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ON THE CLASSIFICATION OF BIORTHOGONAL 
SEQUENCES 

WILLIAM H. RUCKLE 

The work of various authors (e.g. Frink [3] and Markushevitch [7]) suggests 
the possibility of studying complete biorthogonal sequences in Banach spaces 
as a generalization of orthogonal families of continuous functions. But except 
for the case where the complete biorthogonal sequence is a Schauder basis such 
studies have not led to a very rich theory. The main reason for this is that an 
arbitrary complete biorthogonal sequence is not likely to have many helpful 
properties. For instance, in every separable Banach space X one can find a 
complete biorthogonal sequence {ei} E^ which is not one-summable. (See 
Definition 1.1 (1) and the second paragraph of Section 5.) This means there 
is x Ç X such that x is not even in the closed linear span of 

| ^ Ei(x)ei :n = 1, 2, . . . j . 

A second reason is that even rather mild conditions on a complete biorthogonal 
sequence results in the space having the approximation property or the metric 
approximation property. 

This paper continues the work begun in [8] on the series summability of 
biorthogonal sequences. In Sections 1 and 2, eight formally distinct properties 
of a complete biorthogonal sequence are defined and equivalent characteriza­
tions given. All eight of these properties are independent of the order of the 
biorthogonal sequence, and they are all preserved by subsequences (Section 3). 
In Section 4 there are some criteria for the existence of various types of 
sequences. 

1. Classification of biorthogonal sequences according to series sum­
mability. Throughout this paper [e^ Et] will denote a complete biorthogonal 
sequence in a Banach space X. That is, [et] the linear span of {et} is dense in X, 
{Et} is total on X (Et(x) = 0 for each i only when x = 0), and Et{ej) = h%u. 
The symbol Et® ej denotes the one-dimensional linear mapping from X into X 
whose value at x £ X is Ei{x)ej. For A, a linearly independent subset of X, 
K(A) will denote the set of all non-negative finite linear combinations of vectors 
in A, i.e., the cone determined by A. 

1.1 Definitions. Let {eu Et} be a complete biorthogonal sequence in a Banach 
space X. We shall say that {eu Ei} is 
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(1) K-series summable (for K a positive integer) if for each X-element subset 
of X the identity mapping from X into X lies in the closure of [{Et ® et\] 
with respect to the non-Hausdorff) topology of operators given by pointwise 
convergence on that set. 

(2) Finitely series summable if the identity operators from X into X lies in 
the strong operator closure of [{Et ® e^]. 

(3) Series summable (cf. [8, Theorem 6.4]) if X has the approximation 
property and the identity mapping from X into X is in the ^-closure of 
[{Et 0 et}] in L(X) (considered as a subspace of the dual space of N(X) the 
nuclear mappings from X into X). 

(4) Strongly series summable (cf. [8, Theorem 7.2]) if the identity mapping 
from X into X is the limit of a sequence in [{Et 0 et\] with respect to the 
strong operator topology. 

1.2 THEOREM. Let {eu Et} be a complete biorthogonal sequence in a Banach 
space X. 

A. The following statements are equivalent: 
(1) {eu Ef} is one-series summable. 
(2) If J is any set of indices then 

[{ej'.j G /}] = {x 6 X:E,(x) = 0, j g / } . 

(3) For x in X and x! in X*, Et(x)xf (et) = 0 for each i implies x!{%) = 0. 
(4) For each one-dimensional continuous linear mapping T from X into X, 

Ei(Tei) = Ofor each i implies T has zero trace. 
(5) For each x' in X* there is a BK-space SX' and a continuous linear functional 

Ex> on Sx> such that (xf (e^Eiix)) Ç Sx> and 

EX'((x'(et)Ei(x)) = x'{x) 

for each x in X. 
(6) For each x in X there is a sequence {7V20} of finite-dimensional linear 

mappings which are diagonal with respect to {et, Et) 

(i.e.,TnW(y) =Z%ia^EJ(y)ej) 

such that limw Tn
(x)x = x. 

B. The following statements are equivalent for K a positive integer: 
(1) {eit Ei) is K-series summable. 
(2) For {xi, . . . , xM} C X and {xi, . . . , xM') C X* with M ^ K, 

Y.n=iXn'(ek)Ek(xn) = 0 

for k = 1 , 2 , . . . implies 2iJLi xn
r (xn) = 0. 

(3) For each finite-dimensional continuous linear mapping T from X into X 
of rank ^ K, Ei(Tet) = Ofor each i implies T has zero trace. 

(4) For {xi, . . . , xM
f) C X* with M S K, there is a BK-space S and a con­

tinuous linear functional E on S such that (xn
f (ei)Ei(x)) G S for n = 1, 2, . . . , M 
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and each x Ç X and 

E(xn'(et)Et(x)) = xn'(x), n = l,2,...M. 

(5) For each K-dimensional sub space F of X there is a sequence of finite 
dimensional diagonal linear mappings {Tn

( F)} such that 

lim TnF)y = y 
n 

for y in F. 
C. The following statements are equivalent: 
(1) {eif Ei) is finitely series summable. 
(2) For {xi, . . . , xM} C X and {xi, . . . , XM'} C X*, 

Hn=iXn
f{ek)Ek{xn) = 0 

for k = 1, 2, . . . implies Y^n=\ %n (xn) ~ 0. 
(3) For each finite dimensional continuous linear mapping T from X into X, 

Ei(Tei) = 0 for each i implies T has trace zero. 
(4) For every finite subset {xi , . . . , xM'} of X* there is a BK-space S and 

a continuous linear functional E on S such that (xn
f (et)Ei(x)) G S for n = 1, 2, 

. . . , M and each x G X and 

E(xn
f(ei)Ei(x)) = xn'(x), n = 1, 2, . . . , M. 

(5) The identity operator from X into X lies in the weak operators closure of 
[{Ei ® et}]. 

(6) For any finite-dimensional subspace F of X there is a sequence {Tn
(F)} of 

finite-dimensional diagonal linear mappings such that 

lim Tn
(F)y = y 

n 

for y (z F. 
D. The following statements are equivalent: 
(1) {eit Ei} is series summable. 
(2) X has the approximations property, and if T is a nuclear mapping from X 

into X for which Ei(Tei) = Ofor each i, the trace of T is zero. 
(3) X has the approximation property, and for each nuclear mapping T and 

each e > 0 there are numbers a\, a2, . . . , an such that 

tr(T) - £ aiEiiTd) < e. 

(4) There is a BK-space S containing all sequences of the form (xf (et)Et(x)) 
with x in X and x' in X* and a continuous linear functional E on S for which 

E(xf(ei)Ei(x)) = x'(x). 

E. The following statements are equivalent. 
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(1) \et, Et] is strongly series summable. 
(2) The identity mapping from X into X is the limit of a sequence in [{E t ® e{} ] 

with respect to the weak operator topology. 
(3) X has the approximation property and the identity mapping from X into X 

is the limit of a sequence in [{Et ® et}] in the w*-topology on L(X). 
(4) X has the approximation property, and there is a row finite matrix (antk) 

such that for each nuclear mapping T from X into X 

t r ( r ) = lim X) ankEk(Tek). 
n k 

(5) There is a row finite matrix (ank) such that for each x £ X and x' £ X* 

x' (x) = lim X) ankEk(x)x'(ek). 
n k 

(6) There is a row finite matrix (ank) such that for each x £ X 

x = lim X ctnkEk(x)ek. 
n k 

Proof of A. (1) <=> (6) follows since L(X) with the topology of convergence 
on the set {x} is first countable . 

(6) => (3). Given x in X and x' in X* such t h a t Et{x)xf (et) = 0 for each i, 
let {Tn

{x)\ be a sequence of finite dimensional diagonal mappings for which 
limw Tn

(x)x = x. Then xr(x) = limw x'(Tn
{x)x), bu t since Tn

(x) is diagonal, 
x'(Tn

{x)x) = 0 for each n so t h a t x ' (x) = 0. 
(3) <^ (4) is clear. 
(3) => (2). I t is not hard to see t h a t the set on the left hand side of (2) is 

always contained in t h a t on the r ight hand side. 
Suppose there were a point x in X such t h a t Ej(x) = 0 for each j d J bu t 

such tha t x (L [{e/ . j £ / } ] . There is then x' in X' such t h a t x'{ef) = 0 for 
j (z J bu t x ' (x) = 1. W e should then have Ef(X)xf(et) = 0 for each i so t h a t 
by (3), x' (x) = 0, a contradict ion. 

(2) =» (3). For x £ X and x' £ Xf let J = {j:Ej(x) ^ 0}. Then 
x £ [{ej'j £ / } ] , bu t by the hypothesis of (3) xf(ef) = 0 for each j £ I , Hence 
x' (x) = 0. 

(3) => (5). For x' £ X ' , let 5 ^ consist of all sequences (xf (e^E^x)) as x 
ranges over X. Then Sx> is a jBi£-space with norm 

||(a*)ll = sup {| |x| |:x'(£*)£*(#) = ai for each i\. 

Define Ex> on Sx
f by Ex>(x' (e^E^x)) = x ' (x ) . By (3), I v is well-defined; it is 

obviously continuous and linear. 
(5) => (3). If x £ X and x' £ ^ are such t h a t Ei(x)x'{e%) = 0 for each i 

t h e n x ' ( x ) = Ex>(0) = 0. 

(2) => (6). For a given vector x Ç I let J = { j :£*(*) ^ 0}. T h e n 
x £ [{^j-i G / } ] so there is a row finite matr ix (bnk) such t h a t bnk = 0 iî k d J 
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and 

lim ]T ante*; = %• 
n k 

Define ank to be bnk/Ek(x) if Ek(x) ^ 0 and 0 otherwise and define 

Tnix\y) = £ ankEk(y)ek. 
k 

Then lim„ Tn
(x) (x) = x. 

We omit the proof of B which is like that of C. 

Proof of C. (2) ^ (3) is obvious. 
(2) => (4) Let S consist of all sequences of the form Ç£™=iXn

f (e t)E i{x))°?=i as 
x ranges over X. Then 5 is a BK-space with the norm 

C M | 

| | / | | = inf \ \\x\\ : YJ Xn{ei)Ei(x) = tt for each it . 

Define E on 5 by 
M M 

E(t) = S xn{oc), X Xn(ei)Ei(x) = ^ for each z. 
7 1 = 1 W = l 

Then E is well defined by (2) and obviously continuous and linear. Moreover, 
for each x £ X 

E(xn'(ei)Ei(x)) = Xn'ix) for » = 1, 2, . . . , M. 

(4) =* (2). For each n = 1, 2, . . . , M, let *<»> = ( ^ ( e ^ f e ) ) ^ ; then 
each $<»> G 5 and by (3), J2n=i s(n) = 0. Thus E(Zn=i s(n)) = Zn=i E(s™) = 

(1) <=> (2) <=> (5). This follows since the topological conjugate space of L(X) 
with the strong and weak operator topologies is represented by the space of 
finite dimensional linear mappings from X into X by means of the bilinear 
form 

/ M \ M 

> n=l ' n=l 

See Theorem VI. 1.4 of [2] and its proof. 
(1) <=» (6). This follows from the definition of strong operator topology. 

Proof of D. (1) <=> (2) If X has the approximation property then L(X) is 
isometric to a subspace of the conjugate space of N(X) the space of nuclear 
mappings in X. 

(2) <=» (3). This follows by definitions of w*-closure 
(1)=» (4). Let S = {(Ei(Tet)) : Tis a nuclear mapping from X into X}, and 

define £ on 5 by 

E(Et(Tet)) = tr(T). 
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Then S and E have the required properties. 
(4) =» (1). For each xr in X' define Tx> from X into S by 

J. %'% -~~ X y(yïJJ2Jî\XJ• 

Then since 5 is a BK-spâce, each Tx> is continuous by the Closed Graph 
Theorem. The correspondence x' —•» TV is also continuous by the Closed 
Graph Theorem so there is M > 0 such that 

(*) ||zv*|| s M\\X\\ \\x% x e x, %' e x*. 

Define F from N(X) into S by 

F(T) = Z r^Cy») = ( z y/(e«)£«(y*)) 
A; \ A; / < 

when T = £ * y/(a)?* and £ * ||;y/|| \\yk\\ < oo. 
The series converges for each T in N(X) because of (*). Moreover, F is well 
defined because if 

Z yk&hk = Z zk'(x)zk 
k k 

for each x in I we have 

Z yk(ei)Ei(yk) = Z ZkieJEiizjt) 
k k 

for each i. The mapping F is obviously linear; it is continuous because 

\\F(T)\\ ^ M\\T\\N 

by (*). 
We can now define a continuous linear functional on N(X) by E(F(T)). 

This functional coincides with the trace on finite dimensional operators so X 
has the approximation property by [4, Proposition 35]. Furthermore, if 
EiiTd) = 0 for each i, F(T) = 0 so tr (T) = E(F(T)) = 0. 

Most of the implications in E follow from [8, Theorem 7.2], and we omit its 
proof. 

2. Classification of biorthogonal sequences according to positivity. 

2.1 Definitions. Let {et, Et} be a complete biorthogonal sequence in a Banach 
space X. We shall say that {eu Et) is: 

(1) K-positive (for K a positive integer) is for each X-element subset of X 
the identity mapping from X into X lies in the closure of /<{£* ® et\ with 
respect to the (non-Hausdorff) topology of operators given by pointwise 
convergence on that set. 

(2) Finitely positive if the identity operator from X into X lies in the strong 
operator closure of n{Ei <g) e*}. 
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(3) Positive if X has the approximation property and the identity mapping 
from X into X in the w* closure of K{EI ® et} in L(X). 

(4) Strongly positive if the identity mapping from X into X is the limit of 
a sequence in K{Et ® et} with respect to the strong operator topology. 

The following theorem is analogous to Theorem 1.2, and we omit its proof. 
A positive continuous linear functional / o n a J3i£-space 5 is one for which 
f(at) ^ 0 whenever flj^O for each i. 

2.2 THEOREM. Let {eit Ei} be a complete biothogonal sequence in a Banach 
space X. 

A. The following statements are equivalent for K a positive integer: 
(1) {et, Ei} is K-positive. 
(2) For {xi, . . . , xM) C Xn and [xi, . . . , xM

f) C X* with M ^ K, 
23Ï-1 *!.'(**)£(*») è Ofor k = 1, 2, . . . implies Zn=ixn'(xn) ^ 0. 

(3) For each finite dimensional continuous linear mapping T from X into X 
of rank ^ K, Et(Tei) ^ Ofor each i implies tr(T) ^ 0. 

(4) For {xi, . . . , xM
r} C X* with M ^ K, there is a BK-space S and a 

positive continuous linear functional E on S such that {xn
f (e^E^x)) G S for 

n = 1, 2, . . . , M and each x G X and 

E(xn(et)Ei(x)) = xn'(x). 

(5) For each K-dimensional sub space F of X there is a sequence of finite-
dimensional positive diagonal linear mappings 

< Tn
(F) = ^2 ajEj ® eJ> aJ = ®for each H 

such that 

Km Tn
(F)y = y 

n 

for y in F. 
B. The following statements are equivalent: 
(1) {eiy Et} is finitely positive. 
(2) For { X\, . . . , Xjf } CXand {*/, . . . , xM'} C X*, Zti xn'(ek)Ek(xn) £ 0 

for k = 1 , 2 , . . . implies 2£=i xn' (xn) è 0. 
(3) Tw each finite-dimensional continuous linear mapping T from X into X, 

EiiTei) ^ O/tfr m d i implies tr(T) ^ 0. 
(4) For every finite subset {xi, . . . , x^} of X* there is a BK-space S and a 

continuous positive linear functional E on S such that {xn
r {e^Eiix)) G S for 

n = 1, 2, . . . , M and each x G X and 

E{xn
f{ei)Ei{x)) = xn'(x), n = 1,2, . . . , M. 

(5) 77je identity operator from X into X lies in the weak operator closure of 
K{Et ® et}. 

(6) For any finite-dimensional sub space F of X there is a sequence {Tn
(F)} of 
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finite-dimensional diagonal positive linear mappings {Tn
{ F)} such that 

lim TnF)y = y 
n 

for y G F. 
C. The following statements are equivalent: 
(1) {et, Ei) is positive. 
(2) X has the approximation property, and if T is a nuclear mapping from X 

into X for which Ei{Te^) ^ 0 for each i, then tr(T) ^ 0. 
(3) X has the approximation property and for each nuclear mapping T and 

each e > 0 there are numbers a,\, a2, . . . , an ^ 0 such that 

tr(T) - 2 a.E^Te,) < e. 

(4) There is a BK-space S containing all sequences of the form (xr (e^E^x)) 
with x in X and x' in X*, and a continuous positive linear functional E on S for 
which 

E{x' (ei)Et{x)) = x'(x). 

D. The following statements are equivalent: 
(1) \eu Ei] is strongly positive. 
(2) The identity mapping from X into X is the limit of a sequence in K\EI 0 et} 

with respect to the weak operator topology. 
(3) X has the approximation property, and the identity mapping from X into 

X is in the w* limit of a sequence in n{Ei ® et} in L(X). 
(4) X has the approximation property, and there is a row finite matrix (ank) of 

non-negative numbers such that for each nuclear mapping T from X into X, 

t r ( r ) = lim Y^ CLnjc(Tek). 
n k 

(5) There is a row finite matrix (ank) of non-negative numbers such that for 
each x G X and x' Ç X*, 

x'(x) = lim J ] ankEk(x)xr(ek). 
n k 

(6) There is a row finite matrix (ank) of non-negative numbers such that for 
each x G X 

x = lim ^ ankEk(x)ek. 

3. Subsequences. 

3.1 PROPOSITION. Let {et, Et} be a complete biorthogonal sequence in a Banach 
space X. Let {eu Et:i € J} be a subsequence of {eiy Et} and let Y denote the 
closed linear span of {ei'.i £ /} in X. If {et, Ei) is of any one of the following 
types then {eif Et:i Ç J} is also of that type in the space Y: (a) K-series sum-

https://doi.org/10.4153/CJM-1974-067-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-067-0


BIORTHOGONAL SEQUENCES 729 

mable (b) finitely series summable, (c) series sutnrnable, (d) strongly series 
summable (e) K-positive, (f ) finitely positive (g) positive, (h) strongly positive. 

Proof, (a) Suppose {xi, . . . , xM'\ C F* with M ^ K. For n = 1, 2, . . . , M 
let %n be an extension of xn' to all of X. Using B(4) of Theorem 1.2 we obtain 
a BK-space 5 and a continuous linear functional E on S such that 
(xn(ei)Ei(x)) G S for each x ^ I and w = 1, 2, . . . , M and 

Eixn'ieJEtix)) = xn'(x). 

If r = {(at) £ S:at = 0 for i d J} then T is a closed subspace of 5 and thus 
a BK-spa.ce. Define F on T by F(at) = E(at) for (a*) £ 7\ Then F is a 
continuous linear functional on T. If x G F then Et(x) = 0 for i (? / so that 
(ff„'(eO-Ei(aO) = feO*)£*C*0) £ Tand 

F(xn
,(ei)Ei(x)) = E(xn(et)Et(x)) = xn(x) = xn(x) 

for n = 1, 2, . . . , M. Therefore {eiy Et:i Ç J} is X-series summable by B(4) 
of Theorem 1.2. 

(b) If {eu Ei] is finitely series summable then {eu Ei) is i^-series summable 
for each K. By (a), {eu Et:i £ /} is X-series summable for each K so 
{eu Ei'.i £ /} is series summable. 

(c) The proof in this case follows the example of that for (a) using D(4) of 
Theorem 1.2 instead of B(4). 

(d) Using E(6) of Theorem 1.2 we obtain a row finite matrix (ank) such that 
for each x £ X 

x = lim J ] ankEk(x)ek. 
n k 

Let (ank)keJ be the row finite matrix obtained by deleting the columns of 
(ank) for k (? J. Then for x G Y, Ek(x) = 0 for k Ç? / so that 

x = lim ^ ankEk(x)ek 
n k 

= lim X ankEk(x)ek. 
n k£J 

Therefore, {ejy Ej'.j £ /} is strongly series summable. 
We omit the proofs of (e), ( / ), (g) and (h) which are completely analogous 

to those of the series summable versions. 

4. Existence. We recall that a family SP of projections is called a family of 
orthogonal projections if for Pi 9^ Pi'vn SP we have P\P<L = PiP\ = 0. 

4.1 PROPOSITION, (a) A Banach space X admits a finitely series summable 
(respectivelyy finitely positive) complete biorthogonal sequence if and only if (a) X 
admits a countable family {Pn} of orthogonal finite dimensional projections such 
that I is in the closure of [Pn] (respectively, n{Pn) ) in the strong operator topology. 

(b) A Banach space X admits a series summable (respectively, positive) 
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complete biorthogonal sequence ifand only if (ft) X has the approximation property 
and admits a countable family \Pn) of orthogonal finite dimensional projections 
such that I is in the closure of [Pn] (respectively, n{Pn} ) in the w*-topology on L (X) 
considered as a sub space of N(X)*. 

(c) A Banach space X admits a strongly series summable (respectively, strongly 
positive) complete biorthogonal sequence if and only if (7) X admits a countable 
family \Pn) of orthogonal finite dimensional projections such that I is the limit of 
a sequence in [Pn] (respectively, in ic(Pn}) in the strong operator topology. 

Proof. The necessity of the conditions (a), (/3) and (7) follow from the fact 
that the set {Ej 0 ei} is a family of one-dimensional orthogonal projections. 

We demonstrate the sufficiency of the condition (a) in the finitely series 
summable case of (a). The reasoning is entirely analogous in all other cases. 

Let {xa, xt2j . . . , xini) be a basis for the range of Pt and let xti, xr/, . . . , 
Xim* be the associated linear functionals. Let Eifc = xik' oPt and eik = xik. 
Then {eik, Eik:k = 1, 2, . . . , nt:i = 1, 2, . . .} is a complete biorthogonal 
sequence in X. Since 

ni 

Pi = 11, EM ® ei1c 
k=l 

and I is in the closed linear span of {Pi), the result follows. 

4.2 THEOREM. A Banach space X admits a positive complete biorthogonal 
sequence if (*) there exists in X a chain of sub spaces {Ma'.a < 7} where y is a 
countable limit ordinal such that 

(a) Mi is finite dimensional, 
(b) for each a < 7, Ma+i D Ma and Ma+i/Ma has finite dimension, 
(c) there is a projection of norm one from Ma+i onto Ma, 
(d) Ua-Ma has finite codimension in X, 
(e) for each limit ordinal ft < 7, Ua</3 Ma is dense in Mp. 

Proof. We shall prove the theorem under the hypothesis that 

U~M~a = X. 
a 

For each a let Pa+i be the projection from Ma+i onto Ma of norm one. Let 
Zi = Mi and for each ordinal a < 7 let Za+i = (I — Pa+i)Ma+i. Denote 
[Ua Za+i] by S. If xpi G Z^ for ft < ft < . . . < ft we have 

11*01 + Xfo + . . . + */**_! I I ^ Hffft + X02 + . . . + Xfik\\ 

since Ppk(xp1 + xp2 + . . . + xpk) = Xp1 + x$2 + . . . + x$k_1. For each non-
limit ordinal /3 < 7 and y = x^ + x 2̂ + • . . + Xpk with xp4 G Z^- define 

(M3O = Z) **.-

Then Qp is a projection fron 5 into 5 of norm one. Since S is dense in X we can 
extend each Qp to all of X. For y (î S, limp Ç/s(y) = y since (^(y) *s eventually 
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equal to y. Thus by the Banach Steinhaus Theorem limp Qp(x) = x for each 
x G I . By the same sort of reasoning we can prove that for each x £ X and 
each limit ordinal a < y lim^a Qp(x) converges to a projection Qa of norm one 
from X onto 

If for each non-limit ordinal ft < 7, Rp = Qp — Qp-i, {Rp} is on orthogonal 
family of projections from X into X such that / is in the closure of K{R} in the 
strong operator topology. Let {epu Ept:i = 1, 2, . . . , np-fi < 7} (fi is not a 
limit ordinal) be the system constructed as in Proposition 4.1. 

Let T be the set of all indexed bounded families of numbers (apt:i = 
1, 2, . . . , np, P < 7) such that the sum 

np 

Z) Z) apt = E(api) 

exists. Then T can be shown to be a BK-space and E a positive continuous 
linear functional on T. U x £ X and xa £ X* (Ep'(x)x'(ep^'.i = 1, 2, . . . , 
W/s; ]8 < 7) is in T and E(Ept(x)xf(ept)) = xf (x) because 

22 Z) Epi(x)x'(ept) = Z) *'\ Z) EpiWepi) 
p<y i=l |3<7 \ 2=1 / 

= Z^ xf(Rpx) = limx'(Çax) = x'(x). 
/3<7 a 

Therefore, by C(4) of Theorem 2.2, {eptj Ept} is positive. 

5. Observations, examples and problems. It is not hard to see that every 
permutation of a Schauder basis is a strongly positive complete biorthogonal 
sequence. Hence the following table of implications is valid for {eu Et} a 
complete biorthogonal sequence in a Banach space X: 

Permutation of Schauder Basis 

u 1 
strongly positive => strongly series summable 

a n 
positive =» series summable 

a n 
k + 1 positive => k + 1 series summable 

a it 
k positive => & series summable 

u u 
one positive => one series summable. 

The functions {1, sin wx, cos nx'.n = 1, 2, . . .} and their biorthogonal func­
t ional form a strongly positive complete biorthogonal sequence in C[0, 2w], 
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but no permutation of these functions is a basis. In [8, p. 524] is an example of 
a complete biorthogonal sequence in a Banach space which is not one-series 
summable. Professor W. B. Johnson has pointed out to the author that such a 
complete biorthogonal sequence can be constructed in every separable Banach 
space. Crone, Fleming and Jessup [1] have given an example of a series sum­
mable complete biorthogonal sequence which is not strongly series summable. 

5.1 Problem. Are any of the implications above reversible? 

5.2 Problem. Under what conditions on a Banach space X does it admit a 
complete biorthogonal sequence of a given type defined in 1.1 or 2.1? 

In [6], Johnson showed that if X is a complex Banach space, and X* has 
the X-metric approximation property then X admits a strongly series complete 
biorthogonal sequence. 

We can construct a system in an arbitrary locally convex space somewhat 
like a 1-series summable complete biorthogonal sequence but having a weaker 
biorthogonality property. 

5.3 PROPOSITION, (a) In every locally convex space X there is a double family 
{xa, Xa} with each xa £ X and each xj G X* such that 

(1) xj(xa) = 1 for each a; 
(2) xj \xp)xp(xa) = Ofor a ^ j8; 
(3) if x G X and xf G X* are such that x' (xa)xd (x) = 0 for each a then 

x'(x) = 0. 
(b) If X is a Banach space and X* is separable then the system \xa, xa'\ given 

in (a) is countable. 

Proof, (a) Using a standard maximality argument we can construct a maxi­
mal system {xa, xj) having properties (1) and (2). Suppose x'(xa)xj(x) = 0 
for each a, and x'(x) = a ^ 0. Then {xa, xj) ^J {x/a, xr] has properties (1) 
and (2) and properly contains {xai xa

f). This contradicts the maximality. 
(b) If X is a Banach space and X* is separable then ^~(X), the space of 

finite dimensional mappings from X into X with the greatest crossnorm 
|| ||TO (nuclear norm) is separable. If { } satisfies (1) and (2) then for 

\\xa 0 xa — xp (8) x^||n
2 

^ |tr([xa ' ® xa — x/ ® xp] o [xa
f o xa — Xfi ® Xp]) = 2. 

Thus {xa ® xa} is discrete and consequently a countable set. 
Let us call a system { XQ; , Xa ) H I a locally convex space X which satisfies (1), 

(2), (3) of Proposition 5.3 a "maximal quasi-orthonormal" system. The short­
comings of sich a system are evident. For instance, "the expansion" with 
respect to such a system {xa, xa

r) for one of its vectors, say xp, is not simply xp 
but the formal series X« xa

f (xp)xa which may not even converge. Even in a 
finite dimensional space a maximal quasi-orthonormal system need not be a 
biorthogonal system. For example: {(e1} Ei), {e^ E\ + E2), (e2 — ei, E\)\ is 
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maximal quasi-orthogonal in R2 where ex = (1, 0), e<i = (0, 1), Ei(x, y) = x 
and E2(x, y) = y. 

On the favorable side we have the following statement whose proof is like 
that of (3) <=> (5) of Theorem 1.2-A. 

5.4 PROPOSITION. If { maximal quasi-orthonormal system in a 
Banach space X then for each x' Ç X* there is a BK-space S, and a continuous 
linear functional E on Sx, such that (xj' (x)x' (xa) G Sx> for each x G X and 

E(xa' (x)x' (xa)) = x'(x). 

Here Sx> is a 5X-space in the sense that it is a Banach space of functions on 
a set (not necessarily countable) such that the evaluation functionals are all 
continuous. 
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