A C 5 (we assume the unit is the same), any completely 
positive map ç \ A -^ B has a completely positive extension ^ : S —> B. We 
note that if B C 3(H) is injective, then there exists a completely positive 
projection of 3(H) onto 13, hence 5 is injective in the sense of [10]. 

LEMMA 4.1. Suppose that B is a separably injective unital C*-algebra and that 
J is a closed two-sided ideal in B. If one can solve the completely positive lifting 
problem 

B 

A ->B/J 

for any separable C*-algebra A and completely positive map A —> B/J, then B/J 
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is also separably injective. 

Proof. This is immediate from the diagram 

S +B 

where the diagonal is a lifting and upper row is an extension of the diagonal. 

We let F 2 denote the free group on two generators and C*(F2) be the C*-
algebra generated by left translations on H = / 2 (F 2 ) . 

LEMMA 4.2. If B is a unital C*-algebra which has a unital trace and there is a 
unital *-isomorphism from C*(F2) into B, then B is not separably injective. 

Proof. From [10, end of § 3] there exist uni tary vu v2 Ç C*(F2) and a pro­
jection e £ 3$ (H) such tha t 

(4.1) e + V\*ev\ ^ 1 

e + v2*ev2 + v2*
2ev2

2 ^ 1. 

Let 5 be the C*-algebra generated by CZ*(F2) and e. If B is separably injective, 
then there exists a completely positive map ^ such tha t the diagram 

5 -

Ul 

C,*(F2) 

commutes. Since, in particular, 

the operators vf are in the multiplicative domain of SF, i.e., 

*(vt*s) = *(Vi*)*(s), ^(svt) = *(s)*(vt) 

for all se S (see [9, Theorem 3.1]). Apply ¥ to (4.1), 

V(e) + tti**(é?)tti ^ 1, 

*(e) + u2**(e)u2 + u2*
2*(e)u2

2 ^ 1, 

where the operators w4 = ^(Vi) are unitary. Lett ing r be a unital trace on B 
we conclude 2r(^f{e)) ^ 1 ^ 3 r ( ^ ( e ) ) , a contradiction, completing the proof. 

T h e direct sum M of all matrix algebras Mn (1 ^ n < oo ) is an injective 
von Neumann algebra. Lett ing rn be the unital trace on Mn, we define a trace 
Te on M by 

TU(T) = lim rw(rn), 
CO 

where we are using the generalized limit determined by a free ultra-filter w 
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on the positive integers (see [38, § 1]). We have that 

Ju = {r e M : T„(r*r) = 0} 

is a norm-closed two-sided ideal in M and M/Ju is a type 111 factor. We now 
appeal to the fact proved by Wassermann [38, § 1.6] that there is a unital 
*-isomorphism TV : Cj*(F2) —» M/Ja to conclude 

THEOREM 4.3. The diagram 

M 

does not have a completely positive lifting. 

Proof. From Lemma 4.2, M/Ju is not separably injective, hence the argument 
of Lemma 4.1 gives the desired result. 

We let C*(F2) denote the full group C*-algebra of F2 (see [22, § 13.9.1]). We 
are indebted to L. Brown for the following remarkable result. 

LEMMA 4.4. If J is a closed two-sided ideal in a unital C*-algebra B and one has 
a *-homomorphism w from C*(F2) into B/J, then one can always find a unital 
completely positive lifting in the diagram 

C*(F2) >B/J. 

Proof. Let U\, u2 G C*(F2) be the unitaries determined by the generators of 
F2. Then for each i, 

„ = r o *(«<)! 
LTT(W,*) 0 J 

is a self-adjoint unitary in 

M2(B/J) ^ M2(B)/M2(J). 

We may find unitary pre-images rt G M2(B) for the vt. To see this, let r( be 
a self-adjoint pre-image of vu and let rt = fi(r/) where ft is any continuous 
function from [— \\r/\\, | | r / | | ] into the unit circle such t h a t / ( — 1) = — 1 , 
/ ( l ) = 1. Letting 

= [at bA 
LCi dfj 
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we have that 

v(at) n(bi)~\ [" 0 Tr(Ui)~~\ . 

.v(ct) v(dt)j L»(««*) ° J 
The assignment 

[b{ a A _ [at 5,1 fo l l 
Ui^ld( cA ~ U dj Li oJ 

determines a representation of F2, and thus extends to a *-homomorphism 

¥1 : C*(F2)->M,(B). 

Letting 

E:Mt(B)-+B: [btj]^bn, 

it is evident that ^ = E o ^ 1 , is the desired lifting of TT. 

THEOREM 4.5. The diagram 

(4.2) 

C,*(F2)-
id 

+ G*(F2) 

where f is the natural surjective *-homomorphism, does not have a completely 
positive lifting 6. 

Proof. If 6 exists, consider the diagram 

C*(F2) y M 

C,*(F2) ¥MU 

where the top row is a lifting of w o f (by Lemma 4.4). Then the map ^ o 0 
is a lift of 7T, contradicting Theorem 4.3. 

Remark 4.6. One may also prove Theorem 4.5 by using a result of Berger, 
Coburn, and Lebow [5, Theorem 2.2] completing an argument of Douglas and 
Howe. Suppose that J is a closed two-sided ideal in a C*-algebra A and that 
there is a completely positive lifting for the diagram 

A 

A/J-+A/J. 
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Then given any C*-algebra B, the kernel of the m a p 

A ® m i n - B - * (A/J) ®minB 

is the norm closure of J ® B. Essentially the same argument shows tha t the 
kernel of 

A ®minA-+ (A I J) ® m i n (A/J) 

is the norm closure of / ® A + A ® / . T h u s if the completely positive lifting 
in Theorem 4.5 existed, then the kernel of 

C*(F2) ® m i n C * ( F 2 ) - > C , * ( F 2 ) ® m l n C , * ( F 2 ) 

would be the norm closure of 

ker f ® C*(F2) + C*(F2) 0 ker f. 

However, Wassermann has shown this is not the case [38, § 2.8]. 

Remark 4.7. I t is tempting to conjecture t ha t Cj*(F2) does not satisfy the 
metric approximation property. Owing to Theorem 2.6, it would suffice to 
prove tha t (4.2) does not have a contract ive lifting. Perhaps it is relevant tha t 
we can prove tha t there does not exist even a positive extension ^ in the proof 
of Lemma 4.2. 

Remark 4.8. I t would seem likely t ha t the Calkin algebra âê(H)ffl(H) is 
not separably injective. If this is the case, we will have a *-isomorphism from 
a separable C*-algebra into the Calkin algebra which does not have a com­
pletely positive lifting. Such an example would be of considerable interest in 
extension theory. 

Added in proof. Extending the technique of § 4, Joel Anderson has proved 
t h a t the Calkin algebra is not separably injective. 
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