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Abstract
This paper utilizes neural networks (NNs) for cycle detection in the insurance industry. The efficacy of
NNs is compared on simulated data to the standard methods used in the underwriting cycles literature.
The results show that NN models perform well in detecting cycles even in the presence of outliers and
structural breaks. The methodology is applied to a granular data set of prices per risk profile from the
Brazilian insurance industry.
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1. Introduction
The underwriting cycle refers to the repetitive patterns of ups and downs in property and casualty
insurance. Industry insiders and academics have reported cycles of profitability in various coun-
tries and lines of business (Chen et al., 1999; Cummins & Outreville, 1987; Meier & Outreville
2006; Pentikäinen & Rantala, 1982; Stewart et al., 1991; Venezian, 1985). While existing litera-
ture has mostly focused on the causes of cycles (Bruneau & Sghaier, 2015; Chen et al., 1999; Choi
et al., 2002; Doherty & Kang, 1988; Fun et al., 1998; Gron, 1994; Higgins & Thistle, 2000; Lamm-
Tennant &Weiss, 1997; Niehaus & Terry, 1993; Wang &Murdock 2019; Winter, 1988; ), research
on the consequences of the cycles is underdeveloped, but it is often argued that they could neg-
atively impact the affordability and availability of policies during the peaks of the cycle and that
they could be challenging for policyholders in terms of financial planning. Insurers’ insolvencies
are believed to be higher following the troughs of the cycle, and the existence of cycles was shown
in Trufin et al. (2009) to have an increasing effect on insolvency risk. Furthermore, since the sem-
inal paper of Taylor (1986), insurance cycles have gained popularity in the actuarial literature
where several contributions have used insights from control theory and game theory to develop
pricing models able to produce them (Emms, 2012; Malinovskii, 2010, 2013a, b). Indeed, as noted
by Feldblum (2001), cycles may not be just an inefficiency of the insurance market, and to the
extent that they exist and that they are nurtured by competitive forces, pricing actuaries should
incorporate them into their models.

The present study ismotivated by the fact that the tools usually applied to detect cyclicality were
questioned, raising doubts on the very existence of cycles in the insurance industry. The typical
approach in existing studies consists in fitting a second-order autoregressive process (AR(2)), and
verifying whether the characteristic equation of the estimated model has complex roots. Boyer
et al. (2012) and Boyer & Owadally (2015) argue that researchers have studied spurious cycles
in what could simply be random walks. Specifically, Boyer et al. (2012) noted that the proba-
bility of observing cycles given random distributions of the parameters of an AR(2) process is
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two-thirds, and they observe that most papers that studied multiple time series of insurance prof-
itability report cycles in about that proportion. Boyer et al. (2012) conclude that “cycles in property
and casualty insurance industry exist only because we expect them to exist.”

The present paper addresses this concern in a simulation study by comparing the performance
of AR(p) processes, the g-test for the significance of spectral density, and neural networks (NNs)
trained on data simulated from AR(p) processes. The data are simulated either from AR(p) with
p= 0, 1 or 2, or from noisy sinusoids, and with different cycle periods, distributions of the error
terms, as well as with or without outliers or structural breaks in the mean. This means that the
simulation study evaluates the ability of each methodology (g-test, AR processes, and NNs) to
differentiate between AR(2) and noisy sinusoids, versus AR(1) and AR(0) series. The focus on AR
processes in the detection of cycles is motivated by the fact that, besides the few applications of
the g-test, fitting an AR(2) is the most common approach in the literature. That is, in line with the
literature on the underwriting cycle, the definition of cyclicality adopted in this paper is whether a
time series is better modeled with either a cyclical AR(2) or a noisy sinusoid, rather than an AR(1)
or AR(0) process. However, it is worth mentioning that other processes can generate cyclicality,
such as AR(p) processes with p≥ 3, but they are not included in this study.

The results of the simulation study show that AR(p) processes and the g-test can adequately
distinguish between cyclical AR(2) series and non-cyclical AR(1)/AR(0) ones, but their perfor-
mance deteriorates in the presence of outliers or structural breaks in the mean, which is due to
over-rejection of cyclicality. On the other hand, NN models prove to be significantly better in the
classification and are more robust to the presence of outliers and structural breaks in the mean.
In other words, NNs trained on a mix of AR(1)/AR(0) and cyclical AR(2) are better at identifying
the cyclical AR(2) series than a direct estimation of an AR(p) model.

At the core of this analysis is a novel data set from the Brazilian car insurance market. The
data set comprises bi-annual time series over 14 years of average market prices for 410 risk pro-
files segregated by region, sex, and age group. This is a noteworthy novelty, as in most countries,
historical data on insurance prices are not publicly available, and insurance companies usually do
not report price and quantity separately. This has forced existing studies to focus on accounting
data, but little is known about the patterns of prices, which are at the heart of underwriting cycle
explanations. The granularity of this data set allows to build stronger and more efficient NNs, as
it offers a wider range of parameters for cyclical processes.

The NNs trained on simulated data classify prices of almost all risk profiles as cyclical. The clas-
sification of the series using the NN models is in many cases consistent with that of AR processes
and the g-test, but the two traditional methods suggest lower proportions of cyclical series. This
evidence of cyclicality provided in the present paper is new. More importantly, the prevalence
of cyclicality in price indicates that insurance cycles are not only a phenomenon that can affect
insurers, but that it can also be experienced by consumers. Thus, taking the results presented here
at face value prompts the question of whether price cycles are harmful to consumers; a topic that
will be explored in future research.

Two key considerations must be kept in mind when interpreting the results of the empirical
part of the paper. Firstly, the NN models employed are trained to distinguish between cyclical
AR(2) and cosine-based series from AR(1)/AR(0), but they do not identify all forms of cyclicality.
The simulation study does not explore how NNs would classify series with complex, non-cyclical
temporal structures, such as non-cyclical AR(3) models or heteroscedastic series. Nevertheless,
preliminary tests generally indicate the absence of heteroscedasticity and i.i.d. residuals from
AR(1) or AR(2) models. Furthermore, AR(3) models were estimated, and the results suggest that
they only outperformed AR(1) and AR(2) models in a few cases and that they support cyclicality.
Secondly, the 14-year data set encompasses only about 3 cycles, making it challenging to identify
cyclicality from an econometric perspective. However, the simulation study shows that NNs can
detect cyclical AR(2) patterns and noisy sinusoids with the same number of observations as the
empirical study, suggesting that the number of observations is not a major concern.
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The remainder of the paper is organized as follows. Section 2 provides some background on the
Brazilian insurance market and describes the data. Section 3 discusses the methodologies for cycle
detection, namely, the g-test, autoregressive processes, and NNs. Section 4 presents the design
of the simulation study and its results highlighting the performance of NNs over the competing
methods. Section 5 contains the empirical results from the analysis of the Brazilian data on price.
Section 6 closes the paper.

2. Data
This section discusses the data used in this paper, with some background on the Brazilian
insurance industry, and a description of the data set of premiums.

Insurance in Brazil has witnessed a fast evolution over the past years. The total assets of insur-
ance companies represented 9.5% of the country’s GDP in 2010. According to the IMF (2012)
report, the Brazilian insurance market is the largest among Latin American countries, with 50%
of the region’s total collected premiums in 2010. Further, the total collected premiums for all
insurance lines combined was equivalent to 1.09% of the OECD’s total in 2018, which makes it
comparable to Australia (1.32%), Spain (1.48%), the Netherlands (1.64%) or Canada (1.64%) in
terms of collected premiums (https://stats.oecd.org/).

Insurance in Brazil is regulated by the Superintendency of Private Insurance (Superintendência
de Seguros Privados – SUSEP), which is the executive arm of the National Council for Private
Insurance, and has jurisdiction over all states (Frazão 2020; IMF, 2012). Motor insurers operating
in Brazil are free in setting their premiums (Frazão, 2020). Moreover, entering the market is rela-
tively easy, and insurers are subject to the standard requirements in terms of technical provisions
and minimum solvency capital. Thus, the Brazilian motor insurance industry resembles that of
most developed economies.

All insurance companies operating in Brazil must comply with SUSEP’s reporting and dis-
closure rules by submitting statistics conforming to the SUSEP Periodic Information Form. For
motor insurance, insurers report their prices, exposure, and insured sums for different risk pro-
files. Unlike in most countries, the data on premiums per risk profile are freely accessible online,
on the AUTOSEG database (see the AUTOSEG database web page). The website also has an active
forum where users can request clarification on the data, with high participation and fast responses
from the forum’s administrators (see SUSEP’s forum web page).

The AUTOSEG database contains time series for different risk profiles for supplementary
motor insurance covering accident, fire, and theft. The variables used in the analysis are the total
exposure, the market average premiums, and market average insured sums. The market averages
are weighted sums of the relevant quantity across all insurance companies, where the weights are
determined from the proportion of policies for each company. The total exposure is a proxy for
the number of policies over a given semester and accounts for the fact that some policies may
be active only over a fraction of a given time period. The market average premiums represent
the average amount paid by policyholders. Whereas this amount varies by region, sex, and age,
it also depends on other time-varying factors such as inflation, the value of the car, and the limit
applied to the policy. Those time-varying factors are captured in the market average insured sums,
which is the maximum amount payable to the policyholder, and can be understood as a monetary
amount representing the financial exposure of the insurer. In particular, standardizing the market
average premiums by the market average insured sums gives the insurance price for each insured
Brazilian Real.

The data set used in this study consists of time series for 410 different risk profiles, which are
categorized by region (41 regions), sex (male or female), and age group (18–25, 26–35, 36–45,
46–55 and 55+). The observations are available at a biannual frequency, from July–December
2006 to January–June 2020, which gives a total of 28 observations for each of the 410 risk pro-
files. This means that each data point on premiums corresponds to the average premium paid by
policyholders having a specific risk profile in a given semester.
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The time series analyzed here are the ratio between the market average premium and the mar-
ket average insured sum for each risk profile and each observation time, on a logarithmic scale,
which gives the logarithm of the price for each insured Brazilian Real. In particular, as mentioned
above, the standardization by the insured sum leads to prices per unit of risk, and hence, allows for
a better comparison across the different risk profiles and rules out the effect of other time-varying
factors such as inflation. Note that while “price” and “premium” may be used interchangeably in
the insurance industry, here the term “premium” refers to the original commercial premium time
series, and the term “price” refers to the premiums standardized by the insured sum.

From the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test of stationarity, time series for some
risk profiles have a p-value less than 0.05, which is mostly due to trend non-stationarity. Following
Brockwell & Davis (2002), these series are de-trended by fitting individual regressions on time
and subtracting the trend line from the original series. As a result, the KPSS test leads to p-values
greater than 0.05 for all series. An overall p-value for all risk profiles can be determined by com-
bining all null hypotheses of stationarity using Hartung (1999)’s test. The overall p-value with
the conventional tuning parameter 0.2 equals 0.09374, which suggests that prices are stationary.
The ARCH test’s p-values on the de-trended series are above 0.05 for 88.78% of the risk pro-
files. The ARCH test on the residuals of AR(1) and AR(2) models lead to p-values above 0.05
for 93.9% and 96.1% of the risk profiles, respectively, thus rejecting an ARCH effect and suggest-
ing homoscedasticity for most risk profiles. The Ljung-Box test on the de-trended series leads to
p-values below 0.05 for 98.5% of risk profiles, as well as for 61.65% of risk profiles when the test
is performed on the residuals of an AR(1), and for 0.49% of the risk profiles when the test is per-
formed on the residuals of an AR(2) model. In particular, for the AR(2) model, the Ljung-Box test
fails to reject the null hypothesis of i.i.d. residuals for all risk profiles except two. These results
already suggest that for most risk profiles, it is appropriate to consider AR processes of order 2.

Finally, all series were normalized by removing the means and dividing by the standard
deviation. This procedure is recommended when working with NNs.

Fig. 1 displays (a) the original market average premiums, (b) the premiums divided by the
insured sums (i.e. the price) on a logarithmic scale, (c) the price from (b) de-trended, and (d) the
price from (c) normalized. All figures hint at the presence of cycles in the prices for the Brazilian
motor insurance market. However, for some risk profiles, the data appears to be rather noisy. For
instance, risk profiles from Rio Grande do Sul experienced a sharp drop in prices in the second
semester of 2008, and males aged 18-25 from Rio de Janeiro and São Paulo experienced a milder
drop in the second semester of 2016. Therefore, a systematic and automated method for cycle
detection is required to ascertain the existence of cycles in insurance prices.

3. Cycle detection methodologies
In this paper, a time series is considered cyclical if it is better modeled by an AR(2) process with
complex roots or by a noisy sinusoid, rather than by an AR(0) or AR(1) process. This defini-
tion follows the standard approach in the underwriting cycle literature and is consistent with
the methodologies evaluated in this study. Non-standard approaches such as AR processes with
orders higher than 2, non-linear time series, or wavelet analysis, are not considered. Furthermore,
heteroscedasticity is not accounted for, which is not a major omission for the paper’s applica-
tion given that the results of the ARCH test do not provide strong support for the presence of
heteroscedasticity in the time series.

This section outlines three methodologies used to detect cycles in times series. Subsection 3.1
describes the g-test. Subsection 3.2 describes the methodology based on autoregressive models.
Subsection 3.3 describes different NNmodels. The focus on the g-test and the ARmodels is moti-
vated by the fact that they are the main approaches for cycle detection in the underwriting cycle
literature, especially AR processes of orders up to 2.
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Figure 1. Premiums and prices per risk profile over time. Notes: (a) Top-left panel: original average premiums for 410 risk
profiles from the AUTOSEG data set. (b) Top-right panel: corresponding premiums per unit of insured sums on a logarithmic
scale. (c) Bottom-left panel: corresponding premiums per unit of insured sums (i.e. price) on a logarithmic scale, where prices
for some risk profileswere de-trended, afterwhich all time series passed the KPSS test of stationarity. (d) Bottom-right panel:
corresponding prices after normalizing with the means and standard deviations.

3.1 Significance test for spectral peaks
One method to detect cyclicality in time series consists in visualizing their spectral densities; see
Grace & Hotchkiss (1995) and Venezian & Leng (2006) for applications in the context of the
underwriting cycle. A spectral density function is a projection of the auto-correlation function
from the time domain onto the frequency domain and is derived from a representation of time
series using combinations of sinusoidal functions (Brockwell &Davis, 2002). It is possible to detect
cyclicality in time series if the spectral density has a peak at some given frequency.

When performing spectral analysis, a problem that may arise is that a spectral density func-
tion may have multiple peaks, and in such cases, it may be hard to draw sensible conclusions.
Furthermore, carrying out a graphical analysis for each time series in the present analysis would
be too cumbersome and not necessarily accurate. One way to automate the process, and to address
the issue of spurious cycle detection, is to test the significance of spectral peaks (Lazar & Denuit,
2012; Venezian, 2006). The g-test proposed in Fisher (1929) is one of the earliest methods applied
for cycle detection, and it is still in use; see e.g. Lazar & Denuit (2012) for a review and application
to the underwriting cycle.

The point estimate of the g-test statistic is given by:

ḡ = maxk I (ωk)
n∑

k=1
I(ωk)

,
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with n= �T−1
2 �, and T is the number of observations, where I(ωk) is the periodogram at the

discrete Fourier frequencies ωk = 2πk
T , for k= 0, 1, . . . , �T

2 �, such that:

I (ω) = 1
T

∣∣∣∣
T∑
t=1

yt exp (−iωt)
∣∣∣∣
2
, ω ∈ [0, π],

and yt is the time series under interest. Under the null hypothesis, yt is a Gaussian white noise
process. Large values of ḡ indicate that the highest peak of the spectral density, which is estimated
by the periodogram, is significant, and hence lead to the rejection of the null hypothesis. Under
the null hypothesis, the exact distribution of the g-test statistic is given by:

P
[
g > ḡ

] =
a∑

k=1
(−1)k−1 n!

k! (n− k
)!

(
1− kḡ

)n−1 ,

where a is the maximum integer less than 1
ḡ .

3.2 Autoregressive models
Detecting cyclicality using second-order autoregressive processes, or AR(2), is the most com-
mon way in studies of the underwriting cycle (Cummins & Outreville, 1987; Venezian, 1985).
It is also the methodology criticized by Boyer et al. (2012). In general, autoregressive processes
exhibit cyclical behavior, provided the characteristic equation has complex roots. It follows that
an autoregressive process of order 1 or less is not cyclical.

An AR(2) process has the following representation:

yt = φ0 + φ1yt−1 + φ2yt−2 + εt , (3.1)

where εt is a white noise. The root of the characteristic equation is φ2
1 + 4φ2, and hence, the pro-

cess yt is cyclical if φ2
1 + 4φ2 < 0. In this case, the period of the cycle is 2π

f , where the expression

of the frequency f is arccos
(

0.5φ1√−φ2

)
; see Cummins & Outreville (1987).

Based on the properties of the process in (3.1), the classification of the time series into cyclical
and non-cyclical premiums is achieved by fitting model (3.1) to the time series of interest, as well
as the samemodel with φ2 = 0 or φ2 = φ1 = 0. The optimal model is chosen according to the value
of the corrected Akaike Information Criteria (AICc):

AICc= T log
(
1
T

∑
ε̂2t

)
+ 2(k+ 1)+ 2(k+ 1)(k+ 2)

T − k− 2
,

where T is the number of observations, and k is the number of free parameters. For a given time
series and for AR(p) with p≤ 2, if the model with the lowest AICc is not an AR(2) model, then
the series is classified as non-cyclical. Otherwise, if the optimal model is an AR(2), the series is
classified as cyclical if φ2

1 + 4φ2 < 0, and as non-cyclical otherwise.

3.3 Neural networks
NNs are computational graphs that can extract mappings between inputs and targets. The extrac-
tion of mappings, or learning, occurs when the model is exposed to a sufficiently large amount of
input-target pairs. NN models typically operate in layers, where each layer transforms the infor-
mation distilled by the previous one. Each layer is parameterized by a set of weights, which are
estimated during the learning phase. The estimation of the parameters is generally performed
through a feedback mechanism, most commonly a gradient-based optimization with backpropa-
gation, to determine the weights that minimize the error between the predictions and the actual
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targets (Aggrawal, 2018; Chollet & Allaire, 2018; Rumelhart et al., 1986). NNs have proven effi-
cient in many actuarial applications, including forecasting mortality rates and modeling claims in
non-life insurance for pricing and reserving (Gabrielli, 2020; Hainaut, 2018; Li, 2022; Lindholm
et al., 2022; Shi and Shi, 2022). In the present context, the goal is to classify the series as either
cyclical or non-cyclical.

NN models need to be trained using data for which both input and output are known before
they are applied for predictions, i.e. in situations where the output is unknown. The data for which
both input and output are known are used to update the parameters of the model and to tune its
hyperparameters (i.e. the set of defining features of the network, including its structure and the
way it learns). The next section describes how several data sets are simulated. The simulated data
are used to train the NNmodels, as well as to compare the performance of the three cycle detection
methodologies (the g-test, autoregressive processes, and NN models).

Four NN architectures are considered in this study. The architectures are determined using
the simulated data described in the next subsection. Hyperparameter tuning is based on standard
best-practice methods by monitoring the accuracy of the validation sets. The first model is a fully
connected NN (FNN) and consists of fully connected layers only. It has four hidden layers, with
number of nodes 512, 512, 64, and 8, and dropout rates of 0.4 at each layer. The second model
is a recurrent NN (RNN). It has two identical bidirectional Gated Recurrent Unit (GRU) layers
with 256 units each, a dropout rate of 0.1, and a recurrent dropout rate of 0.5. The output of
the recurrent base of the network is flattened and then processed through a fully connected layer
with 256 units, and a dropout rate of 0.1. The third model is a one-dimensional convolutional
NN (CNN). It has two convolution layers with 512 and 256 filters of size 25, respectively. A stride
of 2 is used with zero padding. The output of the convolution base is flattened into a first fully
connected layer with 128 units and a dropout rate of 0.1, and then a second fully connected layer
with 64 units and a dropout rate of 0.2. The fourth model is a hybrid convolutional-recurrent
architecture. It starts with a one-dimensional convolution layer with 512 filers with size 20, and
a stride of 2 with zero-padding. The convolution layer is followed by a bidirectional GRU layer
with 128 units, a dropout rate of 0.1, and a recurrent dropout rate of 0.5. The recurrent layer of
the hybrid NN is connected to the final single-node output layer through a fully connected layer
with 32 units and a dropout rate of 0.1.

For all architectures, the target function for calibration is binary cross-entropy, which is stan-
dard for classification tasks. The output layer consists of a single neuron with a sigmoid activation
function, producing a probability score for each series. A threshold of 0.5 is used to classify a series
as cyclical or non-cyclical. The input to the NN consists of the full-time series, represented as a
vector of 28 observations corresponding to the length of each sample in the data set. Models are
trained using the Adam optimizer with early stopping to prevent overfitting, and the number of
epochs is set to 30 based on validation performance.

It is worth noting that given the number of parameters in NNmodels, overfitting is a potential
concern. However, several measures are implemented to mitigate this risk. First, dropout regular-
ization, as described above, prevents the networks from relying too heavily on specific neurons.
Second, the size of the training set is sufficiently large relative to the number of parameters, with
thousands of time series providing diverse patterns for robust learning. Last, the performance of
the models is evaluated on completely unseen test data, confirming that improvements in cycle
detection are not artifacts of overfitting but rather genuine enhancements in identifying cyclical
patterns.

4. Simulation study
The goal of this subsection is to compare the performance of the different methodologies on
simulated data. It is structured in three parts. Subsection 4.1 describes the design of the simu-
lation study. Subsection 4.2 provides details on the procedure for simulating different data sets.
Subsection 4.3 reports the results of the simulation study. Recall that the simulated data sets serve
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two purposes. The first purpose of the simulated data sets is to compare the efficacy of all method-
ologies (g-test, AR processes, and the four NN models) in cycle detection. The results of this
analysis are reported in Subsection 4.3. The second purpose of the simulated data sets is to train
the NN models for the empirical application of the paper. Specifically, the NN’s models learn to
detect cyclicality in the simulated data before they are applied to the Brazilian data. These latter
results are reported in Section 5.

4.1 Design of the simulation
Standard best-practice methods to evaluate the efficacy of NN models prescribe using three
different data sets. The training and validation sets, which are used to train and fine-tune the
architectures, and the test data set, which is used to compare the performance of the models. In
order to ensure that the performance of the NNs on the test data is not due to over-fitting or to
the similarity of that data set with the training data, the three data sets should be disjoint.

The simulation study in this paper uses five sets of data generating processes Gi, i= 1, . . . , 5,
to generate five data sets Si. Each data set Si contains a mix of cyclical AR(2) and non-cyclical
AR(1) and AR(0). The series across the different sets Si are grouped by the parameters of the
AR(p) processes. Namely, each set contains cyclical time series with specific range of values of
cycle periods, AR(1) time series with specific range of values of the parameter φ1, and AR(0)
time-series with specific range of values of standard deviations. In particular, S1 is associated with
“low” values, S2 is associated with “medium-low” values, S3 is associated with “medium-high”
values and S4 is associated with “high” values. All intermediary values, as well as “very low” and
“very high” values are included in S5. This procedure ensures that the overlap between the sets S1,
S2, S3 and S4 is significantly reduced.

The first step is to determine the hyperparameters of the NN models (e.g. the number and size
of layers). Note that fixing the hyperparameters and estimating the weights of the NN models are
two different tasks, and the latter task is referred to here as “training.” In this first step, where the
hyperparameters are determined, S1 and S4 are used as training data, and S3 is used as validation
data to tune the hyperparameters of the NNs. The second step is to study the performance of all
methodologies (g-test, autoregressive models, and NNs) in detecting different types of cyclicality.
In particular, using the NN architectures obtained from Step 1, the simulation study is structured
as follows:
(a) train the NN models on S2, S3 and S4, and test all methods on S1 (low).
(b) train the NN models on S1, S3 and S4 and test all methods on S2 (medium-low).
(c) train the NN models on S1, S2 and S4 and test all methods on S3 (medium-high).
(d) train the NN models on S1, S2 and S3 and test all methods on S4 (high).
(e) train the NN models on S1, S2, S3 and S4 and test all methods on S5 (intermediary and

extreme).

Note again that the architectures of the NN models are determined using S1, S3 and S4, but the
parameters of each architecture are different for each test and depend on the training data used.
Note also that in each test, the data used in the comparison of the methodologies are different
from those on which the NN models are trained.

4.2 Simulated data
This subsection explains how the simulated data are obtained. First, a decomposition procedure
is applied to the AUTOSEG data to obtain a larger sample of parameters of both cyclical and non-
cyclical AR(p) models. This is because the NN models will be applied to detect cyclicality in the
Brazilian insurance industry, and a resemblance between the simulated and the available data will
increase the reliability of the NNs. Second, the sets of estimated parameters are augmented by
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fitting a multivariate model to the estimated ones and simulating a large number of new param-
eters from that multivariate distribution. Third, the data-generating processes are assigned to the
sets Gi using a splitting approach that attempts to avoid overlap between the sets. Fourth, within
each of these five sets, the cyclical data-generating processes based on AR(2) models are supple-
mented with cosine-based models. Fifth, the data are simulated and normalized using the means
and standard deviations. The remainder of this subsection provides details on each of these five
steps.

4.2.1 Step 1 – STL decomposition
In order to increase the available data, each of the AUTOSEG time series of prices is filtered using
Cleveland et al. (1990) seasonal-trend (STL) procedure to separate the trend and the remainder
components. Note that since the data is bi-annual, the seasonal component is insignificant, and
hence, the outcome of the STL decomposition for each series of the AUTOSEG is one cyclical
series and a remainder non-cyclical series. The autoregressive process in (3.1), as well as the nested
models with φ2 = 0 or φ2 = φ1 = 0, are estimated for each series, and the optimal model is selected
based on the AICc. All of the 410 trend components series except two are better modeled with
AR(2) cyclical processes, whereas all of the 410 remainder components series are better modeled
with either AR(1) or AR(0) processes. This results in 818 sets of parameters

(
φ̂0, φ̂1, φ̂2, σ̂

)
with

no duplicates, where σ̂ is the standard deviation of the residuals, and φ̂2 < 0 and φ̂1 + 4φ̂2 < 0 for
all AR(2) processes. Since all series are normalized, φ0 is set to 0.

4.2.2 Step 2 – Multivariate distribution for simulating new parameters

The vector
(
log

(
φ̂1

)
, log

(
−φ̂2

)
,
√

σ̂
)
of estimated parameters from the AR(2) processes and

its counterpart
(
log

(
φ̂1

)
,
√

σ̂
)
from the AR(1) processes are modeled using a variance gamma

for the marginal distributions and a vine copula for the dependence structure. These models are
used to generate 10,000 new sets of AR(2) parameters

(
φ̃1, φ̃2, σ̃

)
satisfying the condition of cycli-

cality, and another 10,000 of AR(1) parameters. For the AR(0) processes, 10,000 parameters σ̃ are
simulated assuming that the estimated

√
σ̂ follow a variance gamma distribution. The choice of

the marginal distributions and log transformations was based on a visual inspection of the Q-Q
plots, and the selection of the copulas is based on a comparison of the AIC.

4.2.3 Step 3 – Assignment of the parameters
In order to ensure that the training, validation, and test data are disjoint, the parameters(
φ̃1, φ̃2, σ̃

)
must be split before the simulations. The typical approach for splitting the data is

to randomly assign proportions for each set. In the present context, this approach could assign
similar parameters across the three data sets, which would violate the requirement of disjoint sets.

The approach followed here for splitting the data-generating processes attempts to ensure that
the sets are disjoint and allows to evaluate the performance of the models in detecting different
types of cyclicality (e.g. cycles with low or high periods). For the AR(2) processes, this is achieved
by assigning the parameters based on the value of their associated cycle period. Those values are
first split into several bins based on their quantile values. The bins are then allocated to the sets
Gi for i= 1, . . . , 5. A similar procedure is performed for the sets of parameters of the non-cyclical
processes, where the reference quantities used for the partitioning are the values of φ̃1 for the
AR(1), and σ̃ for the AR(0).

Fig. 2 shows how the partitioning is performed for the AR(2) processes. On the left panel, the
figure displays the estimated cycle periods 2π

f̂
(gray circles) and the assignment of the simulated
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Figure 2. Assignment of parameters for the simulated data. Notes: This figure displays the split of the parameters into Gi
for i= 1, . . . 4. On the left panel, the figure displays the estimated cycle periods 2π

f̂
(gray circles) of the cyclical trend com-

ponents, and the assignment of the simulated cycle periods 2π
f̃
into G1 (blue triangles), G2 (red triangles), G3 (magenta

triangles) and G4 (green triangles). On the right panel, the figure displays the corresponding estimated parameters (φ̂1, φ̂2)
(gray circles) and the assignment of the simulated parameters (φ̃1, φ̃2) intoG1 (blue triangles),G2 (red triangles),G3 (magenta
triangles) and G4 (green triangles).

cycle periods 2π
f̃
into G1 (blue triangles), G2 (red triangles), G3 (magenta triangles) and G4 (green

triangles). On the right panel, the figure displays the corresponding estimated parameters
(
φ̂1, φ̂2

)
(gray circles) and the assignment of the simulated parameters G1 (blue triangles), G2 (red trian-
gles), G3 (magenta triangles) and G4 (green triangles). The figure shows that there is no overlap
between the sets in terms of cycle periods. The figure also shows that the simulated parameters are
consistent with those estimated from the Brazilian data sets.

4.2.4 Step 4 – Cyclical data generating processes using cosines
A cyclical data generating process given by β cos (ωt) + εt is added, where εt has a standard devi-
ation σ̃ . The standard deviation σ̃ is sampled from those of the AR(2), and β is uniformly drawn
from [0.5, 5.5]. The parameter ω is such that the period 2π

ω
is consistent with 2π

f̃
from the relevant

set Gi.

4.2.5 Step 5 – Data simulation
For each set of parameters, several paths are simulated, assuming that εt has either a normal dis-
tribution with standard deviation σ̃ , or a t distribution with degree of freedom ν = 2.5 and scaled
by σ̃√

5 . Scaling by σ̃√
5 in case of t distributed errors ensures the standard deviation of the pro-

cess is equal to σ̃ . For each path, the number of observations is randomly chosen between 50
and 150, but only the last 28 observations are selected. This allows us to obtain asynchronous
paths. Each data set Si for i= 1, . . . , 5 contains 2,000 paths from the cyclical AR processes with
normally distributed errors, 2,000 paths from the cyclical AR processes with t distributed errors,
2,000 paths from the cosine process, 3,000 paths from the non-cyclical AR processes (either AR(0)
or AR(1)) with normally distributed errors, and 3,000 paths from the non-cyclical AR processes
(either AR(0) or AR(1)) with t distributed errors. In particular, each data set contains the same
number of time series from each class, namely 6,000 cyclical time series and 6,000 non-cyclical

https://doi.org/10.1017/S1748499525000053 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499525000053


360 Hamza Hanbali

Table 1. Accuracy, sensitivity, and specificity of all methodologies on different simulated test data

Training data: S2,S3,S4 S1,S3,S4 S1,S2,S4 S1,S2,S3 S1,S2,S3,S4
Test data: S1 S2 S3 S4 S5
Accuracy rate:
g-test 80.07% 79.52% 80.23% 79.06% 80.41%
g-test with Bonferroni correction 56.49% 59.61% 56.92% 57.37% 58.1%
Autoregressive model 88.83% 88.08% 88.63% 88.02% 88.85%
Fully connected NN 93.52% 90.54% 94.19% 92.49% 94.05%
Recurrent NN 96.54% 87.88% 95.20% 93.23% 94.88%
Convolutional NN 95.09% 90.71% 95.13% 93.67% 95.03%
Hybrid conv-rec NN 95.71% 92.03% 95.62% 93.89% 95.45%
True positive rate:
g-test 71.47% 89.23% 76.02% 81.27% 80.57%
g-test with Bonferroni correction 13.03% 25.90% 14.00% 16.12% 18.07%
Autoregressive model 83.38% 81.65% 83.07% 81.52% 82.63%
Fully connected NN 88.23% 93.57% 90.30% 89.42% 90.90%
Recurrent NN 96.43% 98.68% 97.13% 96.17% 97.18%
Convolutional NN 92.03% 97.23% 93.32% 93.6% 94.07%
Hybrid conv-rec NN 92.82% 96.72% 94.18% 93.03% 95.07%
True negative rate:
g-test 88.67% 69.80% 84.43% 76.85% 80.25%
g-test with Bonferroni correction 99.95% 93.32% 99.83% 98.62% 98.13%
Autoregressive model 94.27% 94.50% 94.20% 94.52% 95.07%
Fully connected NN 98.80% 87.52% 98.08% 95.57% 97.20%
Recurrent NN 96.65% 77.07% 93.27% 90.28% 92.58%
Convolutional NN 98.15% 84.18% 96.95% 93.75% 95.98%
Hybrid conv-rec NN 98.60% 87.35% 97.05% 94.75% 95.83%

Notes: This table reports the accuracy rate, the true positive rate (sensitivity) and the true negative rate (specificity) of all methodologies on the test
data Sj when the training data set is ∪1≤i≤4Si \Sj , for j= 1, 2, 3, 4, as well as the performance on the test data S5 when the training data set is
∪1≤i≤4Si . The highest value of each measure and data set across all models is highlighted in bold.

ones. This means that the binary classification problem is balanced (i.e. 50% of series in each
class), and hence, that the classification accuracy is an appropriate measure to evaluate the perfor-
mance of the models. Each simulated path is normalized individually by subtracting its mean and
dividing by its standard deviation.

4.2.6 Software use
The analysis is conducted on R using the packages tseries and seasonal for time series anal-
yses, the packages VarianceGamma and rvinecopulib for the multivariate modeling of the
parameters, and the packages keras, kerasR and tensorflow for fitting the NNs. The code
that supports the findings of this study is available on request from the author.

4.3 Results of the simulation study
4.3.1 Results on the test data sets
Table 1 reports the accuracy rate, the true positive rate (sensitivity), and the true negative rate
(specificity) of all methodologies for different levels of cyclicality. Note that when the test data
set Sj for j= 1, . . . 4 is evaluated, the training data set for the NN models is ∪

1≤i≤4
Si \ Sj, whereas

when the test data set S5 is evaluated, the training data set is ∪
1≤i≤4

Si. The results for the g-test are
reported with and without Bonferroni correction for multiple-comparison, where the threshold
for the p-value is set to the conventional significance level of 0.05.

Looking first at the accuracy rate, overall, the four NN models outperform both the g-test and
autoregressive processes in terms of cycle detection on all data sets. Furthermore, the hybrid
convolutional-recurrent model outperforms the other NN models with higher accuracy on all
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Table 2. Estimated weights from ensembling all models

Training data: S2,S3,S4 S1,S3,S4 S1,S2,S4 S1,S2,S3 S1,S2,S3,S4
Test data: S1 S2 S3 S4 S5
g-test 0% 0% 0% 0% 0%
Autoregressive model 0% 0% 0% 0% 0%
Fully connected NN 0.87% 0% 0% 0% 0%
Recurrent NN 0% 0% 0% 19.15% 0%
Convolutional NN 82.05% 74.32% 97.80% 56.15% 99.66%
Hybrid conv-rec NN 17.08% 25.68% 2.20% 24.70% 0.34%
Accuracy rate 95.37% 91.02% 95.17% 94.33% 95.04%

Notes: This table reports the estimated weights on each method (g-test, autoregressive model, and NN’s) obtained by minimiz-
ing the sum of squared differences between the predictions from the ensemble and the targets from the relevant training set
∪1≤i≤4Si \Sj , for j= 1, 2, 3, 4, and ∪1≤i≤4Si .

data sets except for S1 (i.e. low cycle period). The accuracy rates of the top-performing model
vary across the data sets, where the lowest value is 92.03% on S2 (i.e. medium-low cycle period),
and the highest value is 96.54% on S1 (i.e. low cycle period).

Regarding the g-test and autoregressive processes, two observations are noteworthy. The first
observation is that, whereas the g-test has the lowest accuracy rates, those values tend to decrease
significantly when the Bonferroni correction is applied. This result suggests that Bonferroni cor-
rection is not necessarily useful in the present context. The second observation is that despite the
criticism expressed by Boyer et al. (2012), the methodology based on AR processes performs sat-
isfactorily with an average accuracy of about 88.5% across the five data sets. Nevertheless, as it is
shown later in this section, the performance of the AR(p) model deteriorates significantly when
outliers and structural breaks are present in the data.

The true positive rate is highest for recurrent NN model, where its performance is closely
matched by the convolutional and hybrid networks. That performance is also associated with the
lowest true negative rate among the NNmodels. On the other hand, the true negative rate is high-
est for the g-test with Bonferroni correction, which is close to 100%, but it comes at the cost of too
low true positive rates. This is because the g-test with Bonferroni correction classifies most series
as non-cyclical, which leads to a high specificity but a low sensitivity.

The results from Table 1 based on simulated data highlight the high performance of NNs in dis-
tinguishing between cosines with noise or AR(2) from AR(1)/AR(0) process, which substantially
exceeds that of the g-test and autoregressive models. Furthermore, among the four NN mod-
els, the hybrid convolutional-recurrent architecture has a higher efficacy in cycle detection, even
though the performance measures of all four architectures are close. Interestingly, the NNmodels
perform better than AR(p) models despite the data being generated from AR(p) and cosine-based
models.

4.3.2 Ensembling
An additional test is performed, consisting of fitting a weighted average of the predictions from
the g-test, autoregressive processes, and the four NN models. This ensembling is performed for
each of the five data sets ∪

1≤i≤4
Si \ Sj, for j= 1, 2, 3, 4 and ∪

1≤i≤4
Si. The goal is to verify whether

combining the different methodologies could help to further improve the detection of cycles. The
estimated weights are reported in Table 2, where the values are estimated byminimizing the sum of
squared differences between the predictions from the ensemble and the targets from the relevant
training set. Note that the ensembling performed using the binary cross-entropy leads to similar
conclusions.

The first observation from Table 2 is that for all data sets, the g-test and the autoregressive
model are assigned weights of 0%. This suggests that not only are the NN models able to detect
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cyclicality with high accuracy, but that additional input from the g-test and autoregressive pro-
cesses is not necessary on the training data. The second observation is that, among the NNmodels,
the convolutional NN is assigned the highest weight on all training data sets. The hybrid model
comes second, and the recurrent NN comes third, where it is assigned a positive weight for one
data set only. The FNN is not used at all.

It is worth mentioning that these weights are determined using the training data, and hence,
this result does not necessarily mean that the convolutional NN is the best model on the
unseen test data. Indeed, as discussed in the previous subsection, Table 1 shows that the hybrid
convolutional-recurrent NN outperforms the other models on 4 out of the 5 test data sets, whereas
the recurrent NN outperforms the othermodels on the remaining data set. In Table 2, the accuracy
rates on the test data show that the ensembles outperform the convolutional NN, but the accuracy
rates are still lower compared to those of the hybrid convolutional-recurrent NN.

4.3.3 Performance in the presence of outliers and structural breaks
In order to provide deeper understanding of the differences between the methodologies in terms
of cycle detection, this subsection investigates the cycle detection power of all methodologies when
the time series contain either outliers or structural breaks in the mean. Understanding the cycle
detection ability of all models in such cases is important, as Fig. 1 suggests that some time series
exhibit those features.

Let yt be a simulated time series from any of the data sets Si. Recall that the series were stan-
dardized, such that their mean is 0 and their standard deviation is 1. The corresponding time
series youtliert (s, δ) is the transformation of yt with an outlier at a unique time s ∈ {1, . . . , T} and
size δ, such that:

youtliert (s, δ)= yt + δ × P × I[t=s].

where P is equal to either −1 or 1 each with probability 0.5, and I[t=s] is equal to 1 at time t =
s. The value of s is sampled from {1, . . . , T} with equal probability. Analogously, ybreakt (s, δ) is
the transformation of yt with a structural break in the mean that occurs at a unique time s ∈
{3, . . . , T − 2} and size δ, such that:

ybreakt (s, δ)= yt + δ × P × I[t≥s],

where P is again equal to either −1 or 1 each with probability 0.5, and I[t≥s] is equal to 1 at times
t ≥ s. The value of s for structural breaks is sampled from {3, . . . , T − 2} with equal probability.
Note that s is not sampled from {1, 2, T − 1, T} to avoid redundancy. For instance, for s= 1, there
are no structural breaks, and s= 2 leads to series with an outlier at time 1.

To conclude, each time series youtliert has a single outlier. Half of the time series youtliert has
positive outliers, and the other half has negative ones. Among the youtliert ’s, 1

T of the time series has
an outlier at the s-th observation for s ∈ {1, . . . , T}. Analogously, each time series ybreakt has a single
structural break. Half of the time series ybreakt has positive breaks, and the other half has negative
ones. Among the ybreakt ’s, 1

T−4 of the time series has a structural break from time s ∈ {3, . . . , T −
2}. The size of the outlier or the break is equal to δ, where δ = 0 (i.e. no outliers or structural
breaks) or δ ∈ {1, . . . , 5}. Fig. 3 displays an example of the transformation for a non-cyclical and
a cyclical time series from the data set S1.

When the NNmodels are trained using data containing outliers or structural breaks, the train-
ing sets include series with δ ∈ {0, 1, 2, 3} but not with δ ∈ {4, 5}. However, the testing data sets
include series with all values of δ, i.e. δ ∈ {0, . . . , 5}. This allows us to determine how the NN
models generalize their detection of cycles in the presence of outliers and breaks on which they
were not trained, and in particular to δ = 4 or 5. In the remainder of this section, a data set Si to
which outliers and structural breaks were added is denoted by S


i . The set S

i includes a balanced
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Figure 3. Cyclical and non-cyclical series with and without an outlier and a break. Notes: This figure displays two simulated
paths from S1, where one is non-cyclical and the other is cyclical. The original simulations are given by the straight black
lines. The dashed red lines correspond to their transformation where an outlier with size δ = 4 occurs at time s= 14. The
dotted blue lines correspond to the transformation where a structural break with size δ = 4 occurs at time s= 14.

mix of the original time series and the time series with either outliers or structural breaks at dif-
ferent times s and different values of δ ∈ {0, 1, 2, 3}. Note that the data sets S


i and S

j for i 
= j still

differ in the length of the cycle period.
Figs. 4, 5, 6, and 7 display the performance measures with accuracy rates on the left columns,

true positive rates on the middle columns, and true negative rates on the right columns.
Figs. 4 and 5 focus on outliers, where the results in Fig. 4 are such that the NNs are trained on
data without outliers, whereas in Fig. 5 the NNs are trained with outliers. Analogously, Figs. 6
and 7 focus on structural breaks, where the results in Fig. 6 are such that the NNs are trained
on data without breaks, whereas in Fig. 7 the NNs are trained with breaks. In particular, the test
data sets are S


j , j= 1, . . . , 5, and in Figs. 4 and 6 the NN models are trained on ∪1≤i≤4Si \ Sj for
j= 1, . . . , 4 and ∪1≤i≤4Si, respectively, whereas in Figs. 5 and 7 the NN models are trained on
∪1≤i≤4S


i \ S

j for j= 1, . . . , 4 and ∪1≤i≤4S


i , respectively. The results are broken down by length
of cycle periods in each row of the figures, i.e., the test data sets S


j for j= 1, . . . , 5.
The left columns of Fig. 4 show that the performance of all methodologies deteriorates with the

size of the outliers in all test data sets. The accuracy rate of the AR(p) models falls quickly at δ = 2
below that of the uncorrected g-test. Interestingly, the g-test without Bonferroni correction is the
least impacted by the size of the outlier except on the test data S


3 . In particular, in most cases, the
g-test gives the highest accuracy rate from δ = 4. Among the NN models, the architecture that is
most robust to outliers is the convolutional NN, which has an accuracy rate consistently above that
of the other architectures. However, as with all other methods except the uncorrected g-test, its
accuracy rate drops near 60% for large outliers. From the middle and right columns of Fig. 4, the
deterioration of the performance of all models appears to be due to a high rejection rate of cyclical-
ity leading to poor true positive rates, while true negative rates are close to 100%. Shifting now the
focus towards Fig. 5, it turns out that training the NN models on data with outliers significantly
improves their performance, except for δ = 5 on the test data S


3 . Discounting that exception, the
accuracy rates of the convolutional, the recurrent, and the hybrid architectures retain levels of
accuracy close to their levels without outliers (i.e. δ = 0). However, the accuracy rates of the fully
connected NN architecture fall towards those of the uncorrected g-test despite being trained on
data with outliers. Overall, the figures suggest that once trained on data containing series with
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Figure 4. Accuracy, sensitivity, and specificity of all methodologies in the presence of outliers where the NN models are
trained on data without outliers. Notes: This figure displays the accuracy rates (left columns), the true positive rates (mid-
dle columns) and the true negative rates (right columns) in function of the size of the outliers δ = 0, 1, 2, 3, 4 and 5 for all
methodologies on the test dataS


j when the training data set is∪1≤i≤4Si \Sj, for j= 1, 2, 3, 4, as well as the performance on
the test dataS


5 when the training data set is∪1≤i≤4Si , i.e. the training data sets do not contain outliers. The results from the
autoregressive models and the g-test with p-value threshold 0.05 with and without Bonferroni correction are given by the
dashed lines. The results from the neural networks are given by the straight lines.

outliers, the top-performing model is the hybrid NN, closely followed by the convolutional or the
recurrent models. The methodologies based on the FNN, AR(p), and the g-test are too sensitive
to the presence of outliers compared to the CNN, RNN, and the hybrid NN.
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Figure 5. Accuracy, sensitivity, and specificity of all methodologies in the presence of outliers where the NN models are
trained on data with outliers. Notes: This figure displays the accuracy rates (left columns), the true positive rates (middle
columns), and the true negative rates (right columns) in function of the size of the outliers δ = 0, 1, 2, 3, 4 and 5 for allmethod-
ologies on the test data S


j when the training data set is ∪1≤i≤4S

i \S


j , for j= 1, 2, 3, 4, as well as the performance on the
test data S


5 when the training data set is ∪1≤i≤4S

i , i.e. the training data sets contain outliers. The results from the autore-

gressive models and the g-test with p-value threshold 0.05 with and without Bonferroni correction are given by the dashed
lines. The results from the neural networks are given by the straight lines.

The left columns on Fig. 6 show that the accuracy rates of all models are also decreasing with
the size of the structural break. Nevertheless, the figure suggests that the accuracy rates of NN
models are less sensitive to the presence of structural breaks than outliers, with the exception
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Figure 6. Accuracy, sensitivity, and specificity of all methodologies in the presence of structural breaks in the mean where
the NN models are trained on data without breaks. Notes: This figure displays the accuracy rates (left columns), the true
positive rates (middle columns) and the true negative rates (right columns) in function of the size of the break δ = 0, 1, 2, 3,
4 and 5 for all methodologies on the test data S


j when the training data set is ∪1≤i≤4Si \Sj, for j= 1, 2, 3, 4, as well as the
performance on the test dataS


5 when the training data set is∪1≤i≤4Si , i.e. the training data sets do not contain breaks. The
results from the autoregressive models and the g-test with p-value threshold 0.05 with and without Bonferroni correction
are given by the dashed lines. The results from the neural networks are given by the straight lines.

of the fully connected NN whose accuracy rates fall near those of the AR(p) and the g-test.
The reasonable performance of the convolutional, the recurrent, and the hybrid architectures
seems to be associated with a mild decrease in the true positive rate compared to the case with
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Figure 7. Accuracy, sensitivity, and specificity of all methodologies in the presence of structural breaks in the mean where
the NNmodels are trained on data with breaks.Notes: This figure displays the accuracy rates (left columns), the true positive
rates (middle columns), and the true negative rates (right columns) in function of the size of the break δ = 0, 1, 2, 3, 4 and 5 for
allmethodologies on the test dataS


j when the training data set is∪1≤i≤4S

i \S


j , for j= 1, 2, 3, 4, aswell as the performance
on the test data S


5 when the training data set is ∪1≤i≤4S

i , i.e. the training data sets contain breaks. The results from the

autoregressive models and the g-test with p-value threshold 0.05 with and without Bonferroni correction are given by the
dashed lines. The results from the neural networks are given by the straight lines.

outliers. Furthermore, Fig. 7 shows that training the NN models on data containing structural
breaks improves their accuracy rate and the true positive rates, but the improvement is less notice-
able than in the case of data with outliers. Where the NNmodels are trained with data that include
structural breaks (i.e. Fig. 7), the top-performing model is again the hybrid architecture.
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Table 3. Analysis of price cycles

Granular data
(% of profiles) Aggregate data

g-test 70.00% Non-cyclical
Bonferroni 22.68% Non-cyclical

Neural network trained without outliers and structural breaks
FNN 85.12% Cyclical
RNN 93.41% Cyclical
CNN 92.44% Cyclical
Hybrid NN 92.20% Cyclical
Neural network trained with outliers and structural breaks
FNN 96.34% Cyclical
RNN 99.02% Cyclical
CNN 98.29% Cyclical
Hybrid NN 98.78% Cyclical

Notes: Themiddle column of this table reports the proportion of cyclical time series of prices
from the classification of all models. The right column reports the outcome of the classi-
fication of all models for the data aggregated at the market level, i.e. the average market
price where the average is weighted by the exposure. The neural network models were
trained using either all simulated data ∪1≤i≤5Si without outliers and structural breaks or all
simulated data ∪1≤i≤5S


i with outliers and structural breaks.

The superior performance of NN models in the presence of outliers and structural breaks can
be attributed to their ability to learn from diverse training data and extract underlying patterns
rather than relying on parametric assumptions. Traditional AR models estimate coefficients that
are directly impacted by sudden changes in the mean or extreme observations, leading to insta-
bility in cycle classification. In contrast, NN architectures learn representations that emphasize
recurrent patterns while de-emphasizing transient distortions. By training NN models on both
“clean” and “perturbed” series, they develop robustness to irregularities that would otherwise bias
AR-based detection methods.

Overall, the analysis suggests that for a training data set without outliers, the hybrid archi-
tecture outperforms all other models when there are no outliers or structural breaks, but that
performance is sensitive to the presence of such features, and the least sensitive architecture is the
convolutional NN. However, once trained on data that contain outliers or structural breaks, the
hybrid architecture is to be preferred. The methodologies based on AR(p) or the g-test are too
sensitive to the presence of outliers and structural breaks, and their performance deteriorates with
the size of the outlier and the break, especially for the AR(p). Of course, it is worth noting that the
performance of the AR(p) and g-test could possibly be improved using an appropriate method to
correct the time series for the outliers and structural breaks. Such corrections were not used here
as they are not common in the literature on the underwriting cycle.

5. Empirical study
This section reports the results of the classification of the AUTOSEG data of prices. Recall that
based on the simulation study in the previous section, the NNmodels stand out as the most accu-
rate on the test data for cycle detection, especially the hybrid architecture trained on data with
outliers or structural breaks in the means. Nevertheless, for the sake of completeness, this section
reports the classification outcome of all methods. Note that in this section, the NN models were
trained using all simulated data, namely either on∪1≤i≤5Si for themodels trained on data without
outliers and breaks, or on ∪1≤i≤5S


i for the models trained on data with outliers and breaks.
The classification outcome from all methods is reported in Table 3, containing the proportions

of price time series classified as cyclical in themiddle column, where the classification is performed
per risk profile, as well as the classification outcome at the aggregate level in the right column,
using average market price across all risk profiles weighted by the exposure.
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The findings provide strong evidence that insurance prices for almost all risk profiles exhibit
cyclical behavior. The AR(p) methodology typically used in the literature detects cyclicality in
79.51% of risk profiles, while the g-test without correction detects it in 70%. The g-test with
Bonferroni correction detects cyclicality in 20.68%, but as demonstrated in the simulation study,
this correction leads to over-rejection of cyclicality. The NNmodels identify cyclicality in propor-
tions exceeding 90%, with the hybrid architecture trained on data with outliers and breaks (i.e. the
top-performing model in the simulation study) detecting cyclicality in 98.78% of the time series,
or 405 out of 410 risk profiles. The classification of aggregate prices is consistent with that of the
granular data, where all methodologies classify the average market price as cyclical, except for the
g-tests. To the best of my knowledge, this is the first paper that provides evidence of cyclicality in
insurance prices, and at this level of granularity.

The interpretation of the above results can be subject to two important criticisms.
The first one is that, strictly speaking, the NNmodels employed in this paper are trained to dis-

tinguish between cyclical AR(2) and cosine-based series fromAR(1)/AR(0), and do not necessarily
identify all types of cyclicality. The simulation study, although comprehensive in the treatment of
the standard processes considered in the literature, does not investigate how NN models would
classify series with complex but not cyclical temporal structure. In particular, the simulation study
in Section 4 does not address the performance of NNs trained on noisy sinusoids and AR(p) with
p≤ 2 when the series to be classified are e.g. non-cyclical AR(3) models, heteroscedastic, and/or
exhibiting both outliers and structural breaks. Nevertheless, the preliminary tests performed on
the data suggest absence of heteroscedasticity, and i.i.d. residuals when the series are modeled
using AR(1) or AR(2) models. In a separate analysis, an AR(3) was estimated for all series, but it
outperforms the AR(1) and AR(2) in only a few instances, namely for 20 series of price. For all
these series, the condition of AR(3) cyclicality was investigated numerically by verifying whether
the characteristic equation of the process has a pair of complex roots, and both AR(3) and AR(2)
suggest cyclicality.

The second criticism of this study is that the data set encompasses only 14 years (approximately
3 cycles based on the estimation of the AR(2) on aggregate premiums), making it challenging to
identify cyclicality from an econometric perspective. However, the simulation study demonstrates
that NNs were able to detect cyclical AR(2) patterns and noisy sinusoids across various cycle
lengths with the same number of observations as the empirical study. Therefore, based on the
simulation study results, the number of observations in the empirical analysis is not a significant
concern.

6. Conclusion
The present paper addresses the methodological issue of cycle detection in the insurance industry
using NNs. The efficacy of NNs is demonstrated on simulated data and compared to that of tradi-
tional methods. The simulation study highlights the performance of NNmodels in cycle detection
under various settings, including when the data contain outliers and structural breaks. The NN-
based methodology is then applied to a novel granular data set from the Brazilian insurance
industry of prices per risk profile. The application shows that, despite the skepticism expressed
in the literature, insurance cycles exist, and they manifest themselves in prices of almost all risk
profiles.

While this study focuses onNNs, othermachine learning techniques, such as gradient boosting,
could also be considered for cycle detection. Tree-based methods have shown strong classifi-
cation performance in various applications and could, therefore, also perform well in contexts
where temporal dependencies in time series have to be taken into account. Nevertheless, NN
architectures, particularly convolutional and recurrent models, are designed to capture sequential
patterns, making them well-suited for this task. Future research could explore the performance of
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alternative machine learning methods, but the findings presented here highlight the advantages of
NNs in cycle detection.

The results of this study raise several avenues for future research. First, the high classification
accuracy of NNs suggests that they could be adapted to detect other time-series characteristics,
such as stationarity, autocorrelation, or seasonality. Extending the current methodology to a
broader set of time-series properties could provide further insights into insurance market dynam-
ics, and it would also be relevant more generally in the context of time-series analysis. Second, a
natural extension is to developmethods for identifying cycle peaks and troughs, which could assist
actuaries in designing more responsive pricing strategies. This could involve integrating NN-
based cycle detection with change-point detection techniques or state-space models. Third, Fig. 1
suggests that insurance prices for different risk profiles exhibit a degree of synchronization. Future
research could investigate whether this synchronicity is driven by common macroeconomic fac-
tors, regulatory changes, or market competition. This could be explored usingmultivariate models
or causal inference techniques to better understand the interdependencies between risk profiles.
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