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Abstract

This paper examines an antiplane crack problem for a functionally graded anisotropic
elastic material in which the elastic moduli vary quadratically with the spatial
coordinates. A solution to the crack problem is obtained in terms of a pair of integral
equations. An iterative solution to the integral equations is used to examine the effect
of the anisotropy and varying elastic moduli on the crack tip stress intensity factors and
the crack displacement.
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1. Introduction

In recent years there has been an increasing interest in the class of inhomogeneous
materials that are now commonly called functionally graded materials (FGMs).
Typically such materials are composites that may be characterized by gradual variation
in the composition and volume fractions of the constituents that comprise the FGM
(Paulino [19], Riedel et al. [21], Hassanin and Jiang [14] and Gelbstein ef al. [13]).
This gives rise to a material with a nonuniform microstructure and a continuously
graded macrostructure. Thus from a macro viewpoint FGMs have elastic moduli with
gradients that vary continuously with position. As a consequence, within the linear
theory of elasticity they are modelled by linear partial differential equations, with the
variable elastic moduli giving rise to variable coefficients with continuous gradients.
FGMs are employed in a variety of applications. They are used as coatings to
enhance desired surface properties and to reduce the residual stress and thermal stress
at the interface between the coating and the underlying material. They are also used
as interfacial layers in order to reduce the stress arising from the material property
discontinuities occurring, for example, in biomedical applications such as orthopaedic
implants for hip and knee joint replacement (Pompe et al. [20]). Applications
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involving FGMs comprising metal-ceramic combinations are advantageously
employed in coatings or interfacial layers to reduce thermal stresses in layered
materials in severe temperature environments (Zhang et al. [23], Noda [17]).

In these applications, consideration of the fracture of FGMs is of importance. In
this context, a number of authors have considered crack problems in FGMs. Some of
the earlier studies include the work of Clements et al. [8] and Erdogan [10] while other
examples include papers by Erdogan and Ozturk [11], Konda and Erdogan [16], Chen
and Erdogan [4] and Jin and Batra [15]. More recent studies include papers by Chan
et al. [3], Dag and Erdogan [9], Noda and Wang [18], Bohr [2], Clements and Ang [7]
and Chen et al. [5].

The current study is concerned with an antiplane crack problem for FGMs under
antiplane shear loading. Expressions for the antiplane displacement and stress for a
wide class of these materials are obtained in terms of a single analytic function of a
complex variable. These representations are used to consider a crack problem for an
FGM in which the elastic moduli exhibit quadratic variation with the spatial Cartesian
coordinates. The problem is solved in terms of integral equations which yield iterative
solutions for a limited range of the elastic moduli. Equations are obtained for the crack
tip stress intensity factors and crack displacement. These equations yield information
regarding the effect of the varying elastic moduli and anisotropy on the stress intensity
factors and the crack displacement.

Numerical results are presented for a particular anisotropic material in order to
provide a quantitative illustration of the use of an FGM to reduce crack tip stress
intensity factors and the crack displacement.

2. Statement of the problem

Consider an anisotropic functionally graded elastic body which, referred to a
Cartesian frame Oxjx2x3, has a geometry and elastic moduli c¢;jx;(x1, x2) that do
not vary in the Ox3 direction. The anisotropic material exhibits elastic symmetry
with respect to the coordinate plane x3 =0. The material contains a crack in the
region |x1| <a on x3 =0 and is otherwise continuous throughout the whole space
R3 (Figure 1). Over the crack faces the only nonzero stress is the specified antiplane
stress which does not vary in the Ox3 direction. The problem is to determine the
displacement and stress throughout the material and, in particular, to obtain the crack
tip stress intensity factors and the displacement over the crack faces.

In view of the geometry, the elastic symmetry and the boundary conditions, it is
appropriate to seek a solution to this problem which only involves the two Cartesian
coordinates x] and xj, the antiplane displacement u3 and the antiplane stresses o713
and 073.

3. Basic equations

The equilibrium equation governing small antiplane deformations of a functionally
graded elastic material that exhibits elastic symmetry with respect to the coordinate
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FIGURE 1. Crack geometry.

plane x3 = 0 is given by

i) dus(x)]
Wj[cmz(X) 5%, }—0, CRY

where k, [ =1, 2, x = (x1, x2), u3 is the antiplane displacement, c3;3;(x) for i, j =
1, 2 are the relevant elastic moduli and the repeated summation convention (summing
from 1 to 2) is used for repeated Latin suffices. The stress displacement relations are

us
03i(X) =c3j31—, 3.2
3;(X) 3j318x1 (3.2)
for j =1, 2. The antiplane component of the stress vector on a boundary with outward
pointing normal n = (n1, ny) is given by
P(x) auj
X) =03inj =C3j31—N;.
3jj 3j31 ax; J
For all points in the elastic body, the coefficients c33;(x) satisfy the usual symmetry
conditions
€3j31 = €33 = Cj33] = C3[3. (3.3)
Also, in order to satisfy the condition that the strain energy density be positive, the
coefficients must satisfy the inequality

2
€3232€3131 — C3p31 > 0.

The variation in the coefficients in (3.1) is restricted to take the form
0
c3731(%) = €§ )y, 2(%), (3.4)
where the cg%l are constants and g(xy, xp) > 0 is a twice-differentiable function of
the variables x; and x;. Use of (3.4) in (3.1) yields

d ou
) 3
C3ﬂl§j<g8—xl> =0. (3.5
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Following Azis and Clements [1], a new dependent variable is introduced by the
transformation

us =g~y (3.6)
Substituting (3.6) in (3.5), it follows that (3.5) will be satisfied if g and ¢ are solutions
of the equations

%y
)
. - 3.7
3j31 0x;0x; 3.7)
and
2.1/2
0 %" (3.8)

331 0x;0x B

The general solution of (3.7) and (3.8) may be written in terms of an analytic function
in the form (Eshelby et al. [12], Clements [6])

g'? =290 f (za)],
¥ =20R[0(z4)],
where N denotes the real part of a complex number and f(z) and 8(z,) are arbitrary

analytic functions of the complex variable z, = x1 + tx2, with t the root with positive
imaginary part of the quadratic

0 0 0 0
C§1)31 + (ng)sl + c§1)32)f + 05»2)3272 =0. (3.10)

(3.9)

A solution to (3.8) which is applicable to the crack problem in Section 2 takes the
form g(x) = (Bx2 + y)?, where 8 and y are constants.

From (3.2), (3.6) and (3.9), expressions for the displacement and stress may be
written in the form

u3 =2g"*R6(za)], (3.11)
0 88"/ 1/2 /
03; =2N _C3j318—xl9(2a) +g/7L3;0'(24) | (3.12)
where primes denote differentiation with respect to the argument in question, and

0 0
Laj = c§)y; + TaCy sy (3.13)

From (3.10) and (3.3) it follows that

) .- (0 (0) ) 291/2
_ —Cyp3p Filegancsyy — (6331)7] /
o — (0) ’
C3232
and hence (3.13) yields
. @ (O 0
Ly = iy — (55712, (3.14)

showing that L3, has zero real part.
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On x; =0, (3.11) and (3.12) yield
uz =g~ 2[0(x1) + 0(x1)],

3g1/2 _ _
032 =~ 16Cen) + Bs1)] + 8Lt (51) 4+ Lofl (1)
where the bar denotes the complex conjugate.
An alternative representation for the displacement and stress may be obtained by
putting
L320(z) = x(2), (3.15)

where yx(z) is an analytic function of the complex variable z. The constant L3, is
nonzero (see Clements [6], Stroh [22]), and hence from (3.15),

0(z) = Mx(2), (3.16)
where
M=L3. (3.17)
Substitution of (3.16) into (3.11) and (3.12) yields
u3 =2¢"'PRIM x (za)], (3.18)
o 98"’ 12 ,
03 :2m|:_c3j3l o My (zq) +g'*L3; My (Za)]- (3.19)
In particular, on x, =0, (3.18) and (3.19) yield
uz =g~ \P[My (x1) + MX(x1)], (3.20)

9 1/2 . .
o3 = —cégélf—mwx(xl) +MEGD] — g2 @) + T @Dl (2D

4. A crack in a material with modulus ¢;z; = cg?}d (Blx2] + y)?

Consider an inhomogeneous elastic material with elastic modulus given by

ciji = cfy (Blxal + )%, (4.1)

where the constants 8 and y satisfy the inequalities § > 0 and y > 0. The material
contains a crack along x, = 0 for |x1| < a, where a is a positive constant. Over the
crack faces the stress vector P is prescribed. The displacement and stress fields are
required throughout the material. For this problem the representation (3.18)—(3.21) is
useful with x (z) given by

1 o0
o / G (p) exp(ipz) dp for x, >0
T Jo
x(@) = | oo (4.2)
— / G~ (p)exp(—ipz)dp forx; <O,
2 0

https://doi.org/10.1017/51446181111000551 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181111000551

74 D. L. Clements [6]

where G (p) and G~ (p) are functions of p which will be determined by the boundary
conditions. From (3.18) and (4.2) it follows that

g—l/2‘ oo . oo_+ 7
T f G*(p) explipza) dp + 7 / Gt (p) exp(=ipZa) dp
L 0 0 i
for xo > 0, and

g*l/2 B o0 o o _
uy =~ M / G~ (p) exp(—ipzy) dp + M / G (p) exp(ipZy) dp
L Jo 0

for xo < 0. Equations (3.4), (4.1) and (3.19) yield the antiplane stress in the form
_ 1] o R -
03j = P _C3j32ﬂM G™(p) exp(ipze) dp
T 0
172 >
2000 [ G expipzip dp
0
O o7 [ AT
- C3j32,3M /0 G (p) exp(—ipzy) dp

— — [+ .
—g1/2L3.,-M/ G (p) exp(—ipZa)ip dp
0

for xo > 0, and
1 0 e .
03 =E[c§f3zﬁM /0 G™(p) exp(~ipza) dp

[e.¢]

~ &' La;M [ G (p) exp-ipzip dp
0

0 7 [ A
+ 0B [ G explipzi) dp

o0
+¢'?LyM fo G (p) exp(ipZa)(ip) dp]

for xo <O.

Since L3y has zero real part, it follows from (3.17) that M has zero real part.
Denoting the imaginary part of M by m, the antiplane stress and displacement on
the boundary x, = 0 may be written in the form

w3(x1, 04) = ﬂ[ fo G* (p) exp(ipx1) dp

2rry

- /0 6+<p>exp(—ipx1>dp] (4.3)
us(x1, 0—) = %[ /0 G~ (p) exp(—ipx1) dp

- /0 G (p) GXP(ipxl)dp], (4.4)
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1 ) 00 .
o3(x1, 0+) = E[—Cg%zﬁ’m/o G*(p) exp(ipx1) dp
o0
+y /0 G (p) exp(ipx1)ip dp
O L. [T+ .
+ c3ppBim /0 G (p) exp(—ipx1) dp

—V/O G (p) exp(=ipx1)ip dp], (4.5)

1 ) o .
032(x1,0—) = E[Cg%zﬁlm/o G~ (p) exp(—ipxy) dp
o0
—V/ G~ (p) exp(—ipx1)ip dp
0
o0
— s Bim fo G~ (p) exp(ipx1) dp

+ Vfo G (p) exp(ipx1)ip dp]- (4.6)

Define

Gt=G =0G. 4.7)
The difference in displacement across x3 = 0 is

—1/2

Auz =

- 9i|:2im/ G(p) exp(ipxy) dpi|. 4.8)
0

In view of (4.7), it follows from (4.5) and (4.6) that the shear stress is continuous
across xo = 0. Let o and o denote the even and odd parts of the stress 032(x1, 0),
respectively, so that

032(x1, 0) 4+ 032(—x1, 0) 032(x1, 0) — 032(—x1, 0)
O = oo = .

> , > 4.9)
Hence from (4.5), (4.7) and (4.9), it follows that on x, = 0,
17 00 _
o8 = 5| ~c\Shpim / (G(p) — C(p)) cos(px1) dp
L 0
+vy /O (G(p) — G(p)) cos(px))ip dp}, (4.10)
17 00 _
00 =5 S Bm / (G(p) + G(p)) sin(px1) dp
L 0
-y /0 (G(p) + G(p)) sin(px1)p dp] 4.11)
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To satisfy the requirement that the difference in displacement Aus across x, =0 is
zero for |x1| > a, the function G(p) in (4.8) is chosen in the form

G(p)=G/(p)—|—iG”(p)=/0 s(t)Jl(pt)dt+i/0 r(t)Jo(pt)dt, (4.12)

where Jy and J; are Bessel functions and r(¢) and s(¢) are to be determined.
Hence (4.10) and (4.11) yield

1 o ¢
op = ;[053)32,3"1/ COS(pxl)dP/ r(®)Jo(pt) dt
0 0
- V/O cos(px1)p dp/(; r(t)Jo(pt) dt], (4.13)
1 o ¢
oo = ;[cg%zﬁm/ sin(px1) dp/ s()J1(pt) dt
0 0

—y/o sin(pxl)pdp[) s(t)J1(pt) dt]. 4.14)

Equations (4.13) and (4.14) may be written in the form

1 o0 a
op = ;[cgggz,sm / cos(px1) dp / r()Jo(pt) dt
0 0
o0 a
o S sin(le)dl?/ r(t)Jo(pt) dt], (4.15)
dxy Jo 0
1 ©) 0 a
oo = p= C3p3Bm sin(pxy) dp s()J1(pt) dt
0 0
o0 a
+y— cos(pxl)dp/ s(0)J1(pt) dt:|. (4.16)
dxy Jo 0

Interchanging the order of integration in (4.15) and (4.16) yields

1 a °°
oF = ;[cg%zﬁm/ r(t) dt/ cos(px1)Jo(pt) dp
0 0
d [¢ o
_y—/ r(t) dt/ sin(px1)Jo(pt) dp],
dx1 Jo 0
1T o ¢ ®
00 = — c3232,8m/0 s(1) dt/o sin(px1)Ji(pt) dp

+Vif s(t)dt/ cos(pxl)Jl(pt)dp:|.
dx1 Jo 0
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Now using the results

oo 2,212
G forO<x <t
/0 cos(px)Jo(pt) dp = 0 fort < x < oo,

0 forO<x <t

oo
./0 sin(px)Jo(pt) dp = x2—=tH712 fort <x < o0,

o xt V@2 = xH)72 forO0<x <t
./o sin(px)Ji(pt)dp = 0 fort < x < o0,

o0 1! forO<x <t
/0 cos(px)Ji(pt) dp = —xt7 2 =272 4171 fort < x < oo,
it follows that
1 4 r(t)dt
)
OF = |:C3232/3 o (t2 _ x12)1/2

d *ooor(t) dt

o _— for0 < x; <a,
del 0 (xlz—t2)1/2:| !

1 d 4 rt)dt f
o =—|—y— _— or x|1 > a,
Fo dxi Jo (x2—t2)1/2 :
_ (0) Bm s(t)xy dt
€3232 t(t2 _x2)1/2
y d *oors(t) dt for 0
- L —_— orv<x; <a,
xidxy Jo o (x2 — )12 !
1 y d (% ts(t)dt f
ogp=—|—"— — orx; > a.
Tl xda Jy 2= !

If, on x, =0,
032(x1, 0) = p(x1) for |x1| <a,

then (4.17) and (4.19) yield
P(xl)+l7(—xl) 1 RO r(t) dt
) C3p32Pm RN
_ X1 r(t) dt
ydxl ( — 12
px1) — P(—xl) 1 |: ) Bm f S(t)x1 dt

i| for0 < x; <a,

*oors(t) dt

- —— —:| for0 < x; <a.

X1 dx1 0 (1_1*2)1/2
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Equations (4.21) and (4.22) are of the Abel type and may be inverted to yield

0
r(t) = c§2)32/8m2t/ / r(q) dg
ol S T

t " pu)du
— — - m forO <t < a, (423)
) = cé‘%zﬁm 2 / w2 du / s(q) dg
S
y b @D, 4@ P
1 d
L[ wewdn o<t <, (4.24)

v ], (12 —ud)12
Provided the ratio B/y is sufficiently small, the integral equations (4.23) and (4.24)
are suitable for solution by iteration. If
p(x1) = —po — x1p1,
where pg and p; are constants, then the first approximations to r(¢) and s(t) are given
by

o) = t (" pwdu  wpot
() = ——

(l‘2 _ u2)1/2 Y
1 " up(u)du B pit?

) = —— =
W= @i T Ty

forO<t <a,

forO<t <a,

while the first iteration yields

(0) 2

Tpot  2poc m m/

r() = Po + Poc33P t / (a2 — tzsin29)1/2 do forO<t<a,
0

v y? (4.25)
api? picsyy,Bm /2 .
s(1) = e e / sin®6 (a® — t%sin®0)1/2 d6  for 0 <t < a.
2y 2y 0

5. Crack tip stress intensity factors

The stress o33 near the crack tip on xo = 0 for x, > a may be obtained from (4.18)
and (4.20) in the form

(x1. 0) y d /“ r(t) dt y d 4 ts(t) dt f
o3(x1,0) = ——— —_— - ————— forx| >a.
2 wdxy Jo (P —t)V2 wxpdxy Jo (xF—12)1/2 :
Integration by parts yields the stress intensity factor K:
_ i _lr@ +s@)
IC - X]ll{l; (xl a) 032(x17 0) - 7'[(2a)1/2 (51)
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For B/y sufficiently small, (5.1) together with (4.25) provides an approximate stress
intensity factor I, in the form

1/2 2 ) 3/2 0)
a C ma a &
Ko = po(§> [1 | Zambma } + pi (—) [1 | Gambma ] (5.2)
Y 2 3ym

Now since m denotes the imaginary part of M, it follows from (3.14) and (3.17) that
((ORSRO)] ©) \27—1/2
= —lexz0313 — (C331)7] 2. (5.3)

Use of (5.3) in (5.2) yields

1/2 )
K, = p()(‘_l) / |:1 _ 2c353,Pa :|
2 WT[C(O) ©) (C(O) )2]1/2

323263131 — (3231
3/2 )
n p1<f) / [1 - “230P4 } (5.4)
0 (0 ) ’ ’
2 3ymlesyicsizy — (€332

For an isotropic material, c331 =0 and c3230 =c3131 =0 = ,u(o) (,8|x2| + y)z,
where w is the shear modulus. In this case c§2)32 = cg%l = u© and c3231 =0, and

hence (5.4) provides the approximate stress intensity factor in the form

1/2 ) 3/2
cmn(3) |37 ]en(G) [ 5s)

Formula (5.4) facilitates an examination of the effect of anisotropy and the

inhomogeneity on the crack tip stress intensity factor. For a fixed ng)gz and cg(i)s 1

an increase in the modulus 032)31 causes a decrease in the stress intensity factor. For a

" (0) (0)
fixed positive c3,3, and a fixed 03231 >0, an 1ncrease 1n the modulus c3131 causes an

increase in the stress intensity factor. Also, for fixed 03232, cg%l and c32)3 1> an increase

in the ratio 8/y causes a decrease in the stress intensity factor. Thus, for a fixed y, an
increase in the parameter 8 in the inhomogeneous modulus causes a reduction in the
stress intensity factor.
6. The displacement over the crack faces
From (4.4), (4.7) and (4.12) the displacement on the crack faces is given by
1 ©__
uz(xy, 0—) = —m[im / G(p) exp(—ipx1) dp}
Ty 0

] o0 a
= —fﬁim|:/ exp(—ipx1) dp / s()Ji(pt) dt
Ty 0 0

— 1 /00 exp(—ipx1) dp /u r(t)Jo(pt) dt:|
0 0
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ﬁ[ f "5y dt f sin(p1)J1 (pt) dp
0 0

Ty

+/ r(r) dt/ COS(PX1)10(Pf)dP}
0 0

m[/“ x15(1) di + 4 r(t)dt j|

E 1 (12 — x,2)1/2 . (12 — x;2)12
for0 < x| <a, (6.1)

and similarly, from (4.3), (4.7) and (4.12),

1 o0
us(xy, 04) = —9?|:im / G(p) exp(ipx1) dp]
0

Ty
m a x15(1) 4@ r@)dt
Ty |:/X1 t(t2 _ X12)1/2 + - (l‘2 _ xl2)1/2
= —u3(x1,0—) for0<ux; <a, (6.2)

where

lim  u3(xy, x2) = u3(xy, 04), lim  wu3(xq, x2) = u3(xy, 0-).
x—>0+ Xp—0—

Substitution of (4.25) in (6.2) provides an approximate expression for the crack
displacement in the form

uz(xy, 0+)
m | Xx1Tp TPo
:__[_p(az_x12)1/2+i(az _x )2

Tyl 2y 14
0) a m/2

xi1c m t

1 3232,23 Pi - NI dtf sin29(a2 —tzsinza)l/2 do

2)/ X1 (t — X1 ) / 0

2¢9. Bm a t /2

" 32325 Po 5 7 dt/ (a® — t*sin%0)/? d@]. (6.3)

y x (@ —x17) / 0

In particular, the displacement in the middle of the crack where x; =0 is

20(0) m a /2
u3(0, 04) = =27 [a + Tz / dt / (a? — t%sin?0)/2 dG}
14 Ty 0 0

0) 2 a

m 2Crr2,M m/

- _ ‘;0 |:a + 3232 P / o / (a® — t*sin’0) /2 dt:|
14 Ty 0 0

) /2
CarrmfPa 0
_ _mpoal | Gon™P f cos 6 + —— ) db
y?2 Ty 0 sin 6

mpoa cgg)ﬂmﬂa
= 1+ I|, (6.4)
2 Ty
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where

/2 0
I:l—l—/ —— df ~2.832 06.
0 sin 6

Use of (5.3) to substitute for m in (6.4) yields

poa

21,00 (0) ) \291/2
Y2 lesanncarsy — (e3p3)1Y

0)
% [1 _ cxxpbal ]
0 (O 0) :
mylesnscsiz — (33212

In the isotropic case this reduces to

poa Bal
u3(0, 0+) = [1 - }
y2u© Ty

Formula (6.5) facilitates an examination of the effect of anisotropy and the

inhomogeneity on the crack displacement. In particular, for a fixed y > 0 and g =0,

; 0) 0 0) . . .
a change in any of the constants c3,3,, ¢313; and c3,3; which causes an increase in the

term cg%zcg%l — (cg(?3 1)2 will decrease the crack displacement at x; = 0. In the case

of an inhomogeneous material with fixed y, 653)32’ Cg(i)Sl and 053)31’ an increase in 3/y

causes a reduction in the crack displacement at x; = 0.

u3(0, 0+) =

(6.5)

7. Numerical results

The analysis of the previous sections is used to obtain some numerical results for a

crack in a functionally graded transversely isotropic material with the elastic moduli

varying according to (4.1). For such materials, the cl.(?il in (4.1) may be conveniently

expressed in terms of five constants A, N, F, C and L (see Clements [6]). If the x3
axis is normal to the transverse planes then the nonzero cl?j.),z ; are related to the constants

A, N, F, C and L by the equations

o _ O _ o _ o _ O _
Clin =Com =4, Cp =N, Cri33 =3 = F,
_ (7.1)
© _ O _ o _A=N ©o _
33 =Cpp =L, ¢ = 7 3333 = C.

In this case, the CE% of interest in the antiplane crack problem are given in terms of
the constants A, N, F, C and L by the equations

© _.0 _; 0 _

C1313 = €233 = €1323

Expressions for the cf;),)d referred to any Cartesian frame of reference in terms of the
five constants A, N, F, C and L may be readily obtained from (7.1) by employing the
transformation law for fourth-order Cartesian tensors (see Clements [6]). Thus, if the
orientation of the Cartesian coordinate frame within the material is such that the xp
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axis is normal to the transverse plane, then the constants c§2)13, 652)23 and 652)23 are
given in terms of the constants A, N, F, C and L by the equations
o _A-N o

_ _ 0 _
Ci313 = 7 =L, ¢ =0.

1323

If the x3 axis lies in the transverse plane and the x| and x, axes are at an angle of 7 /4

to the transverse plane, then the equations relating the cé% ; to the constants A, N, F,
C and L take the form

ITA=N ITA-—N
o _ © ©
1313 = 3232 = 5[ 5 +L], 3 = E[T —L]

It is convenient at this point to introduce the nondimensional variables

(0)
X1 Cijki Po api
x:—’ C = —, P:—’ P:—’
a ijkl C 0 C 1 C
, , U3 , Ka
=fa, uy=— and K,= ,
p=F 374 a JaC

where C is a reference stress.
In nondimensional form, equations (6.5) for the displacement in the middle of the
crack and (5.4) for the stress intensity factor become

u’(0, 04) . 1
Py ¥2[C3232C3,3, — Cp3,1'/2
C3B'1
X [1 - 2 2| (7.2)
7y [C3232C3131 — C353]
K, 1 [ | 2C300p’ }
Py 2 y[C3032C3131 — Cips1'/2
) 4
p C
LB [1 B 32328 — 2] (7.3)
2W2P, 3ym[C3232C3131 — Cip3y 1Y/

For the purposes of obtaining numerical values for the stress intensity factor and
the crack displacement, sample values of the material constants A, N, F, C and L
are chosen tobe A/C =16.5, N/C=3.1, F/C=5,C/C=6.2and L/C =3.92. For
a suitably defined value of the reference stress C, these are the constants for a crystal
of titanium and are used here for illustrative purposes.

Hence, if the x3 axis is normal to the transverse plane, then

L
Ciz13 = Co323 = i 3.92, Ciz3=0. (7.4)
If the x, axis is normal to the transverse plane then
Comn=2"N 67 Com=L-39 Cun=0 (7.5)
1B13= 55— =07, 2823 = 5 =294 1323 = 0. .
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TABLE 1. The values of K,/ P for y = 1, C3131 = 3.92, C3232 = 3.92, C3132 = 0 with various values of

B’ and Py /Py.
B Kul/Po Ka/Po Ka/Po
P /Ph=0 P;/Ph=0.5 Pi/PH=1
0 0.707 0.884 1.061
0.02 0.698 0.875 1.051
0.04 0.689 0.865 1.041
0.06 0.680 0.856 1.031
0.08 0.671 0.846 1.022
0.10 0.662 0.837 1.012

TABLE 2. The values of K,/ Py for y =1, C3131 = 6.7, C3232 = 3.92, C3132 = 0 with various values of

B’ and Py /Py.
B Ku/Po K4/ Po K/ Po
P /Pp=0 P;/Ph=05 Pi/Py=1
0 0.707 0.884 1.061
0.02 0.700 0.877 1.053
0.04 0.693 0.870 1.046
0.06 0.686 0.862 1.038
0.08 0.680 0.855 1.031
0.10 0.673 0.848 1.023

If the x3 axis lies in the transverse plane and the x| and x, axes are at an angle of /4
to the transverse plane, then

C1313=C3232=L[A_N +L} =5.31, (7.6)
2C 2
Cain = i[A —N_ L] =1.39. (1.7)
2C 2

In Tables 1, 2 and 3 and Figure 2, numerical results obtained using (7.2) and (7.3)
and the sample material constants (7.4)—(7.7) provide some quantitative information
regarding the effect of anisotropy and inhomogeneity on the stress intensity factor and
the crack displacement. The values of the stress intensity factors in the tables are
correct to three decimal places.

Tables 1, 2 and 3 illustrate that for fixed values of the constants C3;3; and y, an
increase in B’ and thus the gradient of the elastic moduli ¢3;3;/C = C3;3(8'|x2| + ¥)?
causes a decrease in the stress intensity factors.

If the orientation of the Cartesian frame within the sample transversely isotropic
material is such that the x3 axis is normal to the transverse plane, then the constants
Cijw are given by (7.4), the stress intensity factors are given in Table 1 and the mid-
crack displacement is given in Figure 2.
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Displacement u5(0, 0+)/ Py
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0.17 1 1 1 1 1 1 1 1 1
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ﬂ/

FIGURE 2. Displacement (0, 0+)/ Py for various values of 8.

TABLE 3. The values of KC,/ P for y = 1, C3131 = 5.31, C3232 = 5.31, C3132 = 1.39 with various values
of " and P/ Py.

8 Ky/Po K/ Po K/ Po
P /Pp=0 P /Ph=05 P/Php=1
0 0.707 0.884 1.061
0.02 0.698 0.874 1.051
0.04 0.688 0.864 1.040
0.06 0.679 0.855 1.030
0.08 0.670 0.845 1.020
0.10 0.660 0.835 1.010

If the Cartesian frame is reoriented within the material so that the xp axis is
normal to the transverse plane, then, from (7.4) and (7.5), the constants C3p32 = 3.92
and Czp31 =0 remain unchanged while C313; increases from 3.92 to 6.7. Also
C3232C3131 — C§231 =26.264. As a result, for a fixed value of B’ > 0, there is
an increase in the stress intensity factor but a substantial decrease in the antiplane
displacement at the crack centre (see Figure 2).

If the Cartesian frame is reoriented within the material so that the x3 axis lies in
the transverse plane and the x| and x; axes are at an angle of 7 /4 to the transverse
plane, then, from (7.6) and (7.7), C3323 = C3131 = 5.31 and C331 = 1.39. Note that
C3232C3131 — C§231 =26.264, which is the same as the corresponding value in the
previous case, and as a consequence the displacement when 8’ = 0 calculated from
(7.2) is identical to the corresponding displacement for the previous orientation of the

https://doi.org/10.1017/51446181111000551 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181111000551

[17] On an antiplane crack problem 85

Cartesian frame (see Figure 2). Also from Figure 2, due to the larger value of C3,3;
the displacement for 8 > 0 is less than the corresponding displacement in the previous
case. The stress intensity factors are given in Table 3. These values are less than the
corresponding values in Tables 1 and 2, showing that this orientation of the Cartesian
frame within the transversely isotropic material gives rise to lower stress intensity
factors than the two previous orientations.

8. Final remarks

An antiplane crack problem has been considered for an anisotropic FGM in which
the elastic moduli increase quadratically with distance in the direction perpendicular
to the plane crack faces. Formulae for the crack tip stress intensity factors and the
displacement over the crack faces are given in terms of solutions to Fredholm integral
equations. These equations yield an approximate analytical solution for a restricted
class of inhomogeneous elastic materials. The solutions obtained provide qualitative
and quantitative information regarding the reduction in the stress intensity factors and
the crack face displacement as the gradient of the quadratic variation in the elastic
moduli increases.
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