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Homeomorphic Analytic Maps into the
Maximal Ideal Space of H∞

Daniel Suárez

Abstract. Let m be a point of the maximal ideal space of H∞ with nontrivial Gleason part P(m). If Lm : D→
P(m) is the Hoffman map, we show that H∞ ◦Lm is a closed subalgebra of H∞. We characterize the points m
for which Lm is a homeomorphism in terms of interpolating sequences, and we show that in this case H∞◦Lm

coincides with H∞. Also, if Im is the ideal of functions in H∞ that identically vanish on P(m), we estimate
the distance of any f ∈ H∞ to Im.

Introduction

In [7] Hoffman characterized the Gleason parts of H∞ as maximal analytic disks or sin-
gle points, according to whether the part meets the closure of an interpolating sequence
or not. He also showed that among the nontrivial Gleason parts there are those which are
homeomorphic to the unit disk and those which are not. Specifically, he proved that if a
point m ∈ M(H∞) (the maximal ideal space of H∞) lies in the closure of a thin interpolat-
ing sequence, then the part of m is homeomorphic to the disk. A part satisfying the latter
condition is called a homeomorphic disk.

In [5] Gorkin, Lingenberg and Mortini retake the study of homeomorphic disks, ob-
taining significant new information. In particular, they define a local version of thinness
for interpolating sequences that provides a wider class of homeomorphic disks. They also
raise several questions, essentially asking whether their condition characterizes homeomor-
phic disks, and the linked problem of how well behaved (or bad behaved) these parts could
be. The first of these problems was recently solved by Izuchi [8], who showed the existence
of homeomorphic disks not satisfying the condition in [5]. We will address the other prob-
lems. The purpose of this paper is to continue the study of homeomorphic disks. Although
in some sense these disks are the least pathological of Gleason parts, we will see that there
are different degrees of pathology within the class of homeomorphic disks.

Let us summarize the results in the paper. We look at the functions of H∞ as functions
on its maximal ideal space M(H∞). First we show that if m ∈ M(H∞) is a point with
nontrivial Gleason part P(m) and Lm : D → P(m) is the Hoffman map, then H∞ ◦ Lm is a
closed subalgebra of H∞. Then we characterize homeomorphic disks in terms of interpo-
lating sequences satisfying a local condition of weak thinness. We use this characterization
to prove that if P(m) is a homeomorphic disk then H∞ ◦ Lm = H∞. In particular, the
map Lm extends to a homeomorphism from M(H∞) onto P(m). This answers two of the
questions in [5] (see also [11]).
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There are two classes of homeomorphic disks, if P(m) satisfies the condition of [5] then
the inverse map of Lm is the restriction of a Blaschke product. We will show that in the
complementary case any function f ∈ H∞ such that f ◦ Lm(z) = z for all z ∈ D must
satisfy ‖ f ‖∞ > 1.

Finally, we show that if P(m) is a homeomorphic disk and Im ⊂ H∞ is the ideal of
functions that vanish on P(m), then the distance of any f ∈ H∞ to Im is sup{| f (x)| :
x ∈ P(m)}. That is, the best constant in the problem of interpolating bounded analytic
functions on P(m) is 1. When f ◦ Lm is a non-constant inner function we show another
difference between the two types of homeomorphic disks, according to whether the above
distance is attained by some g ∈ Im or not.

1 Preliminaries

The maximal ideal space M(H∞) is identified with the space of nontrivial multiplicative
linear functionals on H∞ with the weak ∗ topology. It is a compact Hausdorff space, and
the Gelfand transform, f̂ (x) = x( f ) for f ∈ H∞ and x ∈ M(H∞), establishes an isometry
from H∞ into the algebra of continuous functions on M(H∞). We will avoid writing the
hat for the Gelfand transform, so looking at H∞ as an algebra of functions on its maximal
ideal space. The pseudohyperbolic metric for x, y ∈ M(H∞) is defined by

ρ(x, y) = sup{| f (y)| : f ∈ H∞, ‖ f ‖∞ ≤ 1 and f (x) = 0}.

Easy consequences of this definition are the Schwarz-Pick inequality, ρ
(

f (x), f (y)
)
≤

ρ(x, y), when f ∈ H∞, ‖ f ‖∞ ≤ 1, and the formula ρ(z, ω) = |z − ω|/|1 − ωz| for
z, ω ∈ D. Also, it is well known that for any three points z0, z1, z2 in D,

ρ(z0, z2)− ρ(z2, z1)

1− ρ(z0, z2)ρ(z2, z1)
≤ ρ(z0, z1) ≤

ρ(z0, z2) + ρ(z2, z1)

1 + ρ(z0, z2)ρ(z2, z1)
.(1.1)

A Blaschke product b with zero sequence S = {zn} is called interpolating if

δ(b)
def
= inf

k

∏
n:n 6=k

ρ(zn, zk) > 0.

Consistently, S is called an interpolating sequence, and δ(S)
def
= δ(b). We often use the

notation ZD(b) for the sequence S, and Z(b) = {x ∈ M(H∞) : b(x) = 0}. It is easy to
prove that Z(b) = ZD(b) when b is an interpolating Blaschke product.

The Gleason part of m ∈ M(H∞) is P(m) = {x ∈ M(H∞) : ρ(x,m) < 1}. Since
the condition ρ(x,m) < 1 is an equivalence relation, Gleason parts determine a partition
of M(H∞). In [7] Hoffman defined a continuous map Lm from D onto P(m), so that
Lm(0) = m. There are only two possibilities, either P(m) = {m} (a trivial part) and Lm

is constant, or Lm is one-to-one, which happens if and only if m is in the closure of some
interpolating sequence. We write

G = {m ∈ M(H∞) : P(m) is not a single point}.
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More precisely, m ∈ G if and only if there is a subnet (zα) of some interpolating sequence
{zn} that tends to m. In this case, the analytic functions Lzα(z) = (z + zα)/(1 + zzα) tend
to Lm(z) in the topology of M(H∞)D (i.e., pointwise). Since any continuous one-to-one
function from D onto D is a homeomorphism, the existence of any homeomorphism from
D onto P(m) implies that Lm is a homeomorphism. As said in the introduction, a part P(m)
for which Lm is a homeomorphism is called a homeomorphic disk.

The map Lm is analytic, in the sense that f ◦ Lm ∈ H∞ for f ∈ H∞. Furthermore, the
map m 7→ Lm from M(H∞) into M(H∞)D is continuous, meaning that for any net (mα)
in M(H∞) converging to m, Lmα → Lm pointwise on D.

Let b be a Blaschke product and x ∈ Z(b). The multiplicity of x as a zero of b is defined
as the maximum positive integer n so that b = b1 · · · bn, with b j(x) = 0 for 1 ≤ j ≤ n, and
it is infinite if there is no such n. The analytical behaviour of b ◦ Lx immediately implies
that the multiplicity of x is infinite if and only if b ≡ 0 on P(x).

2 The Algebra H∞ ◦ Lm

For m ∈ G \ D consider the closed ideal Im = { f ∈ H∞ : f ≡ 0 on P(m)}. The quotient
norm makes H∞/Im a semisimple Banach algebra with maximal ideal space

M(H∞/Im) = hull Im = {x ∈ M(H∞) : f (x) = 0 for all f ∈ Im} = P(m),

(see [4]). Then Im is the kernel of the map f 7→ f ◦ Lm from H∞ onto H∞ ◦ Lm. Passing
to the quotient, we have that the induced map Λm : H∞/Im → H∞ ◦ Lm is a one-to-one
Banach algebras morphism with range H∞ ◦ Lm. Additionally, Λm is a contraction:

‖ f ◦ Lm‖∞ = sup
x∈P(m)

| f (x)| ≤ inf{‖ f + h‖∞ : h ∈ Im} = ‖ f + Im‖H∞/Im
.

By the open mapping theorem Λm is onto (i.e., H∞ ◦ Lm = H∞ ◦ Lm) if and only if the
above inequality has a reciprocal

‖ f + Im‖H∞/Im
≤ K‖ f ◦ Lm‖∞,

where K does not depend on f . That is, H∞ ◦ Lm is a closed subalgebra of H∞ if and only
if the above inequality holds. The purpose of this section is to prove this fact. We need
an auxiliary lemma, whose proof uses Garnett’s reinterpretation of Carleson’s proof of the
corona theorem. The lemma will be useful in this and the next sections, and it could be
of further application. A positive measure µ on D is called a Carleson measure if there is a
constant C > 0 such thatµ(Q) ≤ Cl for every sector Q = {reiθ : 1−l ≤ r < 1, |θ−θ0| ≤ l},
where 0 < l ≤ 1. The infimum of the constants C as above is called the intensity of the
measure µ.

Lemma 2.1 Let u be an inner function and 0 < β < 1. Put Ω = {z ∈ D : |u(z)| < β} and
suppose that f ∈ H∞(Ω). Then there are 0 < γ = γ(β) < β, C = C(β) > 0 and F ∈ H∞

such that

(i) ‖F‖∞ ≤ C‖ f ‖H∞(Ω), and
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(ii) |F(z)− f (z)| ≤ A‖ f ‖H∞(Ω)|u(z)| when |u(z)| < γ, where A = γ−1(C + 1).

Proof By [3, VIII, Thm. 5.1] there are 0 < γ = γ(β) < β and Φ ∈ C∞(D) such that
(a) 0 ≤ Φ ≤ 1,
(b) Φ(z) = 0 if |u(z)| ≥ β,
(c) Φ(z) = 1 if |u(z)| < γ, and
(d) |∂Φ/∂z| dx dy is a Carleson measure with intensity bounded by some constant K =

K(β).
Henceforth, the Carleson measure µ = |( f /u)∂Φ/∂z| dx dy has intensity bounded by

‖ f ‖H∞(Ω)γ(β)−1K(β). By [3, VIII, Thm. 1.1] there is q(z) continuous on D and C∞ on D
such that

∂q

∂z
=

f

u

∂Φ

∂z
,(2.1)

and

sup
|z|=1
|q(z)| ≤ C0γ

−1K‖ f ‖H∞(Ω),(2.2)

with C0 an absolute constant. Put C = C0γ
−1K and consider the function F(z) =

f (z)Φ(z) − q(z)u(z) (z ∈ D). Therefore (2.1) implies that ∂F/∂z = 0, meaning that F
is analytic. Consequently, (b) and (2.2) yield

‖F‖∞ = lim
r→1−

sup{|F(z)| : |u(z)| ≥ r}

= lim
r→1−

sup{|q(z)| : |u(z)| ≥ r} ≤ C‖ f ‖H∞(Ω).

This proves (i). On the other hand, (c) implies that F(z) = f (z)−q(z)u(z) when |u(z)| < γ.
Since u is an open function, by continuity the above equality also holds for |u(z)| = γ.
Thus,

sup
|u(z)|=γ

|q(z)| = sup
|u(z)|=γ

|F(z)− f (z)|

|u(z)|
≤ γ−1(C + 1)‖ f ‖H∞(Ω).(2.3)

Moreover, (c) and (2.1) imply that q is analytic on {|u| < γ}. So, by the maximum modulus
principle (2.2) and (2.3) yield

sup
|u(z)|<γ

|q(z)| ≤ max{ sup
|z|=1
|q(z)|, sup

|u(z)|=γ
|q(z)|} ≤ A‖ f ‖H∞(Ω),

where A = γ−1(C + 1). Therefore,

|F(z)− f (z)| = |q(z)u(z)| ≤ A‖ f ‖H∞(Ω) |u(z)|

when |u(z)| < γ, which proves (ii).
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Theorem 2.2 There is an absolute constant K ≥ 1 such that for every m ∈ G \ D and
f ∈ H∞,

‖ f + Im‖H∞/Im
≤ K‖ f ◦ Lm‖∞.

In particular, H∞ ◦ Lm is a closed subalgebra of H∞.

Proof Let m ∈ G \D and f ∈ H∞ so that ‖ f ◦ Lm‖∞ = sup{| f (x)| : x ∈ P(m)} = 1. Fix
an arbitrary 0 < β < 1 and consider the constant C(β) appearing in Lemma 2.1. We will

see that there exists F ∈ f + Im such that ‖F‖∞ ≤ 2C(β)
def
= K.

Since the Shilov boundary S(H∞) is disjoint from P(m), there is an open neighborhood
U ⊂ M(H∞) of P(m) such that U ∩ S(H∞) = ∅ and

| f (x)| < 2 for all x ∈ U .(2.4)

An argument from [6] provides an inner function u ∈ Im such that |u| ≥ β on M(H∞)\U .
Indeed, by [12, Lemma 2.5] there is h ∈ Im such that |h| > 0 on the compact set M(H∞) \
U . Since h never vanishes on S(H∞), its outer factor must be invertible, implying that

its inner factor is in Im. If the singular factor vs of h is in Im then a suitable N-root v1/N
s

satisfies our requirements. Otherwise there is a Blaschke product b ∈ Im (the Blaschke
factor of h) so that |b| > 0 on M(H∞) \ U . By [13, Thm. 2.5] there is a factorization
b = b1 · · · bnu1 · · · uk, where each b j is an interpolating Blaschke product and

|u j | ≥ β on M(H∞) \U for all j = 1, . . . , k.

Therefore some of the functions u j vanishes identically on P(m), and this is our function u.
Let Ω = {z ∈ D : |u(z)| < β}. Since Ω ⊂ U ∩ D then (2.4) implies that the function

f1 = f |Ω ∈ H∞(Ω) has norm ‖ f1‖H∞(Ω) ≤ 2. Let F ∈ H∞ be the function provided by
Lemma 2.1 in association to f1. Part (i) of the lemma yields ‖F‖∞ ≤ C(β)‖ f1‖H∞(Ω) ≤
C(β)2 = K. By (ii) of the lemma, |F(z) − f1(z)| ≤ 2A|u(z)| when |u(z)| < γ = γ(β).
Since the set {z ∈ D : |u(z)| < γ} is contained in Ω (because γ < β) and f1 ≡ f on Ω, we
conclude that

|F(z)− f (z)| ≤ 2A|u(z)| for |u(z)| < γ.

By the corona theorem then F − f ≡ 0 on Z(u), and therefore on P(m). This means that
F − f ∈ Im, as claimed.

3 Homeomorphic Disks

Let m ∈ M(H∞) \ D. The map Lm extends to a continuous map L∗m from M(H∞) onto
P(m) by the formula L∗m(x)( f ) = x( f ◦ Lm), where x ∈ M(H∞) and f ∈ H∞ (see [1]). In
[5, Thm. 2.1] it is proved that if P(m) is a homeomorphic disk, then L∗m|G is a homeomor-
phism, and the authors ask whether this is also true for L∗m. A deeper question posed there
is whether H∞ ◦ Lm coincides with H∞ when P(m) is a homeomorphic disk. Clearly, this
condition implies the first one. The present section is mainly devoted to give an affirma-
tive answer to this question. From now on we write Lm for either the Hoffman map or its
extension L∗m, the meaning being clear from the context.
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In [5, Thm. 1.4] it is shown that m ∈ M(H∞) \D is such that P(m) is a homeomorphic
disk if and only if there is some interpolating sequence S such that S ∩ P(m) = {m}. The
authors also identify a wide class of homeomorphic disks, as we will see next. Let b be a
Blaschke product with zeros {zn}. We say that b is locally thin at m if there is a subnet (zα)
of {zn} such that zα → m and limα(1 − |zα|2)|b′(zα)| = 1. A point m ∈ M(H∞) \ D
is called locally thin if there exists a Blaschke product b as above. When this happens, by
Schwarz lemma b ◦ Lm(z) = λz for some constant λ ∈ C with |λ| = 1. Furthermore, a
result of Hoffman [7, Lemma 6.3] now tells us that

( f ◦ λb) ◦ Lm = f for every f ∈ H∞.(3.1)

Reciprocally, if there is a Blaschke product b such that b ◦ Lm(z) = z, then b is locally thin
at m, and consequently m is a locally thin point. It is then clear that every locally thin point
m lies in a homeomorphic disk (i.e., P(m)).

By [7, Thm. 5.3] we can use only interpolating Blaschke products in the definition of
locally thin points. If so, by looking at the zero sequence of b we obtain a completely
equivalent definition without appealing to nets.

Definition Let S = {zn} be an interpolating sequence and let m ∈ S \ S. We say that S is
locally thin at m if for every 0 < β < 1 there is a subsequence T of S such that m ∈ T and

∏
n:n 6=k

ρ(zn, zk) > β for all zk ∈ T.

A point m ∈ M(H∞) \ D is locally thin if there is an interpolating sequence as above.

If m is locally thin then so is any other point in P(m). In [5] it is asked if this condition
characterizes homeomorphic disks. Although a recent paper of Izuchi [8] shows the exis-
tence of homeomorphic disks not containing locally thin points, the characterization can
be achieved by slightly relaxing the above definition.

Definition Let S be an interpolating sequence and let m ∈ S \ S. We say that S is locally
weakly thin at m if for every 0 < β < 1 there is a subsequence T of S such that m ∈ T and
ρ(z, S \ {z}) > β for every z ∈ T. A point m satisfying this condition is called a locally
w-thin point.

Let m ∈ G and E ⊂ D be a subset. We say that m avoids E if for every interpolating
sequence S such that m ∈ S and any number 0 < β < 1, there is a subsequence S1 ⊂ S
such that m ∈ S1 and ρ(S1, E) ≥ β. Using (1.1) and [7, Thm. 6.1] it is easy to see that
if the above condition holds for a fixed interpolating sequence S such that m ∈ S then it
holds for every such sequence. This concept was introduced in [14], and its relevance for
the present paper is that if m ∈ M(H∞) \ D is in the closure of an interpolating sequence
and y ∈ M(H∞), then y 6∈ P(m) if and only if there is some open neighborhood U of y
such that m avoids U ∩ D [14, Coro. 2.5].

Lemma 3.1 Let m ∈ M(H∞)\D and let R be an interpolating sequence. Then R∩P(m) = ∅

if and only if m avoids R.
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Proof If R ∩ P(m) = ∅ the above comment says that for every y ∈ R there is an open
neighborhood U y of y such that m avoids U y ∩D. By compactness there is an open neigh-
borhood U of R such that m avoids U ∩D ⊃ R. Reciprocally, if m avoids R then (3)⇒ (1)
in [14, Coro. 2.5] says that y /∈ P(m) for every y ∈ R.

Lemma 3.2 ([7, p. 82]) Let S be an interpolating sequence, m ∈ S, and 0 < δ < 1. There
exists a subsequence T ⊂ S such that m ∈ T and δ(T) > δ.

Lemma 3.3 Let S be an interpolating sequence, and let m ∈ S \ S. Then S is locally w-thin at
m if and only if S ∩ P(m) = {m}.

Proof Suppose that S ∩ P(m) = {m}. Lemma 3.1 then implies that m avoids every subse-
quence R ⊂ S such that m /∈ R. Let 0 < β < 1. By Lemma 3.2 there is a subsequence T
of S such that m ∈ T and δ(T) > β. So, m avoids S \ T, and then there is a subsequence
T1 ⊂ T such that m ∈ T1 and ρ(z, S \ T) > β for all z ∈ T1. Moreover, since T1 ⊂ T and
δ(T) > β, then ρ(z,T \ {z}) > β for all z ∈ T1. Thus, ρ(z, S \ {z}) > β for all z ∈ T1.

Now suppose that S is locally w-thin at m, and let R ⊂ S be an arbitrary subsequence
so that m 6∈ R. Let 0 < β < 1. By hypothesis there is a subsequence T ⊂ S such that
m ∈ T and ρ(z, S \ {z}) > β for every z ∈ T. We can assume that T ∩ R = ∅ (we take
T \ R instead of T if necessary). Thus, ρ(T,R) ≥ β, which means that m avoids R. So,
no point of R is in P(m). Hence, whenever R ⊂ S is a subsequence such that m /∈ R then
R ∩ P(m) = ∅. Suppose that there is y ∈ S ∩ P(m), with y 6= m, and let V ⊂ M(H∞) be
an open neighborhood of y such that m 6∈ V . If R = S∩V , we have that y ∈ R∩P(m) and
that m /∈ R, a contradiction.

Combining [5, Thm. 1.4] and Lemma 3.3 we obtain

Corollary 3.4 Let m ∈ M(H∞) \ D. Then P(m) is a homeomorphic disk if and only if m is
a locally w-thin point.

Before we turn to the main result of this section we need a well known result given by
Hoffman (see [7, p. 86 and p. 106], or [3, p. 404]). For 0 < δ < 1 consider the two
functions

η(δ) =
1−
√

1− δ2

δ
and ε(δ) =

δ − η(δ)

1− δη(δ)
η(δ) = ρ

(
δ, η(δ)

)
η(δ).

It is easy to verify that η(δ) and ε(δ) take values between 0 and 1, that they increase when
δ increases, and that both tend to 1 when δ → 1. From now on, η(δ) and ε(δ) will always
mean these functions.

For z0 ∈ D and 1 < r < 1 put∆(z0, r) = {z ∈ D : ρ(z, z0) < r} for the pseudohyper-
bolic ball with center z0 and radius r.

Lemma 3.5 Let b be an interpolating Blaschke product with zero sequence {zn} so that δ(b) ≥
δ > 0. Then

∆
(

zn, η(δ)
)
∩∆

(
zp, η(δ)

)
= ∅ if n 6= p

and
|b(z)| ≥ ε(δ) for all z /∈

⋃
n

∆
(

zn, η(δ)
)
.
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Theorem 3.6 Let m ∈ M(H∞) \ D be a point in a homeomorphic disk and let f ∈ H∞.
Then there is F ∈ H∞ such that

F ◦ Lm(z) = f (z) for all z ∈ D.

Proof Since m lies in a homeomorphic disk, there is an interpolating sequence S such that
m ∈ S and S is locally w-thin at m.

Let {σk} ⊂ (0, 1) be a sequence such that β =
∏

k≥1 σk > 0. We choose a sequence
{δk} ⊂ (0, 1) such that

δk < δk+1 and ε(δk) > σ1/k
k .(3.2)

So, δk → 1 when k → ∞. Once this is done we choose another sequence {αk} ⊂ (0, 1)
such that

η(δk−1) + η(δk)

1 + η(δk−1)η(δk)
< αk.(3.3)

By Lemma 3.2 and the definition of locally w-thinness there is a decreasing sequence of
interpolating sequences S ⊃ S1 ⊃ S2 ⊃ · · · such that for all k ≥ 1,

(i) m ∈ Sk,
(ii) δ(Sk) > δk,
(iii) ρ(z, S1 \ {z}) > αk for all z ∈ Sk, and
(iv)

∑
k≥1

∑
z∈Sk

k(1− |z|) <∞.

We write Rk = {zk
n : n ≥ 1} for the sequence Rk = Sk \ Sk+1.

Claim 1: The pseudohyperbolic balls ∆
(
zk

n, η(δk)
)

, with 1 ≤ n, k, are pairwise disjoint.
If n 6= p, then ∆

(
zk

n, η(δk)
)
∩ ∆

(
zk

p, η(δk)
)
= ∅ by Lemma 3.5, because zk

n, z
k
p ∈ Sk and

δ(Sk) > δk. If zk
n ∈ Rk and z j

p ∈ R j with j > k then ρ(zk
n, z

j
p) > max{αk, α j} by (iii).

Suppose that there is ω ∈ ∆
(

zk
n, η(δk)

)
∩∆

(
z j

p, η(δ j)
)
. Then by (1.1)

ρ(zk
n, z

j
p) ≤

ρ(zk
n, ω) + ρ(ω, z j

p)

1 + ρ(zk
n, ω)ρ(ω, z j

p)
≤
η(δk) + η(δ j)

1 + η(δk)η(δ j)
.

Since {δk} is an increasing sequence, so is {η(δk)}, and since k ≤ j − 1, the last member of
the above inequality is bounded by

η(δ j−1) + η(δ j)

1 + η(δ j−1)η(δ j )
< α j ,

by (3.3). Thus, max{αk, α j} < ρ(zk
n, z

j
m) < α j , which is a contradiction.

Let bk be a Blaschke product with zero sequence Rk. Since Rk ⊂ Sk and δ(Sk) > δk, by
Lemma 3.5

|bk(z)| ≥ ε(δk) for all z /∈
⋃
n≥1

∆
(

zk
n, η(δk)

)
.(3.4)
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Let b =
∏

k≥1 bk
k. This Blaschke product converges by condition (iv). In addition, (3.2)

and (3.4) tell us that for every z /∈ Θ
def
=
⋃

k≥1

⋃
n≥1∆

(
zk

n, η(δk)
)

,

|b(z)| =
∏
k≥1

|bk(z)|k ≥
∏
k≥1

ε(δk)k >
∏
k≥1

σk = β.(3.5)

Therefore, {z ∈ D : |b(z)| < β} ⊂ Θ.

Claim 2: The Blaschke product b vanishes on P(m). Fix an arbitrary positive integer k0.
Since Sk0 = Rk0 ∪Rko+1∪· · · , and m ∈ Sk0 , then

∏
k≥k0

bk(m) = 0. Consequently
∏

k≥k0
bk0

k
has a zero of multiplicity k0 at m, and since this Blaschke product is a factor of b, then m
is a zero of b of multiplicity at least k0. Since k0 is arbitrary, then m is a zero of infinite
multiplicity of b. That is, b ≡ 0 on P(m).

We define a bounded analytic function h on the setΘ by the rule

h(z) = f ◦ L−1
zk

n
(z) = f

(
z − zk

n

1− zk
nz

)
for z ∈ ∆

(
zk

n, η(δk)
)
.

Let 0 < r < 1 be arbitrary. Since η(δk) → 1 when k → ∞, then η(δk) > r if k is big
enough. So, for ξ ∈ ∆(0, r) and k that big, we have that Lzk

n
(ξ) ∈ ∆

(
zk

n, η(δk)
)

and

h ◦ Lzk
n
(ξ) = h

(
Lzk

n
(ξ)
)
= f ◦ L−1

zk
n

(
Lzk

n
(ξ)
)
= f (ξ).(3.6)

It is also clear that supz∈Θ |h(z)| ≤ ‖ f ‖∞. We keep these values of r and k. Since bk(zk
n) = 0

and Lzk
n

is isometric with respect to the metric ρ, the Schwarz-Pick inequality yields

|bk

(
Lzk

n
(ξ)
)
| = ρ

(
bk

(
Lzk

n
(ξ)
)
, bk(zk

n)
)
≤ ρ
(
Lzk

n
(ξ), zk

n

)
= ρ
(
Lzk

n
(ξ), Lzk

n
(0)
)
= ρ(ξ, 0) = |ξ| < r

for all ξ ∈ ∆(0, r). Since bk
k is a factor of b we obtain

|b ◦ Lzk
n
(ξ)| ≤ |bk

(
Lzk

n
(ξ)
)
|
k
≤ rk → 0 when k→∞(3.7)

uniformly for ξ ∈ ∆(0, r).
Since by (3.5) Ω = {z ∈ D : |b(z)| < β} ⊂ Θ, the function h1 = h|Ω is in H∞(Ω) and

‖h1‖H∞(Ω) ≤ ‖h‖H∞(Θ) ≤ ‖ f ‖∞.

By the above inequality and the fact that h1 ≡ h on Ω, Lemma 2.1 provides a function
F ∈ H∞ so that ‖F‖ ≤ C‖ f ‖ and

|F(z)− h(z)| ≤ A‖ f ‖ |b(z)| when |b(z)| < γ,(3.8)

where C and γ = γ(β) < β are the constants of that lemma.
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Claim 3: F ◦ Lm = f . Let ξ ∈ D be an arbitrary point and take r so that |ξ| < r < 1.
By (3.7) there is k(r) such that for every k ≥ k(r) we have η(δk) > r and |b

(
Lzk

n
(ξ)
)
| ≤ rk <

γ. So, by (3.6), (3.7) and (3.8):

|F
(
Lzk

n
(ξ)
)
− f (ξ)| = |F

(
Lzk

n
(ξ)
)
− h
(
Lzk

n
(ξ)
)
|

≤ A‖ f ‖ |b
(
Lzk

n
(ξ)
)
| ≤ C‖ f ‖rk.

(3.9)

Let (zk(i)
n(i)) be a subnet of the sequence {zk

n : k, n ≥ 1} converging to m. Since m ∈ Sk for
every k and disjoint subsequences of an interpolating sequence have disjoint closures, then
m /∈ Rk for any k. Consequently k(i)→∞.

Therefore Lzk(i)
n(i)

(z) → Lm(z) for every z ∈ D, and by (3.9) and the continuity of F on

M(H∞),
F
(

Lm(z)
)
= lim

i
F
(

Lzk(i)
n(i)

(z)
)
= f (z).

This completes the proof of the theorem.

4 Norm Estimate for Some Quotients of H∞

We believe that the best constant K in Theorem 2.2 should be 1, that is, Λm should be an
isometry. As a partial evidence we show that this holds for homeomorphic disks.

Theorem 4.1 Let m ∈ G \ D lying in a homeomorphic disk. Then Λm is an isometry. That
is, for every f ∈ H∞,

‖ f + Im‖H∞/Im
= ‖ f ◦ Lm‖∞.

If f ◦ Lm is a non-constant inner function, then there exists f1 ∈ f + Im such that ‖ f1‖∞ = 1
if and only if m is a locally thin point.

Observe that if m is a locally thin point then (3.1) implies that the function f1 in the
theorem can be chosen inner. The proof of the theorem requires several auxiliary results.
The hyperbolic metric is defined as

h(ζ1, ζ2) = log

(
1 + ρ(ζ1, ζ2)

1− ρ(ζ1, ζ2)

)
for ζ1, ζ2 ∈ M(H∞),

(see [3, p. 5]). We use the metric h in the next lemma in order to simplify calculations
involving the triangular inequality.

Lemma 4.2 Let m ∈ M(H∞) \ D be a point in a homeomorphic disk and let m0,m1, . . .
be a sequence of different points in P(m) such that m0 = m and ξk = L−1

m (mk) is a Blaschke
sequence in D. Put ρk = ρ(mk,m). Suppose that αk, δk ∈ (0, 1) are numbers satisfying

αk+1 > αk > ρk and δk > 2ρk/(1 + ρ2
k),(4.1)

for all k ≥ 0. Then there are interpolating sequences Tk = {ωk
n; n ≥ 1} satisfying the following

conditions.
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(a) Fix an arbitrary ωk
n ∈ Tk. Then ρ(ωk

n, ω
k
p) > αk for p 6= n.

If l < k there exists a uniqueωl
n′ ∈ Tl such that ρ(ωk

n, ω
l
n′) = ρ(mk,ml), and ρ(ωk

n, ω
l
p) >

αk for p 6= n′.
If l > k there is at most one ωl

n′ ∈ Tl such that ρ(ωk
n, ω

l
n′) = ρ(mk,ml), and ρ(ωk

n, ω
l
p) >

αl for any other p.
(b) δ(Tk) ≥ δk.
(c) Tk ∩ P(m) = {mk}.

Proof Since m lies in a homeomorphic disk, by Lemma 3.3 there is an interpolating se-
quence S such that m ∈ S and S is locally w-thin at m. Combining this fact with Lemma 3.2
we obtain a decreasing chain of sequences S ⊃ S0 ⊃ S1 ⊃ · · · such that

(I) Sk ∩ P(m) = {m},
(II) δ(Sk) > βk, where 0 < βk < 1 is chosen so that min{βk, ρ

(
βk, 2ρk/(1 + ρ2

k)
)
} ≥ δk,

and
(III) for every z ∈ Sk, ρ(z, S \ {z}) > γk, where 0 < γk < 1 is given by

1 + γk

1− γk
=

(
1 + αk

1− αk

) ∏
1≤ j≤k

(
1 + ρ j

1− ρ j

)
.(4.2)

Observe that since αk+1 > αk and (1 + x)/(1− x) increases with x ∈ (0, 1), then γk+1 > γk.
By hypothesis we have Lm(ξk) = mk. If we write Sk = {zk

n : n ≥ 1}, then we claim that the
sequences Tk = {ωk

n = Lzk
n
(ξk) : n ≥ 1} satisfy (a), (b) and (c). Observe that since ξ0 = 0

then ω0
n = Lz0

n
(0) = z0

n for all n ≥ 1, and consequently T0 = S0. Let ωk
n = Lzk

n
(ξk) and

ωl
p = Lzl

p
(ξl). If zk

n = zl
p then

ρ(ωk
n, ω

l
p) = ρ

(
Lzk

n
(ξk), Lzl

p
(ξl)
)
= ρ
(
Lzk

n
(ξk), Lzk

n
(ξl)
)

= ρ(ξk, ξl) = ρ
(
Lm(ξk), Lm(ξl)

)
= ρ(mk,ml).

(4.3)

If l ≤ k then Sk ⊂ Sl, and consequently there exists a unique zl
n′ ∈ Sl such that zl

n′ = zk
n. If

l > k then Sl ⊂ Sk, and then there is at most one zl
n′ ∈ Sl such that zl

n′ = zk
n. So, when there

is such zl
n′ ∈ Sl equality (4.3) tells us that ρ(ωk

n, ω
l
n′) = ρ(mk,ml). In particular, if l = 0

then ω0
n′ = z0

n′ = zk
n, and

ρ(ωk
n, z

k
n) = ρ(ωk

n, ω
0
n′) = ρk.(4.4)

Whether l ≤ k or l > k, for any point ωl
p in Tl other than the point ωl

n′ defined above,

we have that zk
n 6= zl

p. Therefore (III) implies that ρ(zk
n, z

l
p) > max{γk, γl}. In order to fix

notation let us say that l ≤ k, so the above maximum is γk. The same argument works for
l > k, where the maximum is γl. Since the function log(1 + x)/(1 − x) increases with x
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when 0 < x < 1, then by (4.2) and (4.4),

log

(
1 + αk

1− αk

)
+
∑

1≤ j≤k

h(m,m j) = log

(
1 + γk

1− γk

)

< log

(
1 + ρ(zk

n, z
l
p)

1− ρ(zk
n, z

l
p)

)
= h(zk

n, z
l
p)

≤ h(zk
n, ω

k
n) + h(ωk

n, ω
l
p) + h(ωl

p, z
l
p)

= h(m,mk) + h(ωk
n, ω

l
p) + h(ml,m).

Hence,

log

(
1 + αk

1− αk

)
< h(ωk

n, ω
l
p) = log

(
1 + ρ(ωk

n, ω
l
p)

1− ρ(ωk
n, ω

l
p)

)
,

and consequently ρ(ωk
n, ω

l
p) > αk. This proves (a).

Since T0 = S0 then by (II) δ(T0) > β0 ≥ δ0 and (b) holds for T0. Since ρ(ωk
n, z

k
n) = ρk

for n ≥ 1 by (4.4), and δ(Sk) > δk > 2ρk/(1 + ρ2
k) by (II) and (4.1), then Lemma 5.3 of [3,

Ch. VII] implies that
δ(Tk) ≥ ρ

(
βk, 2ρk/(1 + ρ2

k)
)
.

By (II) the above expression is bounded below by δk. So, (b) holds and in particular each
Tk is an interpolating sequence.

Since m ∈ Sk then there is a subnet (zk
α) of the sequence {zk

n} such that zk
α → m. Then

ωk
α = Lzk

α
(ξk) is a subnet of Tk that tends to Lm(ξk) = mk. Thus, mk ∈ Tk ∩ P(m).

Suppose now that x ∈ Tk∩P(m). Then there is a subnet (ωk
α) of Tk tending to x. Taking

a suitable subnet we can assume that the corresponding subnet (zk
α) of Sk tends to some

point y ∈ M(H∞). If y 6∈ P(m) then P(y) does not meet P(m) (see [14, Coro. 2.7]).
Since x = limα ωk

α = limα Lzk
α
(ξk) = Ly(ξk) ∈ P(y) then x /∈ P(m), contradicting our

assumption. So, y ∈ P(m) and then y ∈ Sk ∩ P(m) = {m}, that is, y = m. Hence
ωk
α = Lzk

α
(ξk)→ Lm(ξk) = mk and x = mk.

In [5, pp. 968–973] it is proved that if m ∈ G \ D is in a homeomorphic disk and B is
an interpolating Blaschke product, then there is an interpolating Blaschke product b so that
b ◦ Lm = Bg, with |g| ≥ ε

(
δ(b)

)
. Lemma 4.2 allows us to give a quantitative generalization

of this result.

Theorem 4.3 Let m ∈ G \ D such that P(m) is a homeomorphic disk and B be a Blaschke
product with simple zeros {ξk}k≥0. Let 0 < β < 1. Then for every k ≥ 0 there is an
interpolating Blaschke product bk with zeros {ωk

n : n ≥ 1} such that

(1) Z(bk) ∩ P(m) = {mk}, where mk = Lm(ξk),
(2) b =

∏
k≥0 bk is a Blaschke product,

(3) (1− |ωk
n|

2)|b′(ωk
n)| ≥ β(1− |ξk|2)|B′(ξk)| for every ωk

n ∈ ZD(bk), and
(4) b ◦ Lm(z) = B(z)g(z), where β ≤ |g(z)| ≤ 1 for all z ∈ D.
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Proof Let m′ ∈ P(m). Since Lm′(z) = Lm

(
τ (z)

)
, with τ : D → D a suitable Möbius

transformation, and the expression (1 − |z|2)|B′(z)| is conformally invariant, a moment
of reflection shows that the theorem holds if and only if it holds when m is replaced by
any m′ ∈ P(m). In particular, we can assume that m0 = m (i.e., ξ0 = 0) without loss of
generality.

We retain the notation of Lemma 4.2. Let {ε j} be a sequence so that ρ(m j ,m) = ρ j <

ε j < 1 and
∏

j≥0 ε j > β
1/2. First we choose δk between β1/2 and 1, where ρk/(1 + ρ2

k) <
δk < 1 is close enough to 1 so that ε(δk) ≥ εk. Then we choose an increasing sequence {αk}
such that max{ρk, η(δk)} < αk < 1. Let Tk = {ωk

n : n ≥ 1} be the sequence constructed
in Lemma 4.2 for these values of δk and αk, and denote by bk the interpolating Blaschke
product with zeros Tk.

Since Tk is interpolating, then Z(bk) = Tk and (1) follows from (c) in Lemma 4.2.
Let ωk

n ∈ Tk be arbitrary. If j 6= k, by part (a) of the lemma there is at most one ω j
n′ ∈ T j

such that ρ(ω j
n′ , ω

k
n) = ρ(m j ,mk), while ρ(ω j

p, ω
k
n) > max{α j , αk} ≥ α j > η(δ j) for every

p 6= n′. Thus, Lemma 3.5 implies that for j 6= k,

|b j(ω
k
n)| ≥ ρ(m j ,mk)ε(δ j ) ≥ ρ(m j ,mk)ε j .(4.5)

Since ρ(m j ,mk) = ρ
(
Lm(ξ j), Lm(ξk)

)
= ρ(ξ j , ξk), then by (b) of Lemma 4.2 and (4.5),

(1− |ωk
n|

2)|b′k(ωk
n)|
∏
j: j 6=k

|b j(ω
k
n)| ≥ δk

∏
j: j 6=k

ρ(m j ,mk)
∏
j: j 6=k

ε j

≥ β1/2(1− |ξk|
2)|B′(ξk)|β1/2 > 0,

implying that b =
∏

k≥0 bk converges. Therefore, b is a Blaschke product and the first

member in the above inequality is (1− |ωk
n|

2)|b′(ωk
n)|. This states (2) and (3). Analogously,

if k = 0 and we use inequality (4.5) with j ≥ N + 1, then∏
j≥N+1

|b j(ω
0
n)| ≥

∏
j≥N+1

ρ j

∏
j≥N+1

ε j → 1

uniformly on n when N →∞. Since m ∈ T0 then∏
j≥N+1

|b j(m)| → 1 when N →∞.(4.6)

Fix an arbitrary 0 < r < 1 and let aN =
∏

j≥N+1 b j . Then the S-P inequality says that for

every x ∈ ∆(m, r) = {x ∈ M(H∞) : ρ(x,m) ≤ r} we have ρ
(
aN (x), aN (m)

)
≤ ρ(x,m) ≤

r. So, by (4.6) and the relation between the pseudohyperbolic and the euclidean metrics [3,
p. 3],

|aN (x)| ≥
|aN(m)| − r

1− r|aN(m)|
→ 1 when N → 1.

Thus, there is some N = N(r, β) such that

|aN (x)| > β1/2 for all x ∈ ∆(m, r).(4.7)
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Since b = aNb1 · · · bN and for each k we have Z(bk)∩P(m) = {mk}, then Z(b)∩∆(m, r) =
{mk : ρ(mk,m) ≤ r} with multiplicity 1. The fact that r is arbitrary proves that b ◦ Lm

only vanishes at the points ξk = L−1
m (mk) (k ≥ 0), and with single multiplicity. This

means that b ◦ Lm = Bg, where g ∈ H∞ is zero-free on D. Moreover, by [5, Lemma 1.8]
bk ◦ Lm(z) = φk(x)gk(z), where φk(z) = (z − ξk)(1 − ξkz)−1 and |gk(z)| ≥ ε(δk) > εk for
every z ∈ D and k ≥ 0. Factorizing b we obtain that

Bg = b ◦ Lm = (aN ◦ Lm).
∏

0≤k≤N

(bk ◦ Lm) = BN GN

∏
0≤k≤N

φkgk,

where BN is the Blaschke product with zeros {ξk : k ≥ N + 1} and g = GN g0 · · · gN .
Since Lm is an isometry from D onto P(m) then Lm

(
∆(0, r)

)
= ∆(m, r). So, when

|z| ≤ r and N = N(r, β) is the the integer of (4.7) we have

|g(z)| = |GN (z)| |g0(z)| · · · |gN (z)| ≥ |GN (z)BN (z)|ε0 · · · εN

> |aN

(
Lm(z)

)
|
∏
j≥0

ε j ≥ β
1/2β1/2.

The first and last members of the above inequality turned out to be independent of N , and
since r is arbitrary, the inequality holds for every z ∈ D.

Corollary 4.4 Let m ∈ G \D in a homeomorphic disk and let B be an interpolating Blaschke
product. Then for any 0 < β < 1 there is an interpolating Blaschke product b (depending on
β) such that δ(b) ≥ βδ(B) and b ◦ Lm = Bg, where β ≤ |g(z)| ≤ 1 for all z ∈ D.

Lemma 4.5 Let S be an interpolating sequence and let m ∈ S \ S be a locally w-thin point.
Then there exists a subsequence T ⊂ S such that m ∈ T and T is locally w-thin at m.

Proof Let R be an interpolating sequence so that m ∈ R and R is locally w-thin at m. It is
clear that for any 0 < α < 1 the point m is in the closure of both sequences

Tα
def
= {z ∈ S : ρ(z,R) < α} and Rα

def
= {ω ∈ R : ρ(ω,Tα) < α}.

Using (1.1) as a triangular inequality we see that if α is small enough (depending on δ(S)
and δ(R)) then for each z ∈ Tα there is only one ω ∈ Rα such that ρ(z, ω) < α and vice
versa. Since m ∈ Rα and Rα ⊂ R then Rα is locally w-thin at m, and then so is Tα by a new
application of (1.1).

We need the following result of Treil [15].

Theorem (Treil) Let f1, f2 ∈ H∞, ‖ f1‖ = ‖ f2‖ = 1, such that | f1(z)| + | f2(z)| > δ > 0 for
all z ∈ D. Then there is a constant K(δ) ≥ 1 and h ∈ H∞ such that the function F = f1 + h f2

satisfies
K(δ)−1 ≤ |F(z)| ≤ K(δ).

Clearly, K(δ) can be chosen to be a nonincreasing function of δ.
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Lemma 4.6 Let m ∈ G \ D and let 0 < ε < 1. There is 0 < β < 1, β = β(ε) → 1 when
ε→ 0, such that whenever f ∈ H∞ satisfies

1 ≤ | f
(
Lm(z)

)
| ≤ 1/β for all z ∈ D,(4.8)

then there exists f1 ∈ f + Im such that

1− ε ≤ | f1(z)| ≤
1

β
(1 + ε) for all z ∈ D.(4.9)

Proof Writing g = f ◦ Lm, inequality (4.8) yields

β ≤
|g(z)|

‖g‖
≤ 1 for all z ∈ D.(4.10)

Let N be a positive integer to be chosen later. Let us fix a constant C > K, where K is
the absolute constant appearing in Theorem 2.2. Since ( f /‖g‖)N ◦ Lm = (g/‖g‖)N then
Theorem 2.2 implies that there exists some fN ∈ H∞ such that fN ◦ Lm = (g/‖g‖)N and
‖ fN‖ ≤ C . By (4.10) we also have that | fN | ≥ βN on P(m), which together with the above
estimate gives | fN |/‖ fN‖ ≥ βN/C on P(m). Let U be an open neighborhood of P(m) so
that U does not meet the Shilov boundary of H∞, and

| fN |/‖ fN‖ > β
2N/C on U .

As showed in the proof of Theorem 2.2, under these circumstances there exists some inner
function u ∈ Im such that

|u| ≥ β2N/C on M(H∞) \U .

Thus, | fN |/‖ fN‖+ |u| ≥ β2N/C on M(H∞). If β2N ≥ 1/2 then Treil’s theorem tells us that
there is some h ∈ H∞ so that F = fN/‖ fN‖ + hu satisfies

K(1/2C)−1 ≤ K(β2N/C)−1 ≤ |F(z)| ≤ K(β2N/C) ≤ K(1/2C)(4.11)

for all z ∈ D. Since hu ∈ Im then F◦Lm = ( fN/‖ fN‖)◦Lm = (g/‖g‖)N . Since F is invertible,
it has some N-root F1/N , and consequently (F1/N ◦ Lm)N = (F1/N )N ◦ Lm = (g/‖g‖)N . So,
F1/N ◦Lm = λg/‖g‖, where λ ∈ C is some N-root of the unity. Take N = N(ε) big enough
so that K(1/2C)1/N ≤ 1 + ε and consider f1 = λ‖g‖F1/N . Since

f1 ◦ Lm = λ‖g‖(F1/N ◦ Lm) = g = f ◦ Lm,

then f1 ∈ f + Im. Besides, by (4.11) and our choice of N ,

‖g‖(1− ε) ≤ ‖g‖K(1/2C)−1/N ≤ | f1| ≤ ‖g‖K(1/2C)1/N ≤ (1 + ε)‖g‖.

Since by (4.8) 1 ≤ ‖g‖ ≤ 1/β, then (4.9) follows. Finally, β(ε) → 1 when ε→ 0, because
β ≥ 2N

√
1/2 and N ≥ log K(1/2C)/ log(1 + ε).
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Proof of Theorem 4.1 In the first statement of the theorem we only have to prove that

‖ f + Im‖H∞/Im
≤ ‖ f ◦ Lm‖∞.(4.12)

Let ε > 0 and let B be a Blaschke product with simple zeros. Let 0 < β < 1 to be
chosen later. By Theorem 4.3 there is a Blaschke product b such that b ◦ Lm = Bg, where
β < |g(z)| < 1, and by Theorem 3.6 there is G ∈ H∞ so that G ◦ Lm = g−1. Thus,
1 < |G(x)| < β−1 for every x ∈ P(m). Choosing β = β(ε) close enough to 1, Lemma 4.6
assures that there is G1 ∈ G + Im (i.e., G1 ◦ Lm = g−1) such that ‖G1‖∞ ≤ 1 + ε. Writing
f1 = G1b we have f1 ◦ Lm = B and ‖ f1‖ = ‖G1‖ ≤ 1 + ε. In other words, whenever
f ∈ H∞ is such that f ◦ Lm = B, then

‖ f + Im‖H∞/Im
= inf{‖k‖∞ : k ∈ f + Im} ≤ 1 + ε(4.13)

for every ε > 0. Now suppose that f ◦ Lm = h, where ‖h‖ = 1. It is easy to see that
every Blaschke product can be uniformly approximated by simple Blaschke products, and
well known that the closed convex hull of the set of Blaschke products is the unit ball of
H∞ (see [10] or [3, p. 196]). Therefore, there are simple Blaschke products b1, . . . , bn and
positive real numbers λ1, . . . , λn such that

∑
1≤ j≤n λ j = 1 and ‖h−

∑
1≤ j≤n λ jb j‖∞ < ε.

By (4.13) there are f1, . . . , fn ∈ H∞ such that

f j ◦ Lm = b j and ‖ f j‖ ≤ 1 + ε

for 1 ≤ j ≤ n. If F =
∑

1≤ j≤n λ j f j then ‖F‖∞ ≤ 1 + ε and

‖ f + Im‖H∞/Im
≤ ‖( f + Im)− (F + Im)‖H∞/Im

+ ‖F + Im‖H∞/Im

≤ ‖( f − F) + Im‖H∞/Im
+ ‖F‖∞

≤ K‖( f − F) ◦ Lm‖∞ + 1 + ε

= K
∥∥∥h−

∑
1≤ j≤n

λ jb j

∥∥∥
∞

+ 1 + ε

≤ 1 + (K + 1)ε,

where K is the constant of Theorem 2.2. Since ε is arbitrary then (4.12) follows.
Suppose that m is a locally thin point and let b be a Blaschke product that is locally thin

at m. Multiplying b by a constant of modulus 1 if necessary, by (3.1) we can assume that
b = L−1

m and that (h◦b)◦Lm = h for every h in H∞. Thus, if f ◦Lm = h then h◦b ∈ f + Im

and ‖h ◦ b‖ = ‖h‖ = ‖ f ◦Lm‖. As said in Section 3, this property characterizes locally thin
points.

Suppose now that f ∈ H∞ is a norm 1 function such that f ◦ Lm = u, a non-constant
inner function. Taking

(
f − f (m)

)
/
(
1− f (m) f

)
instead of f we can assume that f (m) = 0

(i.e., u(0) = 0). Since f |P(m) 6≡ 0 (because f ◦ Lm 6≡ 0) then a result of Hoffman [7,
Thm. 5.3] implies that there is an interpolating Blaschke product b that divides f with
m ∈ Z(b). Since we are assuming that P(m) is a homeomorphic disk then Corollary 3.4
says that m is a locally w-thin point. Thus Lemmas 4.5 and 3.3 imply that the zero sequence
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of b has a subsequence T such that T ∩ P(m) = {m}. Let b1 be the Blaschke product with
zero sequence T. Then b1 is a factor of f and since Z(b1) = T then Z(b1) ∩ P(m) = {m}.
Thus b1 ◦ Lm(z) = zg(z), where g ∈ H∞ is invertible and ‖g‖∞ ≤ ‖b1‖∞ = 1. Since

u = f ◦ Lm =
[
( f /b1) ◦ Lm

]
[b1 ◦ Lm],

then ( f /b1) ◦ Lm = u0g−1, where u0(z) = u(z)/z. Hence, ‖g−1‖∞ ≤ ‖ f ‖∞ = 1 yielding
|g| ≡ 1. So, g is a constant of modulus 1, which proves that b1 is locally thin at m.
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