ON THE (f, d,)-METHOD OF SUMMABILITY
GASTON SMITH

1. Introduction. Let f(z) be a non-constant entire function and let {d,}
be a sequence of complex numbers such that

The set of equations
Qoo = 1,

1.1) aw =0 (k0),

n

f) +d, = k
Il[f(l)+di]*:‘:1a""z (n>1)

ks

defines the elements of a matrix 4 = (a,), where n,2 =0,1,2,... .

DEerFINITION 1.1. 4 sequence {&}, or a series whose kth partial sum 1is ty, is
said to be (f, d,)-summabdle to t if and only if

lim Z Aur by = 1,

n-o0 k=0
where the ay's are defined by (1.1).

We obtain several known methods of summability as special cases of the
(f, d,)-method by placing certain restrictions on f(z) and {d,}. If f(z) ==
and d, = r, where r is any complex constant, we get the well-known Euler
method (1). If f(2) = \z,d, = n,and \ > 0, we obtain the Karamata-Stirling
method as defined by Vuckovic (6). If f(z) = zand d, = n we get the Lototsky
method as defined by Agnew (2). If f(z) = z and {d,} is any real sequence,
we get a method defined by Jakimovski (4). If f(z) = z and {d,} is any com-
plex sequence, we get a method defined by Cowling and Miracle (3).

In this paper we first obtain some regularity conditions for the (f, d,)-
method. Several necessary conditions and four sufficient conditions are
obtained. Then we derive some results concerning the effectiveness of this
method for summing power series. The paper is concluded with a discussion
of some special cases of the (f,d,)-method.

Throughout the paper we frequently make use of the following notations.
The symbol f(z) denotes an entire function. When 2z = x 4+ 7y we denote
Re{f(2)} by u(x, y) or u and Im{f(z)} by v(x, y) or ». The principal argument
of d, is denoted by 6,. Also, we let a + b = f(1), x, + ¥, = d,, and p, = |d,].
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2. Regularity conditions for the (f, d,)-method. It is well known that
a linear method of summability defined by the matrix C = (c,;) is regular
if and only if

@.1) 2lewl KM (n>0),
=0
(2.2) limey =0 (k> 0),
(2.3) lim Z Cr = 1,
N k=0

where M is a constant independent of #.

A. Necessary conditions for the regularity of the (f, d,)-method.

LemwMma 2.1. If
H (1 - a‘l) = O:
i=1
a; 1s real, and a; < 1 for all i, then there are infinitely many a's such that
a; > 0.

THEOREM 2.1. A necessary condition in order that the (f, d,)-method be regular
is that there exist a strictly increasing sequence of natural numbers {ny} such that

S £(0) + due ]
@4) L 17D + in
Proof. Suppose that the (f,d,)-method is regular. Letting z = 0 in (1.1)
we get
_ 17 [ 1@+ d,]
2.5) no = I=Il [f(l) vk
Since regularity condition (2.2) implies that
lim Qpo = 0,
it follows that
5 | £0) + di} _
(2.6) 11 [f(l) +a ="
The relation (2.6) implies that
= 1f0) +di|*_
@7) I io+al =°
so that
= [, _ [f@+d, }] _
(2.8) r=11 [1 {1 FOEY) 0.
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Let
[0 +d.|*
2.9 =1- 7.
29) “ ) + d
Using (2.9), the relation (2.8) may be written in the form
(2.10) [Ta—-a)=0,
=1

where a; < 1 and @, is real. By Lemma 2.1, there are infinitely many a;'s
which are positive. Construct a sequence {a,,} which consists of all of the
positive a;'s arranged according to increasing magnitude of the subscripts.
Consequently (2.10) implies that

fPI (1 - ank) = 0:

k=1

where 0 < a,, < 1. Hence by a well-known theorem on infinite products we
get

(2.11) >y = .
k=1

It follows from (2.9) and (2.11) that

-l

271
J:oo

CoroLLARY 2.1. If f(0) and f(1) are real, a necessary condition in order that
the (f,d,)-method be regular is that there exist a strictly increasing sequence of
natural numbers {my} such that

2 [10) + £ + 20| _
Z[ FO) + ]—i-

COROLLARY 2.2. A mecessary condition in order that the (f,d,)-method be
regular 1s that

so that the theorem is proved.

k=1

@) + dal > [£(0) + dil

for infinitely many values of n. If f(0) and f(1) are real, a necessary condition
for regularity 1is that

% > —3[f(0) + ()] > —f(Q)
for infinitely many values of n when f(1) > f(0) and

% < —3[f(0) +f(D] < —f(Q1)
for infinitely many values of n when f(1) < £(0).
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COROLLARY 2.3. A mecessary condition in order that the (f, d,)-method be
regular 1s that f(0) #= f(1).

We can now prove the main result concerning necessary conditions for the
regularity of the (f, d,)-method.

THEOREM 2.2. A necessary condition in order that the (f, d,)-method be regular
1s that

= 1
212) oA

n=1

Proof. Suppose that

= 1
PAOETA
is convergent. It follows that
(213) i 75y ] =

The relation (2.13) implies that there exists a positive integer NV such that
for all # > N we have

1 1
FO) + &l* < TF0) + du]°

It follows from Corollary 2.2 that
1f(0) + dul* < |f(1) + dal?

holds for the infinitely many values {n;} for which Theorem 2.1 is true. Hence

fO) +daf _ 1
HOEANTORA

for the infinitely many values {n;} for which Theorem 2.1 is true. Let f(0)
= ¢ + di and let

(2.14)

(2.15)

L. = If(l) + d’VLL‘ — lf(o) + dnkl
" ) + dul*

Now it follows from (2.14) and (2.15) that

@—0"+2a—cl+ (b—a)° +2b —d|
[f(0) + dul

From the supposition and relation (2.16) we find that

2 Lu
k=1

(2.16) L, <

converges. Therefore
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zm: lf(l) + dnk|2 _ if(o) + dnk|2
k=1 lf(l) + dnk|2

converges, which contradicts Theorem 2.1.

CoroLLARY 2.4. If d, # 0, a necessary condition in order that the (f,d,)-
method be regular is that

COROLLARY 2.5. A necessary condition in order that the (f,d,)-method be
regular 1s that

= 1
X T4 C

If we take f(2) = 2z in relation (1), then Theorem 2.2 becomes a known

result (3).

B. Sufficient conditions for the regularity of the (f, d,)-method.

LemMA 2.2, Suppose that d, is real, d, > 0, and that the Taylor expansion of
f(z) about the origin has non-negative coefficients. Then the (f,d,)-method is
regular if and only if

a 1
2T ta

Proof. The necessity of the condition follows from Corollary 2.5.

Sufficiency. Letting z = 1 in relation (1.1), we get

[ee]
Z Ang = 1;
%=0

so regularity condition (2.3) holds. Since d, is real and non-negative and the

coefficients of the expansion of f(2) about the origin are non-negative, it follows

that |am,| = @ Hence regularity condition (2.1) holds. Also since the co-

efficients of the expansion of f(z) about the origin are non-negative and f(z)

is non-constant, it follows that f(0) < f(1). Now choose € > 0 so that

f(0) 4+ 2¢ < f(1) and let C be a circle with centre at the origin such that
lf@) — f0)] < e for all t € C.

Hence for ¢ € C we have that

FO <fO) + e < f(1) — e
We may represent a,; in the form

1 (v f@) + d; dt

G = 27 C =1 f(l) + di.t_kﬁ

so that
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2r n
= lou| <3 R"f

Since 1 4+ x < ¢* for x real, we obtain
L@_Jr_d_l {_ M}
FOETAR R At )

S0 =)
<SSPV T a }

ft)+di|d0
@ +dd

S ¢
< &P\ T ) F di} :
Hence it follows that

BN - }
e < R expl ei=lf(1)+di .

Therefore
lima,; = 0,

n->xo

which proves the lemma.
The preceding lemma generalizes a result of Jakimovski (4).
THEOREM 2.3. Suppose that
i 1 = _(Imvdy)®

T e <

SO +dd - 7 &M + 4

and that the Taylor expansion of f(2) about the origin has non-negative coefficients.
Then the (f, d,)-method is regular.

Proof. Letting z = 1 in relation (1.1), we get

o0
Z Qi = 1;
k=0

so regularity condition (2.3) holds. Let C be any circle with centre at the
origin. The elements a,; are given by the formula

1 f@&) +d,| dt
(2.17) Qne = 5 cI;I [}‘(1) +d:| T -

By expanding the product on the right of (2.17), it follows that
T+ dd o = 50z [ IGOF + FOT @+ dat o+ d)

FHOF G dat . durde) + @ d)) .
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Since [f(#)]" is an entire function, we may write,

(2.18) Fer = E Pint.
It follows that
(219) 1—[1 [f(l) + dz] Auie = Plcn + (dl + d2 + CEEIEY + dn)Pk,n—l
+ (dide+ ...+ dpadn)prms2t ...+ [@ida...dy)pro.

Therefore

(2.20) ;;) |G| IJI If1) 4+ di

o)

< ;} {Pkn + (Pl + ...+ Pn)Pk.n—l + ..+ (Pl e Pn)PlcO}.

Let B = (bx) be the matrix corresponding to the (f, p,)-method. Hence

@21 % bl TT U0 + 0

k=

=

=2 (Pt o1+ o+ )P+ -+ (o1 0)Pro}

k=0
Now from relations (2.20) and (2.21), it follows that

el

e22) 3 laal TL O +ad < 35 ol TT 1) + 00

However, since all of the elements of B are non-negative,

The relations (2.22) and (2.23) imply that
. 7(1) + pi

Since 1 + x < ¢€® for all real x and f(l) + o > lf(l) + d,|, it follows that

f@) + pu f) + p, |?
TOETAR [lf(l) T d,,|]

(2.25)

F) + py ]21_

S
<expy—l+ [lf(l) ¥ d)

(Im+/d,)* }
< e"p{‘*“' 7 + &
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From (2.24) and (2.25) we obtain

- "(mwo}
(2.26) ;} lan]| < exp{éla 24 D) + di]
It follows from (2.26) and the hypothesis that there exists a real number M
such that
(2.27) 2 law < M

for all #. So the regularity condition (2.1) is satisfied.
Now from (2.19) and the analogous relation involving &, we find that

7(1) + p;

The relation

2 T Ta
implies that
o 1 ~
= fQ) + dal +2/Q)

It follows that
= 1
(229) A
since
1 1
FO+ 18] 7 T + &l + 27
By Lemma 2.2 and relation (2.29), we find that the (f, p,)-method is regular

so that
lim b, = 0.
N0
Moreover (2.25) implies that
ﬁ Z(l) + b
S [f(1) 4 dy
is bounded. Therefore we have
lim Aur = 0,
n->00
which proves the theorem.
COROLLARY 2.6. If
= 1 _ 2
”Z=1 _—lf(l) T dnl = o, n;l 0,  converges
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and the Taylor expansion of f(2) about the origin has real non-negative coefficients,
then the (f, d,)-method is regular.

Proof. Since the inequality x? 4 2 cosx — 2 > 0 holds for all real «x, it
follows that

(2.30) —2ap, cos 8, + 2ap, < ap, 0,2,

where @ > 0 is valid for all #. Using (2.30) and the fact that there exists a
positive integer N such that cos 6, > % for all # > N, we obtain

Im+/d, —2ap, cos 0, + 2ap,
2.31 4 =
(@231) |70 + 4, a+ 4
< apy 0,
a* + 2ap, cos b, + p,°
apn 0n2 2

2apycosb, - "

Now we can apply Theorem 2.3, which completes the proof.

COROLLARY 2.7. Suppose that
© 1 2

bn
'; () +da| ® 2 o converges

n

where the sum on the right ranges over all n for which p, is positive, Re{d,} >
—f(1)/2, and the Taylor expansion of f(2) about the origin has real non-negative
coefficients. Then the (f, d,)-method is regular.

COROLLARY 2.8. Suppose that
s~ 1 = .
nz=1 FO +da ~ ,; pn 0n" converges,

210, < 7, and the coefficients of the expansion of f(2) about the origin are real
and non-negative. Then the (f,d,)-method is regular.

3. Power series.

THEOREM 3.1. Suppose that

Zi=oo, lim 6, = 0, lim p, = =,
pn n—co n—-co
where the sum ranges over all n for which p, is positive. Then the (f, d,)-method
sums the geometric series

[

(3.1) > 5

k=0

to (1 — 2)7! for all values of z such that Re{f(z)} < Re{f(1)}.
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Proof. The partial sums of (3.1) are given by
(3.2) Si(2) = (1 —2)71 — (1 — )7t ght1,
Let

oo}

O'n(Z) = LG() Qnk Slc(z)'

We may represent o,(2) in the form

1 z | fle) +d;
(3.3) "n(z)_l_z_1~—z1,;11[f(1)+di]'

It is sufficient to show that

= | fG) + dnJ _
I [f(l) ¥a,)=°
for all z such that Re{f(2)} < Re{f(1)}.
Since 1 4+ x < €* for real x, it follows that

;f(Z) + d, 2< . {2uxn + 20y, — 2ax, — 2by, + H}
) +dn P HOEXAk

(3.4)

onl(# — @) cos 8, + (v — b) sin §,] H
< e"p{ F@) + dal” } IOE

where H = u? 4+ 9> — a? — b2 Using the hypothesis, we find that

lim pul(u — @) cos 6, + (vo— b) sin 6,] _
N0 If(l) + dnl—

U —a
and

: Hp, _
hm o) +aF = %

Hence there exist a K > 0 and an integer N > 0 such that for all n > N

we have
- -1 pal(u —a)cosb, + (v —b)sinb,] H
G =Ko > D) + T2 F
From (3.5) it follows that
(36) [re] < epl-Kei'l

for all # > N. Therefore by (3.6) we obtain

1) + d, ,(2) + dy fa }
Q) +d, }(1>+dn|' exp) 2 Ko’ -

N-—-1

<TI

i=1

©

(3.7) I1

n=1

https://doi.org/10.4153/CJM-1965-051-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1965-051-1

516 GASTON SMITH

Since

we conclude from (3.7) that
= | 1) + d]
IT [f(l) 14,170

THEOREM 3.2. Suppose that

This completes the proof.

P;l=°°7 lim 6, = 0, limpn=°°’

n—>c0 n-co
where the sum ranges over all positive p,. Then

limo,(z) = »
n->co

for all z such that Re{f(2)} > Re{f(1)}, where 0,(2) and Sy(z) are defined as
in Theorem 3.1.

Proof. Assume that z is given such that Re{f(2)} > Re{f(1)}. It is sufficient
to show that

T | f@) +da |
(8.8) 11 [f(l) T dn] =
Since

limé, =0 and limp, = o,
n->co n—>co

we have

lim{ FG) = dul® = If() + dul } =

Hence there exists an integer N > 0 such that

fG) + d,
‘f(l)+dn > 1
when n > N. It follows that
5 | fe) +d,
nI_=Il f) +d,
if and only if
= @)+ d, 2]_ .
(3.9) 2, [1 f)+d 1=

We note that

RIGETAL
F(0)+d,

_ 2p,(u — a) cos 6, + 2p,(v — b) sin 6, + H
If(1) + du|®
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where H = u? + v? — a? — b2 Using the same procedure as in the proof of
Theorem 3.1, we find that

2Pn2 [(u — a) cos 6, + (71 — b) sin 0"] + an

lim =2(u — a).
fim D + 4P (w=a)
Hence there exist a K > 0 and an integer N > 0 such that for all # > N
we have
20,l( — a) cosb, + (v — b)sinb,] + H _1
(8.10) HOEXA: > Ko
Since

an-l = @,

the relation (3.10) implies that

= @) +d, ] .
2, [‘” TOETAR s
By (3.9) we have
= |f@) +da|®
I fo+a
so that
@.11) I G5 -

The asserted result follows from (3.11).

THEOREM 3.3. Suppose that z is given such that |f(z) + p| < |f(1) + p| and
that

limp, =p and limé, = 0.
n->c00 n-co

Then the (f,d,)-method sums the geometric series (3.1) to (1 — 2)~L

Proof. We follow the same procedure as in Theorem 3.1. Thus we have

(3.12) oa(2) = 5 i : H Bﬁ))ii]

2 1—'Zi=1

Let H = u? 4+ 92 — a? — b2 Since 1 + x < &* for real x, we obtain

&) +d, 2p,[(4 — @) cos 6, + (v — b) sin §,] + H}
F+d,) S e"p{ 2[f(1) + 4. :

It follows from the hypothesis that

. 2pJ(w —a)cosb,+ @ —b)sinb,]+H 2pu—a)+H
Jim SOETA; = o+ <°

Hence there exist a K > 0 and an integer N > 0 such that
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2pn[( — @) cos 0, + (v — b) sin6,] + H

(3:19) 2070 + P <K
for » > N. Hence we obtain the relation
mo 1@ +d| _ T e +dy {_ 2 }
I oval <1 foral = -5k
so that
= [ 1) + dn] _
11 [f<1>+d,, =0

THEOREM 3.4. Suppose that
lim p, = p, lim 6, = 0, p # —f(1),

and that z is given such that |f(z) + p| > |f(1) + p|. Then

lim o,(z) = .

Proof. Since |f(z) + p| < |f(1) + p|, there exists an a such that 0 < @ < 8
and
(3.14) If @@ + pl> > |fQ) + o A + 20).

Let H = u? 4+ v2 — a? — b2 It follows from (3.14) that

H > 2 — a) + 22 |f(1) + pf?
so that

(3.15) ) + dal? — 1f(1) + df? > 2(u — @) (ou c0s 6, — p)

+ 2p,(v — b) sin 6, + 2 [f(1) + p|2
By hypothesis there exists an integer N > 0 such that for > N
(3.16) |2(u — a)(p,cos 6, — p) + 2(v — b)p,sin 8] < a|f(1) + pl2
The relations (3.15) and (3.16) imply that

(3.17) If(2) + dul? — |f(1) + du]? > a|f(1) + p|%
Since 0 < a < 8, it follows from (3.17) that
.| fG) +d,
im0y, > He/A>1
so that we have
= 1 f(e) +du|
(8.18) I i+,

It follows from (3.18) that
lim 0,(2) = o

and the theorem is proved.
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THEOREM 3.5. If
lim p, = 0,

then the (f, d,)-method sums the geometric series (3.1) to (1 — 2)~1 for all z such
that |f ()| < [f(D)].

Proof. 1f f(1) = 0, the result follows immediately since there is no value
of z for which |f(z)| < |f(1)|. So for the remainder of the proof we may suppose
that f(1) 0.

Since 1 4+ x < €° for real x, we get

) + da {H + 20l (4 — @) c0s 6, + (v — b) sin 6,] }
f) +d, 2[f(1) + do* ’
where H = u? 4 9?2 — a® — b2 From the hypothesis we obtain
lim H 4 20,[(u — a? cos B, + (v — b) sin 6,] __H
o 2[/(1) + dl* 2fF
Hence there exist a K > 0 and an integer N > 0 such that for all » > N

H + 2p,[(u — a) cos 6, + (v — b) sin 6,]
21f(1) + duf’ '

< exp

(3.19) -K >

From (3.19) it follows that

f(Z)+d1| Nt
f+a, <11

i=1
which implies the theorem.

n

I1

i=1

@) + d,
1) +d;

exp{—anK},

=N

THEOREM 3.6. Suppose that
lmp, =0

and that z is given such that |f(2)| > |f(1)|. Then

lim 0,(2) = .
N->00

Proof. From the hypothesis it follows that
lim {[f() + dul* = [f(1) + dul’} = If@)* = FO)[* > 0.

Hence there exist an a« > 0 and an integer N > 0 such that
f@) +ds
— 1
[TOETARSER

for n > N. Therefore
= @) +d| _
I ioval ==

from which the theorem follows.
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In this section we have determined certain domains in the complex plane
for which the (f, d,)-method of summability sums the geometric series (3.1)
to its analytic continuation (1 — z)~!. There are several known results (5)
which give information concerning the efficiency of a linear method of sum-
mability for summing a power series with positive radius of convergence to
its analytic continuation. By using results of the type found in (5) and the
theorems of this section one can determine a domain for which the (f, d,)-
method sums a power series with positive radius of convergence to its analytic
continuation.

4. Special cases.

A. Let f(2) = ¢**V, where u is real and « # 0, and let d, = n — 1 for
n> 1.

THEOREM 4.1. The (e*l*"Y, n — 1)-method is regular if and only if u > 0.

Proof. If u > 0, then the (e*l*1,#n — 1)-method is regular by Theorem
2.3. Now suppose that # < 0. By substituting ¢**=9 for f(z) and » — 1 for
d, in (1.1) and then letting z = 0, we obtain

oo = 1 [ CE=L]

k=1
Since # < 0, we have a,o > 1 for each #. Hence the regularity condition (2.2)
is not satisfied. Therefore if the (e*[*1, # — 1)-method is regular, then z > 0.
Since the hypotheses of Theorem 3.1 are satisfied, it follows that the
(e*>-1, 5 — 1)-method sums the geometric series

4.1) >
n=0
to (1 — 2)~! for all z such that
Refe**V} < 1;
that is, for all values of z which satisfy
4.2) eV cosuy < 1.

The domain in which the (e“*~1,# — 1)-method sums the geometric series
is indicated in Figure 1.

THEOREM 4.2. The (e, n — 1)-method of summability provides a method
of analytic continuation of the geometric series (4.1) to (1 — 2)~! for all z 5~ 1.

Proof. The proof consists of showing that given any 2z £ 1, a » can be
chosen so that the (¢*>~11, # — 1)-sum of the geometric series (4.1) is (1—3z)~L
Assume that 2z is given.

Case 1. y # 0, x arbitrary. Choose # so that
/2 |yl < u < 3w/2 |yl
Hence 7/2 < |uy| < 37/2 and therefore e*“—V cos uy < 1.
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z -plane

FIGURE 1
(The unshaded part of the plane is the domain of summability.)
Case 2. ¥ = 0,x < 1. Choose any positive #. Then €D cos uy < 1.
Case 3. y = 0,x > 1. Choose any negative #. Then e*®— cosuy < 1.
B. Let f(2) = ¥V, where u is real and u# 0, and let d, = ¢ > 0 for
all #.
THEOREM 4.3. The (¢"1*~1, q)-method is regular if and only if u > 0.

The proof of Theorem 4.3 is analogous to that of Theorem 4.1. It follows
from Theorem 3.3 that the (e*!*~11, g)-method sums the geometric series (4.1)
to (1 — z)~? for all z such that

le“=D + ¢l < 1 + q.

THEOREM 4.4. If u > 0, the domain for which the (¢*1>~1, q)-method sums the
geometric series (4.1) to (1 — 2)~! contains the half-plane Re{z} < 1 and is con-
tained in the domain defined by Re{e**—V} < 1.

Proof. Suppose that Re{z} = x < 1. Then
!eu(z—l) + ql < eu(:c—l) + q <1 + q,

which implies that the (¢*l*~1, g)-sum of the geometric series (4.1) is (1 — 2)~L
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Suppose that Re{z} = x > 1and ¢*® D cos uy > 1. Then the pointz = x + 7y
is not in the domain of summability since

4.3) e 4 2¢e*D cosuy > 1 + 2g.

The relation (4.3) implies that

= + gf* > |1 + gf?
so that we obtain

(4.4) e + gl > 1+ ¢.

If x > 1, then each of the relations (4.3) and (4.4) can be replaced by strict
inequality and the desired result follows from Theorem 3.4. If x = 1, then
cosuy = 1 so that neither the (e*l* 1, ¢)-method nor the (e**~1,n — 1)-
method sums the geometric series (4.1) to (1 — 2)~! for such a 2.

TuroREM 4.5. If p > g, the domain of summability in which the (e**~1, p)-
method sums the geometric series (4.1) includes the corresponding domain of
summability of the (e*1*~Y, q)-method.

Proof. When x < 1, both methods under consideration sum the geometric
series (4.1) to (1 — 2)~'. Neither method sums the geometric series to
(1 — 2)7! for a value of z for which e*®=Y cosuy > 1. So assume that
@1 cos uy < 1. The domains of summability corresponding to p and g are
defined by the inequalities

(4.5) e 4 2p[e** D cosuy — 1] — 1 <0
and
(4.6) el 4 2g[e**D cosuy — 1] — 1 <0

respectivelv. But since p > q and ¢V cosuy — 1 < 0,
2q[e*™V cos uy] > 2p[e*™=D cos uy].
Therefore if z is a point such that (4.6) is satisfied, then (4.5) is satisfied.
Hence the theorem follows.
C. Let f(2) = az™, a > 0, m a positive integer.

THEOREM 4.6. Let a be given such that 0 < a < m/2. Suppose there exist an
e > 0 and an integer N > 0 such that 6, > o and p, > € for all n > N. Then
the (az™, d,)-method is not regular.

Proof. Suppose that the (az™, d,)-method is regular. Define \, = p, exp (¢8,),
where 8, = 0, — «a and define 4,; by the relations

boo = 1,
4.7) by, =0 (k # 0),
T et | _sn g
Ex a4\ _,;,bnkz (n>1).
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The elements a,; of (1.1) can be written in the form

A o ot +d,| dt
"k_21r’l; ¢ i=1 a+d; va

where f(z) is replaced by az™ and C is any circle with the origin as centre. Inte-
grating we get

4.8) Ope = _n_a_ [ E dide™ ... dnsn:] ,

where s; = 0 or 1 and the sum is taken over all s,’s for which
si+...4+ s, = (mn — k)/m.
Similarly,

ak/m )
b = | 2 "L d," TR,
I;Il (@+ M)

This implies that

(4.9) A3 AL d = |1;,,,C|IA_I1 la 4+ 4.
Hence by (4.9) and (4.8) it follows that

mn n a + ki mn

nk| = 7 bn

:L:‘o 0 g la + d; kz=0 15
so that
(4.10) kz=)0 || > [l |4
since

mn mn

k=0 k=0
The assumption that (ez™, d,) is regular and relation (4.10) imply that
a + ki
a+ d,;
is a bounded function of #. By hypothesis and since —= < 6, < =, there

exists a positive integer NV such that @ < 8, < = for all # > N, which implies
that 6, > B8, > 0. Hence

n

i=1

la 4+ Nf2 > la + daf?

so that
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z a + )\1
LII a+ dy
is a monotone function of # for all # > N. Hence
z a + )\1
g a4+ d;
is bounded if and only if
© a+ Ai 2
(4.11) r=11 Tt d

converges. But (4.11) converges if and only if

f[—1+ 2+ A

2
=1 a+d; ]
is convergent. If # > N, then a < 8, + 6, < 2r — a and so
sin[(8, + 6.)/2] > sin(a/2).
It follows that

a4+ M\|*  2ap, (cos B, — cos by,

a+ d, B 02 + 2ap, cos 0, + Pn2

4ap, sin®*(a/2) . 2 Pu) @
@tpm)? ° 4sin’(a/2) (I + pa/a)®*"

By supposition (az™, d,) is regular, which implies that

(4.12) -1+

>

Since, by hypothesis, p, is bounded away from zero, it follows that

. Pn/a = o
2 T o= =

It now follows from (4.12) and (4.13) that

o [ mlj
;1': 1+ a+dil

Hence by (4.10) and (4.11) we find that

mn

; ||

is not uniformly bounded for all #, which proves the theorem.

(4.13)

= oo,

The following example shows that in Theorem 4.6 the restriction that p,
be bounded away from zero cannot be removed.
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ExamLrE 4.1. Let
(4.14) d, = n-2 et/

for all positive integers n and let f(z) = 2. Hence

=, 1 ) 1
DI AP Dl wrm s

and

)

Pn B = (1r2/16) Z n? = =*/96.
n=1 n=1

Thus it follows from Corollary 2.8 that the corresponding (2, d,)-method is
regular.

Example 4.1 furnishes us with a counterexample to two statements made
by Cowling and Miracle (3, Theorems 2.2 and 2.4). By replacing = by —=
in (4.14), we get a counterexample to (3, Theorem 2.3).

Even if p, is bounded away from zero, the (az™, d,)-method may be regular
when

lim @, # 0

n->c0

as the following example shows.
EXAMPLE 4.2. Let f(2) = z and let

__ yn if n is not the square of a positive integer,
" n-exp{(—1)"} if n is the square of a positive integer.

Hence
on ] oo

1
I AP Y i

n=1 n=1

oo

and

2
converges. It follows from Corollary 2.7 that the corresponding (z, d,)-method is
regular.

Example 4.2 answers the open problem in (3, p. 424): to find a sequence
{d.} of type 2 such that

lim arg (d,) # 0

and such that the (2, d,)-matrix is regular; or to show that no such sequence
exists.
TuEOREM 4.7. Let a be given such that —w/2 < a < 0. Suppose there exist

an € > 0 and an integer N > 0 such that 6, < o and p, > € for alln > N. Then
the (az™, d,)-method is not regular.
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THEOREM 4.8. Suppose that 0, = a for all n and that there exist an ¢ > 0
and an integer N > O such that p, > € for all n > N. Then if the (az™, d,)-
method 1s regular, a = 0.

D. Let f(z) = 2™, where m is a positive integer, and let d, = n — 1 for all
positive integers #.

ProPERTY 4.1. The (2", n)-method is regular for each m.

PRrOPERTY 4.2. The (2", n)-method sums the geometric series to (1 — 2)~! for
all z which satisfy Re{z"} < 1.

We notice that the (2™, #)-method of summability sums the geometric series
to (1 — 2)~! in the generalized Borel polygon. When m = 1, we get the
Lototsky method (2).
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